
Universal Serial Bus
Class Definitions

for
Communication Devices

Version 1.0
May 8, 1998

USB Class Definitions for Communication Devices

Version 1.0 ii May 8, 1998

Scope of this Revision
This version 1.0 of this class specification is intended for product design. Every attempt has been made to ensure a
consistent and implementable specification. Implementations should ensure compliance with this revision.

Revision History
Revision Issue date Comments

0.8 – 0.8h December 11, 1996
 May 20, 1997

0.8 releases.

0.9a- 0.9f May 26, 1997 
October 10, 1997

0.9 releases.

1.0RCb October 22, 1997 RR53, 76, 77. Accepted changes from the
technical editor.

1.0RCc October 29, 1997 Verified Xref, re-ordered requests

1.0RC1 November 9, 1997 Approved by CDC – Posted to Web

1.0RC2 December 18, 1997 RR79-84, Approved by CDC – Posted to Web

1.0RC3 January 28, 1998 RR85-90, Approved by CDC. Atlanta, GA

1.0RC4 March 19, 1998 Addition of Device Class code.

1.0RC5 April 2, 1998 Minor syntax changes, approved by CDC

1.0 May 7, 1998 Approved by DWG 1.0

USB Class Definitions for Communication Devices

Version 1.0 iii May 8, 1998

Contributors
Shelagh Callahan Intel Corporation
Paul Chehowski Mitel Corporation
Joe Decuir Microsoft Corporation
Ed Endejan 3Com Corporation
Randy Fehr Northern Telecom
John Howard Intel Corporation
Dan Moore Diamond Multimedia Systems
Terry Moore Moore Computer Consultants Inc.
Andy Nicholson Microsoft Corporation
Nathan Peacock Northern Telecom
Dave Perry Mitel Corporation
Kenny Richards 3Com Corporation
Mats Webjörn Universal Access
Jim Wilson U.S. Robotics

USB Class Definitions for Communication Devices

Version 1.0 iv May 8, 1998

USB Class Definitions for Communication Devices
Copyright © 1996-1998 USB Implementers’ Forum

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via electronic mail to usbdevice@mailbag.intel.com

