java.util

Class Vector<E>

public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable

The Vector class implements a growable array of objects. Like an array, it contains components that can be accessed using an integer index. However, the size of a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.

Each vector tries to optimize storage management by maintaining a capacity and a capacityIncrement. The capacity is always at least as large as the vector size; it is usually larger because as components are added to the vector, the vector's storage increases in chunks the size of capacityIncrement. An application can increase the capacity of a vector before inserting a large number of components; this reduces the amount of incremental reallocation.

As of the Java 2 platform v1.2, this class has been retrofitted to implement List, so that it becomes a part of Java's collection framework. Unlike the new collection implementations, Vector is synchronized.

The Iterators returned by Vector's iterator and listIterator methods are fail-fast: if the Vector is structurally modified at any time after the Iterator is created, in any way except through the Iterator's own remove or add methods, the Iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. The Enumerations returned by Vector's elements method are not fail-fast.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

This class is a member of the Java Collections Framework.

Since: JDK1.0

Version: 1.94, 06/22/03

Author: Lee Boynton Jonathan Payne

See Also: Collection List ArrayList LinkedList

Field Summary
protected intcapacityIncrement
The amount by which the capacity of the vector is automatically incremented when its size becomes greater than its capacity.
protected intelementCount
The number of valid components in this Vector object.
protected Object[]elementData
The array buffer into which the components of the vector are stored.
Constructor Summary
Vector(int initialCapacity, int capacityIncrement)
Constructs an empty vector with the specified initial capacity and capacity increment.
Vector(int initialCapacity)
Constructs an empty vector with the specified initial capacity and with its capacity increment equal to zero.
Vector()
Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment is zero.
Vector(Collection<? extends E> c)
Constructs a vector containing the elements of the specified collection, in the order they are returned by the collection's iterator.
Method Summary
booleanadd(E o)
Appends the specified element to the end of this Vector.
voidadd(int index, E element)
Inserts the specified element at the specified position in this Vector.
booleanaddAll(Collection<? extends E> c)
Appends all of the elements in the specified Collection to the end of this Vector, in the order that they are returned by the specified Collection's Iterator.
booleanaddAll(int index, Collection<? extends E> c)
Inserts all of the elements in in the specified Collection into this Vector at the specified position.
voidaddElement(E obj)
Adds the specified component to the end of this vector, increasing its size by one.
intcapacity()
Returns the current capacity of this vector.
voidclear()
Removes all of the elements from this Vector.
Objectclone()
Returns a clone of this vector.
booleancontains(Object elem)
Tests if the specified object is a component in this vector.
booleancontainsAll(Collection<?> c)
Returns true if this Vector contains all of the elements in the specified Collection.
voidcopyInto(Object[] anArray)
Copies the components of this vector into the specified array.
EelementAt(int index)
Returns the component at the specified index.
Enumeration<E>elements()
Returns an enumeration of the components of this vector.
voidensureCapacity(int minCapacity)
Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of components specified by the minimum capacity argument.
booleanequals(Object o)
Compares the specified Object with this Vector for equality.
EfirstElement()
Returns the first component (the item at index 0) of this vector.
Eget(int index)
Returns the element at the specified position in this Vector.
inthashCode()
Returns the hash code value for this Vector.
intindexOf(Object elem)
Searches for the first occurence of the given argument, testing for equality using the equals method.
intindexOf(Object elem, int index)
Searches for the first occurence of the given argument, beginning the search at index, and testing for equality using the equals method.
voidinsertElementAt(E obj, int index)
Inserts the specified object as a component in this vector at the specified index.
booleanisEmpty()
Tests if this vector has no components.
ElastElement()
Returns the last component of the vector.
intlastIndexOf(Object elem)
Returns the index of the last occurrence of the specified object in this vector.
intlastIndexOf(Object elem, int index)
Searches backwards for the specified object, starting from the specified index, and returns an index to it.
booleanremove(Object o)
Removes the first occurrence of the specified element in this Vector If the Vector does not contain the element, it is unchanged.
Eremove(int index)
Removes the element at the specified position in this Vector.
booleanremoveAll(Collection<?> c)
Removes from this Vector all of its elements that are contained in the specified Collection.
voidremoveAllElements()
Removes all components from this vector and sets its size to zero.
booleanremoveElement(Object obj)
Removes the first (lowest-indexed) occurrence of the argument from this vector.
voidremoveElementAt(int index)
Deletes the component at the specified index.
protected voidremoveRange(int fromIndex, int toIndex)
Removes from this List all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive.
booleanretainAll(Collection<?> c)
Retains only the elements in this Vector that are contained in the specified Collection.
Eset(int index, E element)
Replaces the element at the specified position in this Vector with the specified element.
voidsetElementAt(E obj, int index)
Sets the component at the specified index of this vector to be the specified object.
voidsetSize(int newSize)
Sets the size of this vector.
intsize()
Returns the number of components in this vector.
List<E>subList(int fromIndex, int toIndex)
Returns a view of the portion of this List between fromIndex, inclusive, and toIndex, exclusive.
Object[]toArray()
Returns an array containing all of the elements in this Vector in the correct order.
<T> T[]toArray(T[] a)
Returns an array containing all of the elements in this Vector in the correct order; the runtime type of the returned array is that of the specified array.
StringtoString()
Returns a string representation of this Vector, containing the String representation of each element.
voidtrimToSize()
Trims the capacity of this vector to be the vector's current size.

