java.util

Class Hashtable<K,V>

public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, Cloneable, Serializable

This class implements a hashtable, which maps keys to values. Any non-null object can be used as a key or as a value.

To successfully store and retrieve objects from a hashtable, the objects used as keys must implement the hashCode method and the equals method.

An instance of Hashtable has two parameters that affect its performance: initial capacity and load factor. The capacity is the number of buckets in the hash table, and the initial capacity is simply the capacity at the time the hash table is created. Note that the hash table is open: in the case of a "hash collision", a single bucket stores multiple entries, which must be searched sequentially. The load factor is a measure of how full the hash table is allowed to get before its capacity is automatically increased. When the number of entries in the hashtable exceeds the product of the load factor and the current capacity, the capacity is increased by calling the rehash method.

Generally, the default load factor (.75) offers a good tradeoff between time and space costs. Higher values decrease the space overhead but increase the time cost to look up an entry (which is reflected in most Hashtable operations, including get and put).

The initial capacity controls a tradeoff between wasted space and the need for rehash operations, which are time-consuming. No rehash operations will ever occur if the initial capacity is greater than the maximum number of entries the Hashtable will contain divided by its load factor. However, setting the initial capacity too high can waste space.

If many entries are to be made into a Hashtable, creating it with a sufficiently large capacity may allow the entries to be inserted more efficiently than letting it perform automatic rehashing as needed to grow the table.

This example creates a hashtable of numbers. It uses the names of the numbers as keys:

     Hashtable numbers = new Hashtable();
     numbers.put("one", new Integer(1));
     numbers.put("two", new Integer(2));
     numbers.put("three", new Integer(3));
 

To retrieve a number, use the following code:

     Integer n = (Integer)numbers.get("two");
     if (n != null) {
         System.out.println("two = " + n);
     }
 

As of the Java 2 platform v1.2, this class has been retrofitted to implement Map, so that it becomes a part of Java's collection framework. Unlike the new collection implementations, Hashtable is synchronized.

The Iterators returned by the iterator and listIterator methods of the Collections returned by all of Hashtable's "collection view methods" are fail-fast: if the Hashtable is structurally modified at any time after the Iterator is created, in any way except through the Iterator's own remove or add methods, the Iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. The Enumerations returned by Hashtable's keys and values methods are not fail-fast.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

This class is a member of the Java Collections Framework.

Since: JDK1.0

Version: 1.102, 06/22/03

Author: Arthur van Hoff Josh Bloch Neal Gafter

See Also: equals hashCode rehash Collection Map HashMap TreeMap

Constructor Summary
Hashtable(int initialCapacity, float loadFactor)
Constructs a new, empty hashtable with the specified initial capacity and the specified load factor.
Hashtable(int initialCapacity)
Constructs a new, empty hashtable with the specified initial capacity and default load factor, which is 0.75.
Hashtable()
Constructs a new, empty hashtable with a default initial capacity (11) and load factor, which is 0.75.
Hashtable(Map<? extends K,? extends V> t)
Constructs a new hashtable with the same mappings as the given Map.
Method Summary
voidclear()
Clears this hashtable so that it contains no keys.
Objectclone()
Creates a shallow copy of this hashtable.
booleancontains(Object value)
Tests if some key maps into the specified value in this hashtable.
booleancontainsKey(Object key)
Tests if the specified object is a key in this hashtable.
booleancontainsValue(Object value)
Returns true if this Hashtable maps one or more keys to this value.
Enumeration<V>elements()
Returns an enumeration of the values in this hashtable.
Set<Entry<K,V>>entrySet()
Returns a Set view of the entries contained in this Hashtable.
booleanequals(Object o)
Compares the specified Object with this Map for equality, as per the definition in the Map interface.
Vget(Object key)
Returns the value to which the specified key is mapped in this hashtable.
inthashCode()
Returns the hash code value for this Map as per the definition in the Map interface.
booleanisEmpty()
Tests if this hashtable maps no keys to values.
Enumeration<K>keys()
Returns an enumeration of the keys in this hashtable.
Set<K>keySet()
Returns a Set view of the keys contained in this Hashtable.
Vput(K key, V value)
Maps the specified key to the specified value in this hashtable.
voidputAll(Map<? extends K,? extends V> t)
Copies all of the mappings from the specified Map to this Hashtable These mappings will replace any mappings that this Hashtable had for any of the keys currently in the specified Map.
protected voidrehash()
Increases the capacity of and internally reorganizes this hashtable, in order to accommodate and access its entries more efficiently.
Vremove(Object key)
Removes the key (and its corresponding value) from this hashtable.
intsize()
Returns the number of keys in this hashtable.
StringtoString()
Returns a string representation of this Hashtable object in the form of a set of entries, enclosed in braces and separated by the ASCII characters "" (comma and space).
Collection<V>values()
Returns a Collection view of the values contained in this Hashtable.

Constructor Detail

Hashtable

public Hashtable(int initialCapacity, float loadFactor)
Constructs a new, empty hashtable with the specified initial capacity and the specified load factor.

Parameters: initialCapacity the initial capacity of the hashtable. loadFactor the load factor of the hashtable.

Throws: IllegalArgumentException if the initial capacity is less than zero, or if the load factor is nonpositive.

Hashtable

public Hashtable(int initialCapacity)
Constructs a new, empty hashtable with the specified initial capacity and default load factor, which is 0.75.

Parameters: initialCapacity the initial capacity of the hashtable.

Throws: IllegalArgumentException if the initial capacity is less than zero.

Hashtable

public Hashtable()
Constructs a new, empty hashtable with a default initial capacity (11) and load factor, which is 0.75.

