
Universal Serial Bus

Device Class Specification for

Device Firmware Upgrade
Version 1.0

May 13, 1999

USB Device Firmware Upgrade Specification, Revision 1.0

2

Intellectual Property Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER
INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION
FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR
INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
NFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

USB Device Firmware Upgrade Specification, Revision 1.0

3

Contributors
Trenton Henry SMSC

David Rivenburg SMSC

Dan Stirling MCCI

Bob Nathan NCR

Bill Belknap NCR

Mats Webjorn UniAccess AB

Bill Dellar Systech

Neil Winchester SMSC

Steve McGowan Intel

Tom Green Microsoft

Ivo Bettens Symbol Technologies

Mark McCoy Anchor Chips

John Stafford Systech

Keith Gudger Atmel

Greg Kroah-Hartman PSC Inc.

USB Device Firmware Upgrade Specification, Revision 1.0

4

Contents

1. INTRODUCTION ...6

1.1 Related Documents... 6

1.2 Terms and Abbreviations .. 6

2. OVERVIEW..7

3. REQUESTS ...9

4. ENUMERATION PHASE.. ...10

4.1 Run-Time Descriptor Set... 10
4.1.1 Run-Time Device and Configuration Descriptors.. 10
4.1.2 Run-Time DFU Interface Descriptor.. 10
4.1.3 Run-Time DFU Functional Descriptor... 12

4.2 DFU Mode Descriptor Set ... 13
4.2.1 DFU Mode Device Descriptor ... 13
4.2.2 DFU Mode Configuration Descriptor .. 13
4.2.3 DFU Mode Interface Descriptor .. 14
4.2.4 DFU Functional Descriptor.. 14

5. RECONFIGURATION PHASE ..14

5.1 The DFU_DETACH Request .. 15

6. TRANSFER PHASE...16

6.1 Downloading... 16
6.1.1 DFU_DNLOAD Request ... 17
6.1.2 DFU_GETSTATUS Request ... 18
6.1.3 DFU_CLRSTATUS Request ... 21
6.1.4 DFU_ABORT Request .. 21
6.1.5 DFU_GETSTATE Request.. 21

6.2 Uploading.. 23
6.2.1 DFU_UPLOAD Request.. 23

7. MANIFESTATION PHASE.. ..24

A. INTERFACE STATE SUMMARY ... 25

A.1 Interface State Transition Diagram.. 25

A.2 Interface State Transition Summary.. 27

USB Device Firmware Upgrade Specification, Revision 1.0

5

A.2.1 State 0 appIDLE... 27
A.2.2 State 1 appDETACH.. 28
A.2.3 State 2 dfuIDLE ... 29
A.2.4 State 3 dfuDNLOAD-SYNC.. 30
A.2.5 State 4 dfuDNBUSY... 31
A.2.6 State 5 dfuDNLOAD-IDLE ... 32
A.2.7 State 6 dfuMANIFEST-SYNC... 33
A.2.8 State 7 dfuMANIFEST .. 34
A.2.9 State 8 dfuMANIFEST-WAIT-RESET ... 35
A.2.10 State 9 dfuUPLOAD-IDLE.. 36
A.2.11 State 10 dfuERROR ... 37

B. DFU FILE SUFFIX..38

B.1 Portable C Source for CRC and DFU Suffix .. 40

B.1.2 Source Listing .. 40

USB Device Firmware Upgrade Specification, Revision 1.0

6

1. Introduction

This document describes proposed requirements and specifications for Universal Serial Bus (USB)
devices that support the Device Firmware Upgrade (DFU) capability.

1.1 Related Documents
The following related documents are available from WWW.USB.ORG:

x Universal Serial Bus Specification 1.0, January 19, 1996

x Universal Serial Bus Common Class Specification 1.0, December 16, 1997

1.2 Terms and Abbreviations
The meanings of some words have been stretched to suit the purposes of this document. These
definitions are intended to clarify the discussions that follow.

DFU (n) Device Firmware Upgrade

Firmware (n) Executable software stored in a write-able, nonvolatile memory on a USB
device.

Upgrade (v) To overwrite the firmware of a device.

(n)(1) The act of overwriting the firmware of a device.

(n)(2) New firmware intended to replace a device’s existing firmware.

Download (v) To transmit information from host to device.

Upload (v) To transmit information from device to host.

USB Device Firmware Upgrade Specification, Revision 1.0

7

2. Overview

Users that have purchased USB devices require the ability to upgrade the firmware of those devices
with improved versions as they become available from manufacturers. Device Firmware Upgrade is
the mechanism for accomplishing that task. Any class of USB device can exploit this capability by
supporting the requirements specified in this document.

This document focuses on installing product enhancements and patches to devices that are already
deployed in the field. Other potential uses for the firmware upgrade capability are beyond the scope of
this document.

Because it is impractical for a device to concurrently perform both DFU operations and its normal run-
time activities, those normal activities must cease for the duration of the DFU operations. Doing so
means that the device must change its operating mode; i.e., a printer is not a printer while it is
undergoing a firmware upgrade; it is a PROM programmer. However, a device that supports DFU is
not capable of changing its mode of operation on its own volition. External (human or host operating
system) intervention is required.

There are four distinct phases required to accomplish a firmware upgrade:

1. Enumeration: The device informs the host of its capabilities. A DFU class-interface descriptor
and associated functional descriptor embedded within the device’s normal run-time descriptors
serves this purpose and provides a target for class-specific requests over the control pipe.

2. Reconfiguration: The host and the device agree to initiate a firmware upgrade. The host issues a
USB reset to the device, and the device then exports a second set of descriptors in preparation for
the Transfer phase. This deactivates the run-time device drivers associated with the device and
allows the DFU driver to reprogram the device’s firmware unhindered by any other
communications traffic targeting the device.

3. Transfer: The host transfers the firmware image to the device. The parameters specified in the
functional descriptor are used to ensure correct block sizes and timing for programming the
nonvolatile memories. Status requests are employed to maintain synchronization between the host
and the device.

4. Manifestation: Once the device reports to the host that it has completed the reprogramming
operations, the host issues a USB reset to the device. The device re-enumerates and executes the
upgraded firmware.

The device’s vendor ID, product ID, and serial number can be used to form an identifier used by the
host operating system to uniquely identify the device. However, certain operating systems may use
only the vendor and product IDs reported by a device to determine which drivers to load, regardless of
the device class code reported by the device. (Host operating systems typically do not expect a device
to change classes.) Therefore, to ensure that only the DFU driver is loaded, it is considered necessary
to change the idProduct field of the device when it enumerates the DFU descriptor set. This ensures
that the DFU driver will be loaded in cases where the operating system simply matches the vendor ID
and product ID to a specific driver.

Note This document does not attempt to specify how a vendor might alter the device’s product ID
except to suggest that adding one, setting the high bit, or using FFFFh are all valid possibilities.
Vendors may use any scheme that they choose.