Field Detail

capacityIncrement

protected int capacityIncrement
The amount by which the capacity of the vector is automatically incremented when its size becomes greater than its capacity. If the capacity increment is less than or equal to zero, the capacity of the vector is doubled each time it needs to grow.

Serial:

elementCount

protected int elementCount
The number of valid components in this Vector object. Components elementData[0] through elementData[elementCount-1] are the actual items.

Serial:

elementData

protected Object[] elementData
The array buffer into which the components of the vector are stored. The capacity of the vector is the length of this array buffer, and is at least large enough to contain all the vector's elements.

Any array elements following the last element in the Vector are null.

Serial:

Constructor Detail

Vector

public Vector(int initialCapacity, int capacityIncrement)
Constructs an empty vector with the specified initial capacity and capacity increment.

Parameters: initialCapacity the initial capacity of the vector. capacityIncrement the amount by which the capacity is increased when the vector overflows.

Throws: IllegalArgumentException if the specified initial capacity is negative

Vector

public Vector(int initialCapacity)
Constructs an empty vector with the specified initial capacity and with its capacity increment equal to zero.

Parameters: initialCapacity the initial capacity of the vector.

Throws: IllegalArgumentException if the specified initial capacity is negative

Vector

public Vector()
Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment is zero.

Vector

public Vector(Collection<? extends E> c)
Constructs a vector containing the elements of the specified collection, in the order they are returned by the collection's iterator.

Parameters: c the collection whose elements are to be placed into this vector.

Throws: NullPointerException if the specified collection is null.

Since: 1.2

Method Detail

add

public boolean add(E o)
Appends the specified element to the end of this Vector.

Parameters: o element to be appended to this Vector.

Returns: true (as per the general contract of Collection.add).

Since: 1.2

add

public void add(int index, E element)
Inserts the specified element at the specified position in this Vector. Shifts the element currently at that position (if any) and any subsequent elements to the right (adds one to their indices).

Parameters: index index at which the specified element is to be inserted. element element to be inserted.

Throws: ArrayIndexOutOfBoundsException index is out of range (index < 0 || index > size()).

Since: 1.2

addAll

public boolean addAll(Collection<? extends E> c)
Appends all of the elements in the specified Collection to the end of this Vector, in the order that they are returned by the specified Collection's Iterator. The behavior of this operation is undefined if the specified Collection is modified while the operation is in progress. (This implies that the behavior of this call is undefined if the specified Collection is this Vector, and this Vector is nonempty.)

Parameters: c elements to be inserted into this Vector.

Returns: true if this Vector changed as a result of the call.

Throws: NullPointerException if the specified collection is null.

Since: 1.2

addAll

public boolean addAll(int index, Collection<? extends E> c)
Inserts all of the elements in in the specified Collection into this Vector at the specified position. Shifts the element currently at that position (if any) and any subsequent elements to the right (increases their indices). The new elements will appear in the Vector in the order that they are returned by the specified Collection's iterator.

Parameters: index index at which to insert first element from the specified collection. c elements to be inserted into this Vector.

Returns: true if this Vector changed as a result of the call.

Throws: ArrayIndexOutOfBoundsException index out of range (index < 0 || index > size()). NullPointerException if the specified collection is null.

Since: 1.2

addElement

public void addElement(E obj)
Adds the specified component to the end of this vector, increasing its size by one. The capacity of this vector is increased if its size becomes greater than its capacity.

