Universal Serial Bus Mass Storage Class Specification Overview

V1.0 Revision October 22, 1998

Technical Editors

Mark Williams

Microsoft Corporation

Contributors

Toyoko Shimizu Jim Blackson Hiromichi Oribe Darrell Redford Glen Slick Dave Gilbert David Luke Bill Stanley Shing F. Lin Alex Afshar	Y-E Data, Inc. Y-E Data, Inc. Hagiwara Sys-Com Co Ltd. Iomega Corporation Microsoft Corporation In-System Design In-System Design Adaptec Adaptec Matsushita Semiconductor
Glen Slick	Microsoft Corporation
Dave Gilbert	In-System Design
David Luke	In-System Design
Bill Stanley	Adaptec
Shing F. Lin	Adaptec
Alex Afshar	Matsushita Semiconductor
James Quigley	Iomega Corporation
Mike Poulsen	Iomega Corporation
David Jolley	Iomega Corporation
Curtis Stevens	Phoenix Technologies
Al Rickey	Phoenix Technologies

USB Mass Storage Class Overview Specification Copyright © 1998, USB Implementers Forum. All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Please send comments via electronic mail to techsup@usb.org

Table of Contents

1.	. Introduction				
	1.1	Target Audience	5		
	.2	Purpose	5		
	.3	Terms and Abbreviations	5		
	.4	Related Documents	5		
2.	2. Subclass Codes				
3.	Pro	tocol Code	7		

1. Introduction

This document gives an overview of the USB Mass Storage Class specifications. How mass storage devices behave on the USB bus is the subject of this and other USB Mass Storage Class specifications. At this time, four other USB Mass Storage Class specifications are under development by the USB Mass Storage Class Working Group (CWG). The titles of these specifications are:

USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport

USB Mass Storage Class Bulk-Only Transport

USB Mass Storage Class Bootability

USB Mass Storage Class UFI Command Specification**Note:** At this time, the USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport, v1.0, RC5 specification is available for review at http://www.usb.org/dwgdocs. The USB Mass Storage Class Bulk-Only Transport, v0.9 specification is available for review at http://www.usb.org/dwgdocs. The Bootability specification is at v0.6 and therefore not posted on the Web. The USB Mass Storage Class UFI Command Specification v0.8 is available for review at http://www.usb.org/dwgdocs.

1.1 Target Audience

The CBI and Bulk-Only specifications are each intended to be stand-alone documents for the USB Mass Storage class, enabling development of a USB Mass Storage compliant device. A device manufacturer *may* choose to implement both CBI and Bulk-Only, but shall follow each specification as applicable.

1.2 The Bootability specification is considered an enhancement to either the CBI or Bulk-Only specifications. Devices *may* be CBI only, Bulk-Only, and not be Bootable. However, to be bootable, the device must comply with the Bootability specification, as well as the CBI specification or the Bulk-Only specification or both.Purpose

The purpose of this document is to provide an overview of all the specifications that describe how mass storage devices behave on the USB bus. Section 1.1, which purposefully uses the terms "may" and "shall", does have the weight of a specification. That section gives the rules for using the different USB Mass Storage class specifications.

Note that these rules can change. As other companies, with different USB Mass Storage Class device projects in mind, join the USB Mass Storage Class CWG, other specifications may be developed by the CWG and added to the set of specifications that fully describe how a Mass Storage Class device behaves on the USB bus. If and when that happens, the USB Mass Storage CWG will reconsider the rules specified in section 1.1 of this document.

1.3 Terms and Abbreviations

May A keyword that indicates an option.

Shall

A keyword that indicates a requirement.

1.4 Related Documents

USB Mass Storage specifications use the command sets from several existing protocols. The command blocks of these command sets are placed in a USB wrapper and follow USB protocol. The following specifications are referenced by the USB Mass Storage specifications:

- Advanced Technology Attachment Packet Interface (ATAPI) for Floppies. SFF-8070i, available from Global Engineering, (800)-854-7179.
- Advanced Technology Attachment Packet Interface (ATAPI) for CD-ROMs. SFF-8020i, available from Global Engineering, (800)-854-7179.
- Advanced Technology Attachment Packet Interface (ATAPI) for Tape. QIC-157.
- *Reduced Block Commands (RBC) T10 Project 1240-D*, available at ftp://ftp.symbios.com/pub/standards/io/x3t10/drafts/rbc
- SCSI Primary Commands 2 (SPC-2), Revision 3 or later, available from Global Engineering, (800)-854-7179
- Universal Serial Bus Specification, 1.0 revision or later (also referred to as the USB Specification). In particular, see Chapter 9, "USB Device Framework." Available at http://www.usb.org/developers/
- USB Mass Storage Class UFI Command Specification. USB Implementers Forum. Available at http://www.usb.org/

2. Subclass Code

The Interface Descriptor of a USB Mass Storage Class device includes a *bInterfaceSubClass* field. This field denotes the command block set used by this interface. The value of the *bInterfaceSubClass* field shall be set to one of the Subclass codes as shown in the following table.

Note that the Subclass code values used in the *bInterfaceSubClass* field specify the industry-standard specification that describes the command block definition used by the interface; these Subclass codes do not specify a type of storage device (such as a CD-ROM or floppy disk drive).

October 22, 1998

SubClass Code	Command Block Specification	Comment
01h	Reduced Block Commands (RBC) T10 Project 1240-D	Typically, a Flash device uses RBC command blocks. However, any Mass Storage device can use RBC command blocks.
02h	SFF8020I	Typically, a CD-ROM device uses SFF8020i command blocks for its Mass Storage interface. However, a CD-ROM device can be in another subclass (for example, RBC) and other types of storage devices can belong to the SFF8020i subclass.
03h	QIC-157	Typically, a tape device uses QIC-157 command blocks.
04h	UFI	Typically a floppy disk drive (FDD) device
05h	SFF8070I	Typically, a floppy disk drive (FDD) device uses SFF8070i command blocks. However, an FDD device can be in another subclass (for example, RBC) and other types of storage devices can belong to the SFF8070i subclass.
06h	SCSI transparent command set	
07h – FFh	Reserved for future use.	

Table 2.1 – SubClass Codes Mapped to Command Block Specifications

3. Protocol Code

The Interface Descriptor of a USB Mass Storage Class device includes a *bInterfaceProtocol* field. This field denotes the transport protocol used by this interface.

•

October 22, 1998

bInterface Protocol	Protocol Implementation	Comment
00h	Control/Bulk/Interrupt protocol with command completion interrupt	USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport
01h	Control/Bulk/Interrupt protocol with no command completion interrupt	USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport
TBD	Bulk Only Transport	USB Mass Storage Class Bulk-Only Transport
02h - FFh	Reserved	