USB Device Firmware Upgrade Specification, Revision 1.0

8

Figure 2.1 Stylized DFU session

3UHSDUH IRU DQ XSJUDGH���

+RVW 'HYLFH

7KH SHQGLQJ EXV UHVHW

ZLOO VWRS DOO ORDGHG

GULYHUV� WKHQ QHZ

ILUPZDUH ZLOO EH VHQW�

86% 5HVHW 7KDW UHVHW VKRXOG FDXVH

DOO RI WKH UXQ�WLPH

GULYHUV WR EH XQORDGHG�

')8 PRGH DFWLYDWHG

'RZQORDG WKLV ILUPZDUH���

(QXPHUDWLQJ D ')8�

GHVFULSWRU VHW ZLOO

SUHYHQW DGGLWLRQDO

GULYHUV IURP ORDGLQJ�

3UHSDUH WR H[LW ')8 PRGH

$OO UHSURJUDPPLQJ

RSHUDWLRQV PXVW EH

FRPSOHWHG DQG

SUHSDUDWLRQV PDGH WR

UHWXUQ WR UXQ�WLPH�

86% 5HVHW 7KH UXQ�WLPH

GHVFULSWRUV RI WKH QHZ

ILUPZDUH FDQ QRZ EH

HQXPHUDWHG�

USB Device Firmware Upgrade Specification, Revision 1.0

9

3. Requests

A number of DFU class-specific requests are employed to accomplish the upgrade operations. The
following table summarizes the DFU class-specific requests. Details concerning each of these requests
are explained in subsequent sections of this document.

Table 3.1 Summary of DFU Class-Specific Requests

bmRequestType bRequest wValue wIndex wLength Data

00100001b DFU_DETACH wTimeout Interface Zero None

00100001b DFU_DNLOAD wBlockNum Interface Length Firm-
ware

10100001b DFU_UPLOAD Zero Interface Length Firm-
ware

10100001b DFU_GETSTATUS Zero Interface 6 Status

00100001b DFU_CLRSTATUS Zero Interface Zero None

10100001b DFU_GETSTATE Zero Interface 1 State

00100001b DFU_ABORT Zero Interface Zero None

Table 3.2 DFU Class-Specific Request Values

bRequest Value

DFU_DETACH 0

DFU_DNLOAD 1

DFU_UPLOAD 2

DFU_GETSTATUS 3

DFU_CLRSTATUS 4

DFU_GETSTATE 5

DFU_ABORT 6

USB Device Firmware Upgrade Specification, Revision 1.0

10

4. Enumeration Phase

It is very important to note that the device exposes two distinct and independent descriptor sets, one
each at the appropriate time:

x Run-time descriptor set

x DFU mode descriptor set

4.1 Run-Time Descriptor Set
During normal run-time operation, the device exposes its normal set of descriptors. However, the
following additional descriptors are inserted within each run-time configuration that supports DFU:

x A single DFU class interface descriptor

x A single functional descriptor

4.1.1 Run-Time Device and Configuration Descriptors
The run-time descriptor set exposes the device’s normal run-time device and configuration descriptors.
The bNumInterfaces field of configuration descriptor of each configuration that supports DFU is
incremented by one to accommodate the addition of the run-time DFU interface.

4.1.2 Run-Time DFU Interface Descriptor
No endpoint descriptors are present because DFU uses only the control endpoint. This provides
sufficient information for the host to recognize that the device is capable of performing firmware
upgrade operations. It also provides the means for initiating such operations over the default control
pipe.

The DFU class interface is typically the last interface enumerated for each run-time configuration.
However, there is no requirement for this interface to occupy any specific position.

Note Depending upon the device’s run-time descriptors, this additional ‘dangling’ interface may
cause some operating systems to load a DFU driver even though it is rarely used.

USB Device Firmware Upgrade Specification, Revision 1.0

11

Table 4.1 Run-Time DFU Interface Descriptor

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes.

1 bDescriptorType 1 04h INTERFACE descriptor type.

2 bInterfaceNumber 1 Number Number of this interface.

3 bAlternateSetting 1 00h Alternate setting. Must be zero.

4 bNumEndpoints 1 00h Only the control pipe is used.

5 bInterfaceClass 1 FEh Application Specific Class Code

6 bInterfaceSubClass 1 01h Device Firmware Upgrade Code

7 bInterfaceProtocol 1 00h The device does not use a class
specific protocol on this interface.

8 iInterface 1 Index Index of string descriptor for this
interface.

USB Device Firmware Upgrade Specification, Revision 1.0

12

4.1.3 Run-Time DFU Functional Descriptor
This descriptor is identical for both the run-time and the DFU mode descriptor sets.

Table 4.2 DFU Functional Descriptor

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor, in bytes.

1 bDescriptorType 1 21h DFU FUNCTIONAL descriptor type.

2 bmAttributes 1 Bit mask DFU attributes

Bit 7..3: reserved

Bit 2: device is able to communicate
via USB after Manifestation phase.
(bitManifestationTolerant)

0 = no, must see bus reset

1 = yes

Bit 1: upload capable (bitCanUpload)

0 = no

1 = yes

Bit 0: download capable
(bitCanDnload)

0 = no

1 = yes

3 wDetachTimeOut 2 Number Time, in milliseconds, that the device
will wait after receipt of the
DFU_DETACH request. If this time
elapses without a USB reset, then the
device will terminate the
Reconfiguration phase and revert
back to normal operation. This
represents the maximum time that the
device can wait (depending on its
timers, etc.). The host may specify a
shorter timeout in the DFU_DETACH
request.

5 wTransferSize 2 Number Maximum number of bytes that the
device can accept per control-write
transaction.

USB Device Firmware Upgrade Specification, Revision 1.0

13

4.2 DFU Mode Descriptor Set
After the host and device agree to perform DFU operations, the host re-enumerates the device. It is at
this time that the device exports the DFU descriptor set, which contains:

x A DFU device descriptor

x A single configuration descriptor

x A single interface descriptor (including descriptors for alternate settings, if present)

x A single functional descriptor

These are the only descriptors that the device may expose after reconfiguration. The reason is to
prevent any other device drivers from being loaded by the host operating system.

4.2.1 DFU Mode Device Descriptor
This descriptor is only present in the DFU mode descriptor set. The DFU class code is reported in the
bDeviceClass field of this descriptor.

Table 4.3 DFU Device Descriptor

Offset Field Size Value Description

0 bLength 1 12h Size of this descriptor, in bytes.

1 bDescriptorType 1 01h DEVICE descriptor type.

2 bcdUSB 2 0100h USB specification release number in
binary coded decimal.

4 bDeviceClass 1 FEh Application Specific Class Code

5 bDeviceSubClass 1 01h Device Firmware Upgrade Code

6 bDeviceProtocol 1 00h The device does not use a class
specific protocol on this interface.

7 bMaxPacketSize0 1 8,16,32,64 Maximum packet size for endpoint
zero.

8 idVendor 2 ID Vendor ID. Assigned by the USB-IF.

10 idProduct 2 ID Product ID. Assigned by
manufacturer.

12 bcdDevice 2 BCD Device release number in binary
coded decimal.

14 iManufacturer 1 Index Index of string descriptor.

15 iProduct 1 Index Index of string descriptor.

16 iSerialNumber 1 Index Index of string descriptor.

17 bNumConfigurations 1 01h One configuration only for DFU.

USB Device Firmware Upgrade Specification, Revision 1.0

14

4.2.2 DFU Mode Configuration Descriptor
This descriptor is identical to the standard configuration descriptor described in the USB specification
version 1.0, with the exception that the bNumInterfaces field must contain the value 01h.

4.2.3 DFU Mode Interface Descriptor
This is the descriptor for the only interface available when operating in DFU mode. Therefore, the
value of the bInterfaceNumber field is always zero.

Table 4.4 DFU Mode Interface Descriptor

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes.

1 bDescriptorType 1 04h INTERFACE descriptor type.

2 bInterfaceNumber 1 00h Number of this interface.

3 bAlternateSetting 1 Number Alternate setting. *

4 bNumEndpoints 1 00h Only the control pipe is used.