This method is identical in functionality to the add(Object) method (which is part of the List interface).

Parameters: obj the component to be added.

See Also: add List

capacity

public int capacity()
Returns the current capacity of this vector.

Returns: the current capacity (the length of its internal data array, kept in the field elementData of this vector).

clear

public void clear()
Removes all of the elements from this Vector. The Vector will be empty after this call returns (unless it throws an exception).

Since: 1.2

clone

public Object clone()
Returns a clone of this vector. The copy will contain a reference to a clone of the internal data array, not a reference to the original internal data array of this Vector object.

Returns: a clone of this vector.

contains

public boolean contains(Object elem)
Tests if the specified object is a component in this vector.

Parameters: elem an object.

Returns: true if and only if the specified object is the same as a component in this vector, as determined by the equals method; false otherwise.

containsAll

public boolean containsAll(Collection<?> c)
Returns true if this Vector contains all of the elements in the specified Collection.

Parameters: c a collection whose elements will be tested for containment in this Vector

Returns: true if this Vector contains all of the elements in the specified collection.

Throws: NullPointerException if the specified collection is null.

copyInto

public void copyInto(Object[] anArray)
Copies the components of this vector into the specified array. The item at index k in this vector is copied into component k of anArray. The array must be big enough to hold all the objects in this vector, else an IndexOutOfBoundsException is thrown.

Parameters: anArray the array into which the components get copied.

Throws: NullPointerException if the given array is null.

elementAt

public E elementAt(int index)
Returns the component at the specified index.

This method is identical in functionality to the get method (which is part of the List interface).

Parameters: index an index into this vector.

Returns: the component at the specified index.

Throws: ArrayIndexOutOfBoundsException if the index is negative or not less than the current size of this Vector object. given.

See Also: Vector List

elements

public Enumeration<E> elements()
Returns an enumeration of the components of this vector. The returned Enumeration object will generate all items in this vector. The first item generated is the item at index 0, then the item at index 1, and so on.

Returns: an enumeration of the components of this vector.

See Also: Enumeration Iterator

ensureCapacity

public void ensureCapacity(int minCapacity)
Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of components specified by the minimum capacity argument.

If the current capacity of this vector is less than minCapacity, then its capacity is increased by replacing its internal data array, kept in the field elementData, with a larger one. The size of the new data array will be the old size plus capacityIncrement, unless the value of capacityIncrement is less than or equal to zero, in which case the new capacity will be twice the old capacity; but if this new size is still smaller than minCapacity, then the new capacity will be minCapacity.

Parameters: minCapacity the desired minimum capacity.

equals

public boolean equals(Object o)
Compares the specified Object with this Vector for equality. Returns true if and only if the specified Object is also a List, both Lists have the same size, and all corresponding pairs of elements in the two Lists are equal. (Two elements e1 and e2 are equal if (e1==null ? e2==null : e1.equals(e2)).) In other words, two Lists are defined to be equal if they contain the same elements in the same order.

Parameters: o the Object to be compared for equality with this Vector.

Returns: true if the specified Object is equal to this Vector

firstElement

public E firstElement()
Returns the first component (the item at index 0) of this vector.

Returns: the first component of this vector.

Throws: NoSuchElementException if this vector has no components.

get

public E get(int index)
Returns the element at the specified position in this Vector.

Parameters: index index of element to return.

Returns: object at the specified index

Throws: ArrayIndexOutOfBoundsException index is out of range (index < 0 || index >= size()).

Since: 1.2

hashCode

public int hashCode()
Returns the hash code value for this Vector.

indexOf

public int indexOf(Object elem)
Searches for the first occurence of the given argument, testing for equality using the equals method.

Parameters: elem an object.

Returns: the index of the first occurrence of the argument in this vector, that is, the smallest value k such that elem.equals(elementData[k]) is true; returns -1 if the object is not found.

See Also: equals

indexOf

public int indexOf(Object elem, int index)
Searches for the first occurence of the given argument, beginning the search at index, and testing for equality using the equals method.

Parameters: elem an object. index the non-negative index to start searching from.

Returns: the index of the first occurrence of the object argument in this vector at position index or later in the vector, that is, the smallest value k such that elem.equals(elementData[k]) && (k >= index) is true; returns -1 if the object is not found. (Returns -1 if index >= the current size of this Vector.)