USB Class Definitions for Communication Devices

Version 1.0 v May 8, 1998

Contents
1. Introduction .. 1

1.1 Scope ... 1

1.2 Purpose .. 1

1.3 Related Documents... 1

1.4 Terms and Abbreviations... 2

2. Management Overview... 3

3. Functional Characteristics ... 4

3.1 Device Organization .. 4

3.1.1 Communication Device Management... 4

3.2 Device Operation... 5

3.3 Interface Definitions... 5

3.3.1 Communication Class Interface ... 5

3.3.2 Data Class Interface .. 6

3.3.2.1 Protocol Data Wrapper ..7
3.4 Endpoint Requirements ... 8

3.4.1 Communication Class Endpoint Requirements... 8

3.4.2 Data Class Endpoint Requirements.. 8

3.5 Device Models... 8

3.5.1 USB POTS Modem Models.. 9

3.5.1.1 Direct Line Control Model...9
3.5.1.2 Abstract Control Model ...11

3.5.2 USB Telephone Model ... 14

3.5.2.1 Telephone Control Model ..14

4. Class-Specific Codes for Communication Devices... 16

4.1 Communication Device Class Code... 16

4.2 Communication Interface Class Code.. 16

4.3 Communication Interface Class SubClass Codes .. 16

4.4 Communication Interface Class Control Protocol Codes .. 17

4.5 Data Interface Class Codes ... 17

5. Descriptors ... 18

5.1 Standard USB Descriptor Definitions ... 18

5.1.1 Device Descriptor .. 18

5.1.2 Configuration Descriptor .. 18

5.1.3 Interface Descriptors.. 18

5.1.4 Endpoint Descriptors ... 19

5.2 Class-Specific Descriptors... 19

5.2.1 Functional Descriptors ... 19

5.2.1.1 Header Functional Descriptor ..21
5.2.1.2 Call Management Functional Descriptor ..22
5.2.1.3 Abstract Control Management Functional Descriptor ...22
5.2.1.4 Direct Line Management Functional Descriptor ...23
5.2.1.5 Telephone Ringer Functional Descriptor..24
5.2.1.6 Telephone Operational Modes Functional Descriptor...25
5.2.1.7 Telephone Call and Line State Reporting Capabilities Descriptor ..26
5.2.1.8 Union Functional Descriptor..29
5.2.1.9 Country Selection Functional Descriptor..29