5 bInterfaceClass 1 FEh Application Specific Class Code

6 bInterfaceSubClass 1 01h Device Firmware Upgrade Code

7 bInterfaceProtocol 1 00h The device does not use a class
specific protocol on this interface.

8 iInterface 1 Index Index of string descriptor for this
interface.

* Alternate settings can be used by an application to access additional memory segments. In this case,
it is suggested that each alternate setting employ a string descriptor to indicate the target memory
segment; e.g., “EEPROM”. Details concerning other possible uses of alternate settings are beyond the
scope of this document. However, their use is intentionally not restricted because the authors anticipate
that implementers will devise additional creative uses for alternate settings.

4.2.4 DFU Functional Descriptor
This descriptor is identical to the run-time DFU functional descriptor. See 4.2.1 for details.

5. Reconfiguration Phase

An operator initiates a firmware upgrade operation by executing an application on the host. This
application requires the operator to specify the device that will be upgraded and the firmware image file
that will be transferred to that device. That is, the operator indicates to the application “Download this
file into that device.”

USB Device Firmware Upgrade Specification, Revision 1.0

15

For more information about the file suffix that simplifies the task of ensuring that a file is compatible
with a specific device, see Appendix B.

Once the operator has identified the device and supplied the filename, the host and the device must
negotiate to perform the upgrade. The negotiation proceeds as follows:

x The host issues a DFU_DETACH request on the control endpoint EP0.

x The host issues a USB reset to the device.

x The device enumerates the DFU descriptor set, as described previously.

5.1 The DFU_DETACH Request
Upon receipt of this request, the device starts a timer counting the amount of time specified, in
milliseconds, in the wDetachTimeout field. If the device detects a USB reset while this timer is
running, then DFU operating mode is enabled by the device; i.e., when USB reset signaling is detected,
perform as normal unless this timer is running, in which case switch into DFU mode and stop the timer.

bmRequestType bRequest wValue wIndex wLength Data

00100001b DFU_DETACH wTimeout* Interface Zero None

* The wTimeout field is specified in units of milliseconds and represents the amount of time that the
device should wait for the pending USB reset before giving up and terminating the operation.
wTimeout should not contain a value larger than the value specified in wDetachTimeout.

Figure 5.1 Example state transition during reconfiguration

DSS,'/(GIX'(7$&+

')8B'(7$&+

7LPH2XW� 3RZHU2Q5HVHW

')8 0RGH���

86% 5HVHW

USB Device Firmware Upgrade Specification, Revision 1.0

16

6. Transfer Phase

The Transfer phase begins after the device has processed the USB reset and exported the DFU
descriptor set. Both firmware downloads and uploads can take place during this phase.

6.1 Downloading
Firmware images for specific devices are, by definition, vendor specific. It is therefore required that
target addresses, record sizes, and all other information relative to supporting an upgrade are
encapsulated within the firmware image file. It is the responsibility of the device manufacturer and the
firmware developer to ensure that their devices can consume these encapsulated data. With the
exception of the DFU file suffix, the content of the firmware image file is irrelevant to the host. The
host simply slices the firmware image file into N pieces and sends them to the device by means of
control-write operations on the default control endpoint.

N = ((F – S) / O) + 1

where

F is the size of the file, specified in bytes.

S is the size of the suffix, specified in bytes.

O is the transfer size, specified in bytes.

Note The optimum transfer size, O, is in the range between bMaxPacketSize0 and wTransferSize,
inclusive. The actual value depends upon the host operating system.

The host continues the transfer by sending the payload packets on the control endpoint until the entire
file has been transferred or the device reports an error.

The device uses the standard NAK mechanism for flow control, if necessary, while the content of its
nonvolatile memories is updated. If the device detects an error, it signals the host by issuing a STALL
handshake on the control endpoint. The host then sends a DFU class-specific request, called
DFU_GETSTATUS, on the control endpoint to determine the nature of the problem.

There are three general mechanisms by which a device receives a firmware image from a host:

1. The first mechanism is to receive the entire image into a buffer and perform the actual
programming during the Manifestation phase.

2. The second mechanism is to accumulate a block of firmware data, erase an equivalent size block
of memory, and write the block into the erased memory.

3. The third mechanism is a variation of the second. In the third method, a large portion of memory
is erased, and small firmware blocks are written, one at a time, into the empty memory space.
This is necessary when the erasure granularity of the memory is larger than the available buffer
size.

All three of these techniques are accommodated by virtue of the dynamic values specified in the
bwPollTimeout field and closed-loop, host-driven state transitions. For more information about
bwPollTimeout, see the DFU_GETSTATUS request. For more information about the DFU file suffix,
see Appendix B.

USB Device Firmware Upgrade Specification, Revision 1.0

17

6.1.1 DFU_DNLOAD Request
The firmware image is downloaded via control-write transfers initiated by the DFU_DNLOAD class-
specific request. The device specifies the maximum number of bytes per transfer via the wTransferSize
field of the functional descriptor. The host sends between bMaxPacketSize0 and wTransferSize bytes
to the device in a control-write transfer. Following each downloaded block, the host solicits the device
status with the DFU_GETSTATUS request.

After the final block of firmware has been sent to the device and the status solicited, the host sends a
DFU_DNLOAD request with the wLength field cleared to 0 and then solicits the status again. If the
result indicates that the device is ready and there are no errors, then the Transfer phase is complete and
the Manifestation phase begins. However, some devices may buffer the entire firmware image in
volatile memory, programming the nonvolatile memories while in the dfuMANIFEST state. It is
possible that some devices, during the Manifestation phase, can be rendered incapable of
communicating over the USB during the reprogramming operations. The bit bitManifestationTolerant
of the bmAttributes field is cleared to indicate this to the host and prevent it from sending packets to the
device during the Manifestation phase.

bmRequestType bRequest wValue WIndex wLength Data

00100001b DFU_DNLOAD wBlock-
Num*

Interface Specified by
USB**

Firm-
ware

* The wBlockNum field is a block sequence number. It increments each time a block is transferred,
wrapping to zero from 65,535. It is used to provide useful context to the DFU loader in the device.

** The wLength field indicates the total number of bytes in this transfer, according to USB version 1.0.
This value should not exceed the value specified in the wTransferSize field.

Figure 6.1 Example state transition using DFU_DNLOAD to initiate a transfer

,GHDOL]HG�
,'/,1*�67$7(

FRQWURO ZULWH
RSHUDWLRQ �QRW
UHDOO\ D VWDWH
EXW ZRUWK\ RI
PHQWLRQ�

')8B'1/2$'
&RPSOHWLRQ RI VWDWXV

VWDJH���

,GHDOL]HG�
6\QFKURQL]HU�

67$7(

USB Device Firmware Upgrade Specification, Revision 1.0

18

6.1.1.1 Zero Length DFU_DNLOAD Request
The host sends a DFU_DNLOAD request with the wLength field cleared to 0 to the device to indicate
that it has completed transferring the firmware image file. This is the final payload packet of a
download operation.

Figure 6.2 Using the zero length DFU_DNLOAD request to terminate a download

6.1.2 DFU_GETSTATUS Request
The host employs the DFU_GETSTATUS request to facilitate synchronization with the device.

BmRequestType bRequest wValue wIndex wLength Data

10100001b DFU_GETSTATUS Zero Interface 6 Status

The device responds to the DFU_GETSTATUS request with a payload packet containing the following
data:

Offset Field Size Value Description

0 bStatus 1 Number An indication of the status resulting from the
execution of the most recent request.