Throws: IndexOutOfBoundsException if index is negative.

See Also: equals

insertElementAt

public void insertElementAt(E obj, int index)
Inserts the specified object as a component in this vector at the specified index. Each component in this vector with an index greater or equal to the specified index is shifted upward to have an index one greater than the value it had previously.

The index must be a value greater than or equal to 0 and less than or equal to the current size of the vector. (If the index is equal to the current size of the vector, the new element is appended to the Vector.)

This method is identical in functionality to the add(Object, int) method (which is part of the List interface). Note that the add method reverses the order of the parameters, to more closely match array usage.

Parameters: obj the component to insert. index where to insert the new component.

Throws: ArrayIndexOutOfBoundsException if the index was invalid.

See Also: size Vector List

isEmpty

public boolean isEmpty()
Tests if this vector has no components.

Returns: true if and only if this vector has no components, that is, its size is zero; false otherwise.

lastElement

public E lastElement()
Returns the last component of the vector.

Returns: the last component of the vector, i.e., the component at index size() - 1.

Throws: NoSuchElementException if this vector is empty.

lastIndexOf

public int lastIndexOf(Object elem)
Returns the index of the last occurrence of the specified object in this vector.

Parameters: elem the desired component.

Returns: the index of the last occurrence of the specified object in this vector, that is, the largest value k such that elem.equals(elementData[k]) is true; returns -1 if the object is not found.

lastIndexOf

public int lastIndexOf(Object elem, int index)
Searches backwards for the specified object, starting from the specified index, and returns an index to it.

Parameters: elem the desired component. index the index to start searching from.

Returns: the index of the last occurrence of the specified object in this vector at position less than or equal to index in the vector, that is, the largest value k such that elem.equals(elementData[k]) && (k <= index) is true; -1 if the object is not found. (Returns -1 if index is negative.)

Throws: IndexOutOfBoundsException if index is greater than or equal to the current size of this vector.

remove

public boolean remove(Object o)
Removes the first occurrence of the specified element in this Vector If the Vector does not contain the element, it is unchanged. More formally, removes the element with the lowest index i such that (o==null ? get(i)==null : o.equals(get(i))) (if such an element exists).

Parameters: o element to be removed from this Vector, if present.

Returns: true if the Vector contained the specified element.

Since: 1.2

remove

public E remove(int index)
Removes the element at the specified position in this Vector. shifts any subsequent elements to the left (subtracts one from their indices). Returns the element that was removed from the Vector.

Parameters: index the index of the element to removed.

Returns: element that was removed

Throws: ArrayIndexOutOfBoundsException index out of range (index < 0 || index >= size()).

Since: 1.2

removeAll

public boolean removeAll(Collection<?> c)
Removes from this Vector all of its elements that are contained in the specified Collection.

Parameters: c a collection of elements to be removed from the Vector

Returns: true if this Vector changed as a result of the call.

Throws: NullPointerException if the specified collection is null.

Since: 1.2

removeAllElements

public void removeAllElements()
Removes all components from this vector and sets its size to zero.

This method is identical in functionality to the clear method (which is part of the List interface).

See Also: Vector List

removeElement

public boolean removeElement(Object obj)
Removes the first (lowest-indexed) occurrence of the argument from this vector. If the object is found in this vector, each component in the vector with an index greater or equal to the object's index is shifted downward to have an index one smaller than the value it had previously.

This method is identical in functionality to the remove(Object) method (which is part of the List interface).

Parameters: obj the component to be removed.

Returns: true if the argument was a component of this vector; false otherwise.

See Also: remove List

removeElementAt

public void removeElementAt(int index)
Deletes the component at the specified index. Each component in this vector with an index greater or equal to the specified index is shifted downward to have an index one smaller than the value it had previously. The size of this vector is decreased by 1.

The index must be a value greater than or equal to 0 and less than the current size of the vector.

This method is identical in functionality to the remove method (which is part of the List interface). Note that the remove method returns the old value that was stored at the specified position.

Parameters: index the index of the object to remove.

Throws: ArrayIndexOutOfBoundsException if the index was invalid.

See Also: size Vector List

removeRange

protected void removeRange(int fromIndex, int toIndex)
Removes from this List all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding elements to the left (reduces their index). This call shortens the ArrayList by (toIndex - fromIndex) elements. (If toIndex==fromIndex, this operation has no effect.)