Hashtable

public Hashtable(Map<? extends K,? extends V> t)
Constructs a new hashtable with the same mappings as the given Map. The hashtable is created with an initial capacity sufficient to hold the mappings in the given Map and a default load factor, which is 0.75.

Parameters: t the map whose mappings are to be placed in this map.

Throws: NullPointerException if the specified map is null.

Since: 1.2

Method Detail

clear

public void clear()
Clears this hashtable so that it contains no keys.

clone

public Object clone()
Creates a shallow copy of this hashtable. All the structure of the hashtable itself is copied, but the keys and values are not cloned. This is a relatively expensive operation.

Returns: a clone of the hashtable.

contains

public boolean contains(Object value)
Tests if some key maps into the specified value in this hashtable. This operation is more expensive than the containsKey method.

Note that this method is identical in functionality to containsValue, (which is part of the Map interface in the collections framework).

Parameters: value a value to search for.

Returns: true if and only if some key maps to the value argument in this hashtable as determined by the equals method; false otherwise.

Throws: NullPointerException if the value is null.

See Also: containsKey containsValue Map

containsKey

public boolean containsKey(Object key)
Tests if the specified object is a key in this hashtable.

Parameters: key possible key.

Returns: true if and only if the specified object is a key in this hashtable, as determined by the equals method; false otherwise.

Throws: NullPointerException if the key is null.

See Also: contains

containsValue

public boolean containsValue(Object value)
Returns true if this Hashtable maps one or more keys to this value.

Note that this method is identical in functionality to contains (which predates the Map interface).

Parameters: value value whose presence in this Hashtable is to be tested.

Returns: true if this map maps one or more keys to the specified value.

Throws: NullPointerException if the value is null.

Since: 1.2

See Also: Map

elements

public Enumeration<V> elements()
Returns an enumeration of the values in this hashtable. Use the Enumeration methods on the returned object to fetch the elements sequentially.

Returns: an enumeration of the values in this hashtable.

See Also: Enumeration keys values Map

entrySet

public Set<Entry<K,V>> entrySet()
Returns a Set view of the entries contained in this Hashtable. Each element in this collection is a Map.Entry. The Set is backed by the Hashtable, so changes to the Hashtable are reflected in the Set, and vice-versa. The Set supports element removal (which removes the corresponding entry from the Hashtable), but not element addition.

Returns: a set view of the mappings contained in this map.

Since: 1.2

See Also: Entry

equals

public boolean equals(Object o)
Compares the specified Object with this Map for equality, as per the definition in the Map interface.

Parameters: o object to be compared for equality with this Hashtable

Returns: true if the specified Object is equal to this Map.

Since: 1.2

See Also: equals

get

public V get(Object key)
Returns the value to which the specified key is mapped in this hashtable.

Parameters: key a key in the hashtable.

Returns: the value to which the key is mapped in this hashtable; null if the key is not mapped to any value in this hashtable.

Throws: NullPointerException if the key is null.

See Also: Hashtable

hashCode

public int hashCode()
Returns the hash code value for this Map as per the definition in the Map interface.

Since: 1.2

See Also: hashCode

isEmpty

public boolean isEmpty()
Tests if this hashtable maps no keys to values.

Returns: true if this hashtable maps no keys to values; false otherwise.

keys

public Enumeration<K> keys()
Returns an enumeration of the keys in this hashtable.

Returns: an enumeration of the keys in this hashtable.

See Also: Enumeration elements keySet Map

keySet

public Set<K> keySet()
Returns a Set view of the keys contained in this Hashtable. The Set is backed by the Hashtable, so changes to the Hashtable are reflected in the Set, and vice-versa. The Set supports element removal (which removes the corresponding entry from the Hashtable), but not element addition.

Returns: a set view of the keys contained in this map.

Since: 1.2

put

public V put(K key, V value)
Maps the specified key to the specified value in this hashtable. Neither the key nor the value can be null.

The value can be retrieved by calling the get method with a key that is equal to the original key.

Parameters: key the hashtable key. value the value.

Returns: the previous value of the specified key in this hashtable, or null if it did not have one.

Throws: NullPointerException if the key or value is null.

See Also: equals get

putAll

public void putAll(Map<? extends K,? extends V> t)
Copies all of the mappings from the specified Map to this Hashtable These mappings will replace any mappings that this Hashtable had for any of the keys currently in the specified Map.

Parameters: t Mappings to be stored in this map.

Throws: NullPointerException if the specified map is null.

Since: 1.2

rehash

protected void rehash()
Increases the capacity of and internally reorganizes this hashtable, in order to accommodate and access its entries more efficiently. This method is called automatically when the number of keys in the hashtable exceeds this hashtable's capacity and load factor.

remove

public V remove(Object key)
Removes the key (and its corresponding value) from this hashtable. This method does nothing if the key is not in the hashtable.

Parameters: key the key that needs to be removed.

Returns: the value to which the key had been mapped in this hashtable, or null if the key did not have a mapping.

Throws: NullPointerException if the key is null.

size

public int size()
Returns the number of keys in this hashtable.

Returns: the number of keys in this hashtable.

toString

public String toString()
Returns a string representation of this Hashtable object in the form of a set of entries, enclosed in braces and separated by the ASCII characters "" (comma and space). Each entry is rendered as the key, an equals sign =, and the associated element, where the toString method is used to convert the key and element to strings.

Overrides to toString method of Object.

Returns: a string representation of this hashtable.

values

public Collection<V> values()
Returns a Collection view of the values contained in this Hashtable. The Collection is backed by the Hashtable, so changes to the Hashtable are reflected in the Collection, and vice-versa. The Collection supports element removal (which removes the corresponding entry from the Hashtable), but not element addition.

Returns: a collection view of the values contained in this map.

Since: 1.2