1 bwPollTime
out

3 Number Minimum time, in milliseconds, that the host should
wait before sending a subsequent
DFU_GETSTATUS request. *

4 bState 1 Number An indication of the state that the device is going to
enter immediately following transmission of this
response. (By the time the host receives this
information, this is the current state of the device.)

5 iString 1 Index Index of status description in string table. **

* The purpose of this field is to allow the device to dynamically adjust the amount of time that the
device expects the host to wait between the status phase of the next DFU_DNLOAD and the
subsequent solicitation of the device’s status via DFU_GETSTATUS. This permits the device to vary
the delay depending on its need to erase memory, program the memory, etc.

GIX'1/2$'�

,'/(

=HUR /HQJWK

')8B'1/2$'

0DQLIHVWDWLRQ

USB Device Firmware Upgrade Specification, Revision 1.0

19

** The iString field is used to reference a string describing the corresponding status. The device can
make these strings available to the host by means of the GET_DESCRIPTOR (STRING) standard
request. However, the host may reference its own string table instead.

The device status is defined as follows:

Status Value Suggested String

OK 0x00 No error condition is present.

errTARGET 0x01 File is not targeted for use by this device.

errFILE 0x02 File is for this device but fails some vendor-specific
verification test.

errWRITE 0x03 Device is unable to write memory.

errERASE 0x04 Memory erase function failed.

errCHECK_ERASED 0x05 Memory erase check failed.

errPROG 0x06 Program memory function failed.

errVERIFY 0x07 Programmed memory failed verification.

errADDRESS 0x08 Cannot program memory due to received address that is out
of range.

errNOTDONE 0x09 Received DFU_DNLOAD with wLength = 0, but device does
not think it has all of the data yet.

errFIRMWARE 0x0A Device’s firmware is corrupt. It cannot return to run-time
(non-DFU) operations.

errVENDOR 0x0B iString indicates a vendor-specific error.

errUSBR 0x0C Device detected unexpected USB reset signaling.

errPOR 0x0D Device detected unexpected power on reset.

errUNKNOWN 0x0E Something went wrong, but the device does not know what it
was.

errSTALLEDPKT 0x0F Device stalled an unexpected request.

USB Device Firmware Upgrade Specification, Revision 1.0

20

The device state is defined as follows:

State Value Meaning

appIDLE 0 Device is running its normal application.

appDETACH 1 Device is running its normal application, has received the
DFU_DETACH request, and is waiting for a USB reset.

dfuIDLE 2 Device is operating in the DFU mode and is waiting for
requests.

dfuDNLOAD-SYNC 3 Device has received a block and is waiting for the host to
solicit the status via DFU_GETSTATUS.

dfuDNBUSY 4 Device is programming a control-write block into its
nonvolatile memories.

dfuDNLOAD-IDLE 5 Device is processing a download operation. Expecting
DFU_DNLOAD requests.

dfuMANIFEST-SYNC 6 Device has received the final block of firmware from the host
and is waiting for receipt of DFU_GETSTATUS to begin the
Manifestation phase; or device has completed the
Manifestation phase and is waiting for receipt of
DFU_GETSTATUS. (Devices that can enter this state after
the Manifestation phase set bmAttributes bit
bitManifestationTolerant to 1.)

dfuMANIFEST 7 Device is in the Manifestation phase. (Not all devices will be
able to respond to DFU_GETSTATUS when in this state.)

dfuMANIFEST-WAIT-
RESET

8 Device has programmed its memories and is waiting for a
USB reset or a power on reset. (Devices that must enter this
state clear bitManifestationTolerant to 0.)

dfuUPLOAD-IDLE 9 The device is processing an upload operation. Expecting
DFU_UPLOAD requests.

dfuERROR 10 An error has occurred. Awaiting the DFU_CLRSTATUS
request.

Figure 6.3 Example state transition using DFU_GETSTATUS

VRPH67$7(

VRPH1(:�

67$7(�PD\EH

WKH VDPH RQH�

')8B*(767$786

USB Device Firmware Upgrade Specification, Revision 1.0

21

6.1.3 DFU_CLRSTATUS Request
Any time the device detects an error and reports an error indication status to the host in the response to
a DFU_GETSTATUS request, it enters the dfuERROR state. The device cannot transition from the
dfuERROR state, after reporting any error status, until after it has received a DFU_CLRSTATUS
request. Upon receipt of DFU_CLRSTATUS, the device sets a status of OK and transitions to the
dfuIDLE state. Only then is it able to transition to other states.

bmRequestType bRequest wValue wIndex wLength Data

00100001b DFU_CLRSTATUS Zero Interface Zero None

Figure 6.4 Example state transition using DFU_CLRSTATUS to acknowledge an error

6.1.4 DFU_ABORT Request
The DFU_ABORT request enables the host to exit from certain states and return to the DFU_IDLE
state. The device sets the OK status on receipt of this request. For more information, see the
corresponding state transition summary.

bmRequestType bRequest wValue wIndex wLength Data

00100001b DFU_ABORT Zero Interface Zero None

Figure 6.5 Example state transition using DFU_ABORT to terminate a transfer

6.1.5 DFU_GETSTATE Request
This request solicits a report about the state of the device. The state reported is the current state of the
device with no change in state upon transmission of the response. The values specified in the bState
field are identical to those reported in DFU_GETSTATUS.

BmRequestType bRequest wValue wIndex wLength Data

10100001b DFU_GETSTATE Zero Interface 1 State

GIX(5525 GIX,'/(

')8B&/567$786

VRPH�67$7(GIX,'/(

')8B$%257

USB Device Firmware Upgrade Specification, Revision 1.0

22

The device responds to the DFU_GETSTATE request with a payload packet containing the following
data:

Offset Field Size Value Description

0 bState 1 Number Indicates the current state of the device.

Figure 6.6 Example state transition using DFU_GETSTATE

VRPH�67$7(

DFU_GETSTATE

USB Device Firmware Upgrade Specification, Revision 1.0

23

6.2 Uploading
The purpose of upload is to provide the capability to retrieve and archive a device’s firmware.
Uploading firmware is, by definition, the inverse of a download, meaning that the uploaded image must
be usable in a subsequent download. The host sends DFU_UPLOAD requests to the device until it
responds with a short frame as an end of file (EOF) indicator. The device is responsible for selecting
the address range to upload and formatting the firmware image appropriately. The host must append
the DFU file suffix to the uploaded image. If the host, for some reason, wants to terminate the transfer,
it can do so by sending a DFU_ABORT request.

6.2.1 DFU_UPLOAD Request
The DFU_UPLOAD request is employed by the host to solicit firmware from the device.

bmRequestType bRequest wValue wIndex wLength Data

10100001b DFU_ UPLOAD BlockNum* Interface Length of
upload
data**

Firm-
ware

* The wValue field contains a block sequence number. It increments each time a block is transferred,
wrapping to zero from 65,535. It is used to provide useful context to the host.

** The wLength field indicates the maximum number of bytes of upload data to transfer. This value
should not exceed the value specified in the wTransferSize field.