Parameters: fromIndex index of first element to be removed. toIndex index after last element to be removed.

retainAll

public boolean retainAll(Collection<?> c)
Retains only the elements in this Vector that are contained in the specified Collection. In other words, removes from this Vector all of its elements that are not contained in the specified Collection.

Parameters: c a collection of elements to be retained in this Vector (all other elements are removed)

Returns: true if this Vector changed as a result of the call.

Throws: NullPointerException if the specified collection is null.

Since: 1.2

set

public E set(int index, E element)
Replaces the element at the specified position in this Vector with the specified element.

Parameters: index index of element to replace. element element to be stored at the specified position.

Returns: the element previously at the specified position.

Throws: ArrayIndexOutOfBoundsException index out of range (index < 0 || index >= size()).

Since: 1.2

setElementAt

public void setElementAt(E obj, int index)
Sets the component at the specified index of this vector to be the specified object. The previous component at that position is discarded.

The index must be a value greater than or equal to 0 and less than the current size of the vector.

This method is identical in functionality to the set method (which is part of the List interface). Note that the set method reverses the order of the parameters, to more closely match array usage. Note also that the set method returns the old value that was stored at the specified position.

Parameters: obj what the component is to be set to. index the specified index.

Throws: ArrayIndexOutOfBoundsException if the index was invalid.

See Also: size List Vector

setSize

public void setSize(int newSize)
Sets the size of this vector. If the new size is greater than the current size, new null items are added to the end of the vector. If the new size is less than the current size, all components at index newSize and greater are discarded.

Parameters: newSize the new size of this vector.

Throws: ArrayIndexOutOfBoundsException if new size is negative.

size

public int size()
Returns the number of components in this vector.

Returns: the number of components in this vector.

subList

public List<E> subList(int fromIndex, int toIndex)
Returns a view of the portion of this List between fromIndex, inclusive, and toIndex, exclusive. (If fromIndex and ToIndex are equal, the returned List is empty.) The returned List is backed by this List, so changes in the returned List are reflected in this List, and vice-versa. The returned List supports all of the optional List operations supported by this List.

This method eliminates the need for explicit range operations (of the sort that commonly exist for arrays). Any operation that expects a List can be used as a range operation by operating on a subList view instead of a whole List. For example, the following idiom removes a range of elements from a List:

	    list.subList(from, to).clear();
 
Similar idioms may be constructed for indexOf and lastIndexOf, and all of the algorithms in the Collections class can be applied to a subList.

The semantics of the List returned by this method become undefined if the backing list (i.e., this List) is structurally modified in any way other than via the returned List. (Structural modifications are those that change the size of the List, or otherwise perturb it in such a fashion that iterations in progress may yield incorrect results.)

Parameters: fromIndex low endpoint (inclusive) of the subList. toIndex high endpoint (exclusive) of the subList.

Returns: a view of the specified range within this List.

Throws: IndexOutOfBoundsException endpoint index value out of range (fromIndex < 0 || toIndex > size) IllegalArgumentException endpoint indices out of order (fromIndex > toIndex)

toArray

public Object[] toArray()
Returns an array containing all of the elements in this Vector in the correct order.

Since: 1.2

toArray

public <T> T[] toArray(T[] a)
Returns an array containing all of the elements in this Vector in the correct order; the runtime type of the returned array is that of the specified array. If the Vector fits in the specified array, it is returned therein. Otherwise, a new array is allocated with the runtime type of the specified array and the size of this Vector.

If the Vector fits in the specified array with room to spare (i.e., the array has more elements than the Vector), the element in the array immediately following the end of the Vector is set to null. This is useful in determining the length of the Vector only if the caller knows that the Vector does not contain any null elements.

Parameters: a the array into which the elements of the Vector are to be stored, if it is big enough; otherwise, a new array of the same runtime type is allocated for this purpose.

Returns: an array containing the elements of the Vector.

Throws: ArrayStoreException the runtime type of a is not a supertype of the runtime type of every element in this Vector. NullPointerException if the given array is null.

Since: 1.2

toString

public String toString()
Returns a string representation of this Vector, containing the String representation of each element.

trimToSize

public void trimToSize()
Trims the capacity of this vector to be the vector's current size. If the capacity of this vector is larger than its current size, then the capacity is changed to equal the size by replacing its internal data array, kept in the field elementData, with a smaller one. An application can use this operation to minimize the storage of a vector.