Figure 6.7 Example state transition using DFU_UPLOAD to initiate a transfer

GIX,'/(GIX83/2$'

')8B83/2$'

USB Device Firmware Upgrade Specification, Revision 1.0

24

7. Manifestation Phase

After the zero length DFU_DNLOAD request terminates the Transfer phase, the device is ready to
manifest the new firmware. As described previously, some devices may accumulate the firmware
image and perform the entire reprogramming operation at one time. Others may have only a small
amount remaining to be reprogrammed, and still others may have none. Regardless, the device enters
the dfuMANIFEST-SYNC state and awaits the solicitation of the status report by the host. Upon
receipt of the anticipated DFU_GETSTATUS, the device enters the dfuMANIFEST state, where it
completes its reprogramming operations.

Following a successful reprogramming, the device enters one of two states: dfuMANIFEST-SYNC or
dfuMANIFEST-WAIT-RESET, depending on whether or not it is still capable of communicating via
USB. The host is aware of which state the device will enter by virtue of the bmAttributes bit
bitManifestationTolerant. If the device enters dfuMANIFEST-STATUS (bitMainfestationTolerant =
1), then the host issues the DFU_GETSTATUS request, and the device enters the dfuIDLE state. At
that point, the host can perform another download, solicit an upload, or issue a USB reset to return the
device to application run-time mode. If, however, the device enters the dfuMANIFEST-WAIT-RESET
state (bitManifestationTolerant = 0), then the host must issue a USB reset to the device, causing it to
enter the application run-time mode.

USB Device Firmware Upgrade Specification, Revision 1.0

25

A. Interface State Summary
elements. If necessary, descriptors and requests can be divided into separate chapters.

This appendix summarizes the state transitions involved with firmware upgrade operations. It does not
attempt to address the normal USB device states.

A.1 Interface State Transition Diagram
This diagram summarizes the DFU interface states and the transitions between them. The events that
trigger state transitions can be thought of as arriving on multiple “input tapes” as in the classic Turing
machine concept. These multiple conceptual input tapes, or streams, are as follows:

x The control pipe – presents USB DFU class-specific request events to the state machine. USB
protocol events, such as completion of the status stage, are also presented on this stream.

x The USB electrical signaling – presents USB reset events to the machine. (For purposes of this
document, other signals, such as suspend/resume, are not considered.)

x The power supply to the device – presents power-on events to the device.

x The device peripherals and firmware – timeout, physical hardware error, data content error,
completion of peripheral, and memory, operations are examples of the events presented on this
stream.

The DFU class-specific requests that the device is required to accept while in any given state are
illustrated in the following figure. If the device receives a request, and there is no transition defined for
that request (for whatever state the device happens to be in when the request arrives), then the device
stalls the control pipe and enters the dfuERROR state. E.g., if the device is in the dfuDNLOAD-SYNC
state and a DFU_CLRSTATUS request is received, then the device will stall the control pipe and enter
the dfuERROR state.

Note There are two exceptional states with respect to state transitions caused by errors. If an
unexpected request arrives while the device is in either the appIDLE or appDETACH states, then the
transition to the dfuERROR state does not occur.

USB Device Firmware Upgrade Specification, Revision 1.0

26

Figure A.1 Interface state transition diagram

�

DSS,'/(

�

GIX'1%86<

�
GIX'1/2$'�

6<1&

�

GIX,'/(

�
DSS'(7$&+

6WDWH

�� �� �� �� ��
��

$Q\

6WDWH
�H[FHSW � RU ��

�
GIX83/2$'�

,'/(

�

GIX0$1,)(67

�
GIX0$1,)(67�

6<1&

�
GIX'1/2$'�

,'/(

�

GIX0$1,)(67�
:$,7�5(6(7

')8B'(7$&+

')8B'1/2$'
�Z/HQJWK ��

')8B*(767$786 �EORFN LQ
SURJUHVV�

')8B'1/2$'
�Z/HQJWK ! ��

ELW&DQ'QORDG ��

')8B83/2$' �6KRUW)UDPH�

')8B83/2$'
�ELW&DQ8SORDG ��

'HWDFK 7LPHRXW

')8B'1/2$'

�Z/HQJWK ! ��

')8B*(767$786

�PDQLIHVWDWLRQ LQ
SURJUHVV�

')8B*(767$786 �PDQLIHVWDWLRQ

FRPSOHWH� DQG
ELW0DQLIHVWDWLRQ7ROHUDQW ��

6WDWXV 3ROO 7LPHRXW�

ELW0DQLIHVWDWLRQ7ROHUDQW �

86% 5HVHW�
3RZHU 2Q 5HVHW

')8B*(767$786

$SSOLFDWLRQ 3URJUDP 0RGH

')8 3URJUDP 0RGH

6WDWH
�� �� �� �� �

')8B$%257

Re-enumeration

6WDWXV 3ROO 7LPHRXW

')8B*(767$786
�EORFN FRPSOHWH�

��
GIX(5525

')8B&/567$786

$Q\ VWDWXV H[FHSW 2.

&RUUXSW
)LUPZDUH

')8B83/2$'

6WDWH

�� �� �� �� ��
�� �� ��

')8B*(767$7(

6WDWXV 3ROO 7LPHRXW�
ELW0DQLIHVWDWLRQ7ROHUDQW �

86% 5HVHW

USB Device Firmware Upgrade Specification, Revision 1.0

27

A.2 Interface State Transition Summary
The following tables summarize the events that cause state transitions, the actions taken upon detection
of the event by the device, and the new state that is entered after the action is performed.

A.2.1 State 0 appIDLE

Event Action Next State

Receipt of the
DFU_DETACH request

Start timer. The host sends this request to the device to
initiate the DFU process. The device starts its detach timer.

appDETACH

Receipt of the
DFU_GETSTATUS
request

Support for this request while in the appIDLE state is
optional. If it is supported, then the device returns the status
response, and bwPollTimeout is ignored. Otherwise, the
request is treated like any other unsupported request.

appIDLE

Receipt of the
DFU_GETSTATE
request

Support for this request while in the appIDLE state is
optional. If it is supported, then the device returns the status
response, and bwPollTimeout is ignored. Otherwise, the
request is treated like any other unsupported request.

appIDLE

Receipt of any other
DFU class-specific
request

Device stalls the control pipe. appIDLE

USB Device Firmware Upgrade Specification, Revision 1.0

28

A.2.2 State 1 appDETACH

Event Action Next State

Receipt of the
DFU_GETSTATUS
request

Device returns the status response; bwPollTimeout is
ignored.

appDETACH

Receipt of the
DFU_GETSTATE
request

Device returns the state response. appDETACH

Receipt of any other
DFU class-specific
request

Device stalls the control pipe. appIDLE

Timeout of the device’s
detach timer

Device does nothing except return to the appIDLE state. A
subsequent USB reset will not initiate DFU.

appIDLE

Power on reset Restart. The device loses all context concerning DFU and
operates normally.

appIDLE

USB reset signaling
detected

If the device’s detach timer is still running (which it should be,
or the device would not be in the appDETACH state), then
the device prepares to enumerate the DFU descriptor set and
enters DFU mode.

dfuIDLE

USB Device Firmware Upgrade Specification, Revision 1.0

29

A.2.3 State 2 dfuIDLE

Event Action Next State

Receipt of the
DFU_DNLOAD request;
wLength > 0, and
bitCanDnload = 1

This is the start of a download block. The device handles
the control-write transaction.

dfuDNLOAD-
SYNC

Receipt of the
DFU_DNLOAD request;
wLength = 0, or
bitCanDnload = 0

Device stalls the control pipe. (A zero-length download is
not considered useful.)

dfuERROR

Receipt of the
DFU_UPLOAD request,
and bitCanUpload = 1

This is the start of an upload block. The device handles
the control-read transaction.

dfuUPLOAD-
IDLE

Receipt of the
DFU_UPLOAD request,
and bitCanUpload = 0

Device stalls the control pipe. dfuERROR

Receipt of the
DFU_ABORT request

Do nothing. dfuIDLE

Receipt of the
DFU_GETSTATUS
request

Device returns the status response. dfuIDLE

Receipt of the
DFU_GETSTATE request

Device returns the state response. dfuIDLE

Receipt of any other DFU
class-specific request

Device stalls the control pipe. dfuERROR

USB reset or power on
reset and firmware is valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

30

A.2.4 State 3 dfuDNLOAD-SYNC

Event Action Next State

Receipt of the
DFU_GETSTATUS
request. (Block transfer
still in progress)

Device returns the status response. dfuDNBUSY

Receipt of the
DFU_GETSTATUS
request. (Block
complete)

Device returns the status response. dfuDNLOAD-
IDLE

Receipt of the
DFU_GETSTATE
request

Device returns the state response. dfuDNLOAD-
SYNC

Receipt of any other
DFU class-specific
request

Device stalls the control pipe. dfuERROR

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

31

A.2.5 State 4 dfuDNBUSY

Event Action Next State

Receipt of any DFU
class-specific request

Device stalls the control pipe. dfuERROR

bwPollTimeout elapsed Host can now send DFU_GETSTATUS request. dfuDNLOAD-
SYNC

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

32

A.2.6 State 5 dfuDNLOAD-IDLE

Event Action Next State

Receipt of the
DFU_DNLOAD request;
wLength > 0

Beginning of a download block. The device handles the
control-write transaction.

dfuDNLOAD-
SYNC

Receipt of the
DFU_DNLOAD request;
wLength = 0, device
agrees

Host is informing the device that there is no more data to
download.

dfuMANIFEST-
SYNC

Receipt of the
DFU_DNLOAD request;
wLength = 0, but device
disagrees

Host and device are not synchronized with respect to the
quantity of data to be downloaded. The host must initiate
recovery procedures. Device stalls the control pipe.

dfuERROR

Receipt of the
DFU_ABORT request

Host is terminating the current download transfer. (Note that
if memories have been erased or partially written, the
firmware may be corrupt.)

dfuIDLE

Receipt of the
DFU_GETSTATUS
request

Device returns the status response. dfuDNLOAD-
IDLE

Receipt of the
DFU_GETSTATE
request

Device returns the state response. dfuDNLOAD-
IDLE

Receipt of any other
DFU class-specific
request

Device stalls the control pipe. dfuERROR

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

33

A.2.7 State 6 dfuMANIFEST-SYNC

Event Action Next State

Receipt of the
DFU_GETSTATUS
request. Manifestation
phase in progress.

Device returns the status response. dfuMANIFEST

Receipt of the
DFU_GETSTATUS
request. Manifestation
phase complete, and
bitManifestationTolerant
= 1

Device returns the status response. dfuIDLE

Receipt of the
DFU_GETSTATE
request

Device returns the state response. dfuMANIFEST-
SYNC

Receipt of any other
DFU class-specific
request

Device stalls the control pipe. dfuERROR

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

34

A.2.8 State 7 dfuMANIFEST

Event Action Next State

Receipt of any DFU
class-specific request

Device stalls the control pipe. dfuERROR

Status poll timeout and
bitManifestationTolerant
= 1

Device that can still communicate via the USB after the
Manifestation phase indicated this capability to the host by
setting bmAttributes bit bitManifestationTolerant.

dfuMANIFEST-
SYNC

Status poll timeout and
bitManifestationTolerant
= 0

Device that cannot communicate via the USB after the
Manifestation phase indicated this limitation to the host by
clearing bmAttributes bit bitManifestationTolerant.

dfuMANIFEST-
WAIT-RESET

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset, and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

35

A.2.9 State 8 dfuMANIFEST-WAIT-RESET

Event Action Next State

Receipt of any DFU
class-specific request

If the device could do anything reasonable on the USB, then
it would never have entered this state. Do nothing. In fact,
the device probably cannot detect the receipt of anything at
all. If it could, it would not enter this state.

dfuMANIFEST-
WAIT-RESET

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

36

A.2.10 State 9 dfuUPLOAD-IDLE

Event Action Next State

Receipt of the
DFU_UPLOAD request;
wLength > 0

This is the start of an upload block. The device handles the
control-read transaction.

dfuUPLOAD-
IDLE

The length of the data
transferred by the
device in response to a
DFU_UPLOAD request
is less than wLength.
(Short frame)

Device finished uploading and completes the control-read
operation.

dfuIDLE

Receipt of the
DFU_ABORT request

Host is terminating the current upload transfer. dfuIDLE

Receipt of the
DFU_GETSTATUS
request

Device returns the status response. dfuUPLOAD-
IDLE

Receipt of the
DFU_GETSTATE
request

Device returns the state response. dfuUPLOAD-
IDLE

Receipt of any other
DFU class-specific
request

Device stalls the control pipe. dfuERROR

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

37

A.2.11 State 10 dfuERROR

Event Action Next State

Receipt of the
DFU_GETSTATUS
request

Device returns the status response. dfuERROR

Receipt of the
DFU_GETSTATE
request

Device returns the state response. dfuERROR

Receipt of
DFU_CLRSTATUS
request

Clear status to OK. dfuIDLE

Receipt of any other
DFU class-specific
request

Device stalls the control pipe. dfuERROR

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware. appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

USB Device Firmware Upgrade Specification, Revision 1.0

38

B. DFU File Suffix

Any file to be downloaded must contain a DFU suffix. The purpose of the DFU suffix is to allow the
operating system in general, and the DFU operator interface application in particular, to have a-priori
knowledge of whether a firmware download is likely to complete correctly. In other words, these bytes
allow the host software to detect and prevent attempts to download incompatible firmware.

The DFU suffix contains the following data:

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC. (Calculation specified in the
following section).

-4 bLength 1 16 The length of this DFU suffix including
dwCRC.

-5 ucDfuSignature 3 uc The unique DFU signature field.

-8 bcdDFU 2 BCD DFU specification number.

-10 idVendor 2 ID The vendor ID associated with this file.
Either FFFFh or must match device’s
vendor ID.

-12 idProduct 2 ID The product ID associated with this file.
Either FFFFh or must match device’s
product ID.

-14 bcdDevice 2 BCD The release number of the device
associated with this file. Either FFFFh or a
BCD firmware release or version number.

The dwCRC, bLength, ucDfuSignature, and bcdDFU fields will not move in subsequent revisions of
this specification. Furthermore, the contents of the ucDfuSignature field will remain constant and fixed,
and the calculation for the dwCRC field will remain fixed as defined in version 1.0 of this specification.
If any fields are added to this suffix, they will be added at greater negative offsets than specified in the
bcdDevice field. The dwCRC field is defined as being the first four bytes of the suffix, which makes it
the last four bytes of a file to which the suffix has been added.

The offsets are negative. This is a file suffix, and the negative offsets indicate that the last byte of the
file is specified in the dwCRC field. Note that all multibyte fields are mirror images of their structure.
The host must perform an end-for-end swap of the entire suffix of bLength bytes to obtain the correct
byte ordering. In other words, when the DFU suffix is created, the fields are filled with positive offsets.
Then the entire suffix is end-for-end swapped before being appended to the download file. This is
done so that the CRC, length byte, and DFU signature will be at a fixed location in all cases,
specifically EOF. This allows for possible future revisions of the DFU suffix, or even vendor-specific
additions, without difficulty.

The dwCRC field contains the CRC as explained in the following paragraphs. The CRC is calculated
for all bytes contained in the file, except the dwCRC itself.

USB Device Firmware Upgrade Specification, Revision 1.0

39

The bLength field is a single-byte length field. In this revision of the DFU specification, the length is
16 (decimal) and includes the four bytes occupied by the dwCRC field.

The ucDfuSignature field contains three unsigned characters: 44h, 46h, 55h, in that order. In the file,
they appear in reverse order, i.e., offset (–5) is 44h, offset (–6) is 46h, and offset (–7) is 55h.

The bcdDFU field is a two-byte specification revision number. The value as of this revision of the
specification is 0100h, representing version 1.0.

The idVendor field may either contain a valid vendor ID, or it may contain FFFFh. If it contains
FFFFh, then the file may be sent to any device. The reason to include a DFU suffix with a vendor ID
of FFFFh is to maintain a standard file format, or to include a release number specified in the
bcdDevice field for informational purposes, without enforcing vendor ID matching. If the idVendor
field contains a value other than FFFFh, then the file contents may only be sent to a device with a
matching vendor ID reported in the idVendor field of its device descriptor.

The idProduct field is ignored if the idVendor field contains FFFFh. Otherwise, idProduct may either
contain a valid product ID, or it may contain FFFFh. If it contains FFFFh, then the file may be sent to
any device with a matching vendor ID. If idProduct contains a value other than FFFFh, then the file
contents may only be sent to a device with matching idVendor and idProduct fields reported in its
device descriptor.

Note Because the idProduct field of the DFU-based version of the product may differ from the run-
time version, idProduct of the suffix should contain the same value as the run-time version of the
product. At the time when the host performs a comparison, the DFU descriptor set has not yet been
enumerated, and whatever idProduct is present in the DFU descriptor set is unavailable.

The bcdDevice field may contain FFFFh, or it may contain a BCD number. If it contains FFFFh, it is
ignored. If it contains a BCD number, then that number should represent the version of firmware
contained in the file. This field is for informational purposes only and does not restrict whether the file
may or may not be sent to a device. One possible use of this field is to notify the operator when a
download will result in sending a lower firmware version number to the device than the version number
that is currently reported by the device. Therefore, it is suggested, but not required, that vendors use
this field to record a firmware version number that increases with each revision of firmware.

In no case is the DFU suffix ever sent to the device. The host application verifies that the bytes
occupying the ucDfuSignature field contain the specified values, and that the CRC over the file
matches the dwCRC field. If these two criteria are passed, then the host can presume that the firmware
upgrade file is intact. The host application then uses the DFU suffix data to perform appropriate
validation and screening. During the Transfer phase, the contents of the file are sent, excluding the
DFU suffix data.

USB Device Firmware Upgrade Specification, Revision 1.0

40

B. 1 Portable C Source for CRC and DFU Suffix
The following example source code was created by assimilating code from a number of sources. It was
edited to illustrate the concepts described in this appendix.

B.1.2 Source Listing
/***\
 dfu.c

 This is sample software to demonstrate a simple method of manipulating
 the DFU suffix as specified in the DFU specification version 1.0.

 The following authors have contributed to this sample code:

 Robert Nathan
 Greg Kroah-Hartman
 Trenton Henry
 Stephen Satchell
 Chuck Foresburg
 Gary S. Brown

 The CRC algorithm derives from the works of the last three authors listed.

 The authors hereby grant developers the right to incorporate any portion
 of this source into their own works, provided that proper credit is given
 to Gary S. Brown, Stephen Satchell, and Chuck Forsberg. Reference the
 following source for the proper format.

 Every attempt has been made to ensure that this source is portable.
 To that end, it uses only ANSI C libraries. Any identifiers that are not
 part of ANSI C have names starting with leading underscores. The purpose
 is to differentiate what has been "invented" and what was "pre-existing".

 This example cannot modify an existing suffix. To modify a suffix,
 delete the current one and then append a new suffix.

***/
#include <stdio.h>
#include <io.h>
#include <sys\stat.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>

/***\
 CRC polynomial 0xedb88320 – Contributed unknowingly by Gary S. Brown.

 "Copyright (C) 1986 Gary S. Brown. You may use this program, or code or
 tables extracted from it, as desired without restriction."

 Paraphrased comments from the original:

 The 32 BIT ANSI X3.66 CRC checksum algorithm is used to compute the 32-bit
 frame check sequence in ADCCP. (ANSI X3.66, also known as FIPS PUB 71 and
 FED-STD-1003, the U.S. versions of CCITT's X.25 link-level protocol.)

 The polynomial is:
 X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0

 Put the highest-order term in the lowest-order bit. The X^32 term is
 implied, the LSB is the X^31 term, etc. The X^0 term usually shown as +1)
 results in the MSB being 1. Put the highest-order term in the lowest-order
 bit. The X^32 term is implied, the LSB is the X^31 term, etc. The X^0
 term (usually shown as +1) results in the MSB being 1.

 The feedback terms table consists of 256 32-bit entries. The feedback terms
 simply represent the results of eight shift/xor operations for all
 combinations of data and CRC register values. The values must be right-
 shifted by eight bits by the UPDCRC logic so the shift must be unsigned.

USB Device Firmware Upgrade Specification, Revision 1.0

41

***/
unsigned long _crctbl[] = {
 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};
/***/

unsigned char _suffix[] = {
 0x00, /* bcdDevice lo */
 0x00, /* bcdDevice hi */
 0x00, /* idProduct lo */
 0x00, /* idProduct hi */
 0x00, /* idVendor lo */
 0x00, /* idVendor hi */
 0x00, /* bcdDFU lo */
 0x01, /* bcdDFU hi */
 'U', /* ucDfuSignature lsb */
 'F', /* ucDfuSignature --- */
 'D', /* ucDfuSignature msb */
 16, /* bLength for this version */
 0x00, /* dwCRC lsb */
 0x00, /* dwCRC --- */
 0x00, /* dwCRC --- */
 0x00 /* dwCRC msb */
};
/***\
***/
void _fatal(char *);
void _fatal(char *_str)
{
 perror(_str);
 fcloseall();
 abort();
}
/***\
 The updcrc macro (referred to here as _crc) is derived from an article

USB Device Firmware Upgrade Specification, Revision 1.0

42

 Copyright © 1986 by Stephen Satchell.

 “Programmers may incorporate any or all code into their programs, giving
 proper credit within the source. Publication of the source routines is
 permitted so long as proper credit is given to Steven Satchell, Satchell
 Evaluations, and Chuck Forsberg, Omen technology."
***/
#define _crc(accum,delta) (accum)=_crctbl[((accum)^(delta))&0xff]^((accum)>>8)
#define _usage \
 "\nusage: dfu fname [options]\n\n" \
 " to check for a suffix use: dfu fname\n\n" \
 " to remove a suffix use: dfu fname -del\n\n" \
 " to add a suffix use: dfu fname -did val -pid val -vid val\n\n" \
 " e.g., dfu myfile -did 0x0102 -pid 2345 -vid 017\n" \
 " sets idDevice 0x0102 idProduct 0x0929 idVendor 0x000F\n\n"
#define _getarg(ident,index); \
 if (!strcmp(argv[_i], (ident))) \
 { \
 _write_suffix = 1; \
 if (argc-1 == _i) _fatal(_usage); \
 _tmpl = strtol(argv[_i+1], &_charp, 0); \
 _suffix[(index)] = (unsigned char)(_tmpl & 0x000000FF); \
 _tmpl /= 256; \
 _suffix[(index)+1] = (unsigned char)(_tmpl & 0x000000FF); \
 }
/***\
***/
void main(int argc, char **argv)
{
 FILE *_fp;
 FILE *_tmpfp;
 int _remove_suffix = 0;
 int _write_suffix = 0;
 unsigned long _filecrc;
 unsigned long _fullcrc;
 long _i;
 long _tmpl;
 char *_charp;

 /* make sure there is at least one argument */
 errno = EINVAL;
 if (argc < 2)
 _fatal(_usage);

 /* make sure the file is there */
 _fp = fopen(argv[1], "r+b");
 if (!_fp)
 _fatal(argv[1]);

 /* compute the CRC up to the last 4 bytes */
 fseek(_fp, -4L, SEEK_END);
 _i = ftell(_fp);
 rewind(_fp);
 _filecrc = 0xffffffff;
 for (; _i; _i--)
 _crc(_filecrc, (unsigned char) fgetc(_fp));
 /* printf("file crc: 0x%08lX\n", _filecrc); */

 /* compute the CRC of everything including the last 4 bytes */
 _fullcrc = _filecrc;
 for (_i = 0; _i < 4; _i++)
 _crc(_fullcrc, (unsigned char) fgetc(_fp));
 /* printf("full crc: 0x%08lX\n", _fullcrc); */

 /* store the file crc away for comparison */
 for (_i = 12; _i < 16; _i++) {
 _suffix[_i] = (unsigned char) (_filecrc & 0x000000ff);
 _filecrc /= 256;
 }

 /* pretend that a suffix exists and try to validate it */
 fseek(_fp, -16L, SEEK_END);

 /* read in the existing suffix */
 for (_i = 0; _i < 6; _i++)
 _suffix[_i] = (unsigned char) fgetc(_fp);

USB Device Firmware Upgrade Specification, Revision 1.0

43

 /* print out whats in there already */
 printf(" idDevice: 0x%02X%02X\n",
 (unsigned char) _suffix[1], (unsigned char) _suffix[0]);
 printf("idProduct: 0x%02X%02X\n",
 (unsigned char) _suffix[3], (unsigned char) _suffix[2]);
 printf(" idVendor: 0x%02X%02X\n",
 (unsigned char) _suffix[5], (unsigned char) _suffix[4]);

 /* now parse the command arguments to overwrite the suffix w/ new values */
 for (_i = 1; _i < argc; _i++) {
 errno = EINVAL;
 if (!strcmp(argv[_i], "-del"))
 _remove_suffix = 1;
 _getarg("-did", 0);
 _getarg("-pid", 2);
 _getarg("-vid", 4);
 }

 /* compare the ‘presumed’ file suffix to the suffix in memory */
 for (_i = 6; _i < sizeof(_suffix); _i++)
 if ((unsigned char) fgetc(_fp) != _suffix[_i])
 break;
 if (_i < 8)
 printf("bad bcdDFU\n");
 else if (_i < 11)
 printf("bad ucDfuSignature\n");
 else if (_i < 12)
 printf("bad bLength\n");
 else if (_i < 16)
 printf("bad dwCRC\n");
 if (_i < 16) {
 /* can't remove a suffix if there isn't one there */
 if (_remove_suffix)
 printf("invalid or missing suffix\n");
 _remove_suffix = 0;
 } else {
 printf("valid dfu suffix found\n");
 errno = EINVAL;
 if (_write_suffix)
 _fatal("delete suffix before making changes\n");
 }

 /* now it is known if a suffix exists, and the important
 information has been printed out. so, either the user wants
 to delete the suffix, or to add a new one */

 /* remove an existing suffix? */
 if (_remove_suffix) {
 _tmpfp = fopen("dfu.tmp", "w+b");
 if (!_tmpfp)
 _fatal("dfu.tmp");

 /* this is not an exercise in how to do buffered file io ;-) */
 fseek(_fp, -_suffix[11], SEEK_END);
 _i = ftell(_fp);
 if (_i > 0) {
 rewind(_fp);
 for (; _i; _i--)
 fputc(fgetc(_fp), _tmpfp);
 fclose(_tmpfp);
 fclose(_fp);
 chmod(argv[1], S_IWRITE);
 remove(argv[1]);
 rename("dfu.tmp", argv[1]);

 /* warm fuzzies */
 printf("dfu suffix removed from %s\n", argv[1]);
 } else
 printf("%s too small to contain dfu suffix\n", argv[1]);
 exit(0);
 }

 /* append a suffix to the file? */
 if (_write_suffix) {
 /* append a DFU suffix */

USB Device Firmware Upgrade Specification, Revision 1.0

44

 fseek(_fp, 0L, SEEK_END);

 /* write the suffix while iterating the CRC */
 for (_i = 0; _i < sizeof(_suffix) - 4; _i++) {
 _crc(_fullcrc, _suffix[_i]);
 fputc(_suffix[_i], _fp);
 }

 /* and write the CRC, lo to hi */
 /* printf("full crc: 0x%08lX\n", _fullcrc); */
 for (_i = 0; _i < 4; _i++) {
 fputc((unsigned char) (_fullcrc & 0x000000ff), _fp);
 _fullcrc /= 256;
 }

 /* warm fuzzies */
 printf("dfu suffix appended to %s\n", argv[1]);
 }
 /* finished */
 fclose(_fp);
}
/* eof */

	1. Introduction
	1.1 Related Documents
	1.2 Terms and Abbreviations

	2. Overview
	3. Requests
	4. Enumeration Phase
	4.1 Run-Time Descriptor Set
	4.1.1 Run-Time Device and Configuration Descriptors
	4.1.2 Run-Time DFU Interface Descriptor
	4.1.3 Run-Time DFU Functional Descriptor

	4.2 DFU Mode Descriptor Set
	4.2.1 DFU Mode Device Descriptor
	4.2.2 DFU Mode Configuration Descriptor
	4.2.3 DFU Mode Interface Descriptor
	4.2.4 DFU Functional Descriptor

	5. Reconfiguration Phase
	5.1 The DFU_DETACH Request

	6. Transfer Phase
	6.1 Downloading
	6.1.1 DFU_DNLOAD Request
	6.1.1.1 Zero Length DFU_DNLOAD Request

	6.1.2 DFU_GETSTATUS Request
	6.1.3 DFU_CLRSTATUS Request
	6.1.4 DFU_ABORT Request
	6.1.5 DFU_GETSTATE Request

	6.2 Uploading
	6.2.1 DFU_UPLOAD Request

	7. Manifestation Phase
	A. Interface State Summary
	A.1 Interface State Transition Diagram
	A.2 Interface State Transition Summary
	A.2.1 State 0 appIDLE
	A.2.2 State 1 appDETACH
	A.2.3 State 2 dfuIDLE
	A.2.4 State 3 dfuDNLOAD-SYNC
	A.2.5 State 4 dfuDNBUSY
	A.2.6 State 5 dfuDNLOAD-IDLE
	A.2.7 State 6 dfuMANIFEST-SYNC
	A.2.8 State 7 dfuMANIFEST
	A.2.9 State 8 dfuMANIFEST-WAIT-RESET
	A.2.10 State 9 dfuUPLOAD-IDLE
	A.2.11 State 10 dfuERROR

	B. DFU File Suffix
	B. 1 Portable C Source for CRC and DFU Suffix
	B.1.2 Source Listing