USB Class Definitions for Communication Devices

Version 1.0 vi May 8, 1998

5.3 Class-Specific Device Descriptor ... 30

5.3.1 Class-Specific Configuration Descriptor ... 30

5.3.2 Class-Specific Interface Descriptor... 30

6. Communication Interface Class Messages ... 32

6.1 Overview... 32

6.2 Management Element Requests .. 32

6.2.1 SendEncapsulatedCommand ... 35

6.2.2 GetEncapsulatedResponse.. 35

6.2.3 SetCommFeature .. 36

6.2.4 GetCommFeature .. 36

6.2.5 ClearCommFeature.. 37

6.2.6 SetAuxLineState .. 37

6.2.7 SetHookState .. 38

6.2.8 PulseSetup .. 38

6.2.9 SendPulse ... 39

6.2.10 SetPulseTime .. 39

6.2.11 RingAuxJack.. 39

6.2.12 SetLineCoding ... 40

6.2.13 GetLineCoding... 40

6.2.14 SetControlLineState ... 41

6.2.15 SendBreak... 41

6.2.16 SetRingerParms .. 42

6.2.17 GetRingerParms .. 42

6.2.18 SetOperationParms ... 43

6.2.19 GetOperationParms ... 44

6.2.20 SetLineParms .. 44

6.2.21 GetLineParms.. 45

6.2.22 DialDigits.. 47

6.3 Notification Element Notifications .. 48

6.3.1 NetworkConnection.. 49

6.3.2 ResponseAvailable... 49

6.3.3 AuxJackHookState .. 50

6.3.4 RingDetect... 50

6.3.5 SerialState ... 50

6.3.6 CallStateChange.. 51

6.3.7 LineStateChange ... 53

USB Class Definitions for Communication Devices

Version 1.0 vii May 8, 1998

List of Tables
Table 1: Data Class Protocol Wrapper Layout ... 8

Table 2: Requests  Direct Line Control Model*..10

Table 3: Notifications  Direct Line Control Model*..11

Table 4: Requests  Abstract Control Model* ..13

Table 5: Notifications  Abstract Control Model* ..13

Table 6: Requests  Telephone Control Model* ...15

Table 7: Notifications  Telephone Control Model* ...15

Table 8: Communication Device Class Code ..16

Table 9: Communication Interface Class Code ...16

Table 10: Communication Interface Class SubClass Codes...16

Table 11: Communication Interface Class Control Protocol Codes..17

Table 12: Data Interface Class Code ..17

Table 13: Communication Device Class Descriptor Requirements..18

Table 14: Communication Class Interface Descriptor Requirements ...19

Table 15: Data Class Interface Descriptor Requirements ..19

Table 16: Functional Descriptor General Format ..20

Table 17: Type Values for the bDescriptor Field ..20

Table 18: bDescriptor SubType in Functional Descriptors ..21

Table 19: Class-Specific Descriptor Header Format ...21

Table 20: Call Management Functional Descriptor...22

Table 21: Abstract Control Management Functional Descriptor..23

Table 22: Direct Line Management Functional Descriptor..24

Table 23: Telephone Ringer Functional Descriptor...25

Table 24: Telephone Operational Modes Functional Descriptor..26

Table 25: Telephone Call State Reporting Capabilities Descriptor..28

Table 26: Union Interface Functional Descriptor ..29

Table 27: Country Selection Functional Descriptor...30

Table 28: Sample Class Specific Interface Descriptor*...31

Table 29: Class-Specific Requests..32

Table 30: Class-Specific Request Codes...34

Table 31 Communication Feature Selector Codes...36

Table 32 Feature Status Returned for ABSTRACT_STATE Selector..37

Table 33: POTS Relay Configuration Values..38

Table 34: Line Coding Structure ..40

Table 35: Control Signal Bitmap Values for SetControlLineState...41

Table 36: Ringer Configuration Bitmap Values ..42

Table 37: Operation Mode Values..43

Table 38: Line State Change Value Definitions..44

Table 39: Line Status Information Structure ...45

Table 40: Line State Bitmap ..45

Table 41: Call State Bitmap...46

Table 42: Call State Value Definitions...46

Table 43: Characters in a Dialing Command ..47

Table 44: Class-Specific Notifications..48

Table 45: Class-Specific Notification Codes...49

USB Class Definitions for Communication Devices

Version 1.0 viii May 8, 1998

Table 46: UART State Bitmap Values..51

Table 47: Call State Change Value Definitions ..52

Table 48: Line State Change Values ..53

Table 49: Telephone Configurations...55

Table 50: Example Modem Configurations ..56

USB Class Definitions for Communication Devices

Version 1.0 1 May 8, 1998

1. Introduction

There are three classes that make up the definition for communication devices: the Communication Device Class,
Communication Interface Class and the Data Interface Class. The Communication Device Class is a device level
definition and is used by the host to property identify a communication device that may present several different types
of interfaces. The Communication Interface Class defines a general-purpose mechanism that can be used to enable
all types of communication services on the Universal Serial Bus (USB). The Data Interface Class defines a general-
purpose mechanism to enable bulk or isochronous transfer on the USB when the data does not meet the requirements
for any other class.

1.1 Scope

Given the broad nature of communication equipment, this specification does not attempt to dictate how all
communication equipment should use the USB. Rather, it defines an architecture that is capable of supporting any
communication device. The current release of the specification focuses on supporting connectivity to
telecommunication services  devices that have traditionally terminated an analog or digital telephone line.
However, other uses for devices or interfaces of this class are also valid. The specification currently outlines the
following types of devices: analog modems, digital telephones, and analog telephones. Additional models for multi-
channel devices, such as ISDN or ADSL, are being developed and will become available as soon as they are ready.
Additionally, support for non-telecommunication devices, specifically the “serial dongle” type of device, is being
addressed. This support will be made available with the multi-channel models.

This specification does not attempt to redefine existing standards for connection and control of communication
services. The Communication Interface Class defines mechanisms for a device and host to identify which existing
protocols to use. Where possible, existing data formats are used and the transport of these formats are merely enabled
by the USB through the definition of the appropriate descriptors, interfaces, and requests. More specifically, this
specification describes a framework of USB interfaces, data structures, and requests under which a wide variety of
communication devices can be defined and implemented.

1.2 Purpose

This specification provides information to guide implementers in using the USB logical structures for communication
devices. This information applies to manufacturers of communication devices and system software developers.

1.3 Related Documents

Universal Serial Bus Specification, version 1.0 (also referred to as the USB Specification). This specification is
available on the World Wide Web site http://www.usb.org.

ANSI/TIA-602, Serial Asynchronous Automatic Dialing and Control - available at http://www.eia.org

ITU V.25ter, Serial Asynchronous Automatic Dialing and Control - available at http://www.itu.ch

Detailed examples of typical communication device classes are provided in separate white papers that are not a part
of this specification. The latest copies of the white papers can be found at http://www.usb.org.

USB Class Definitions for Communication Devices

Version 1.0 2 May 8, 1998

1.4 Terms and Abbreviations

ASVD Analog Simultaneous Voice and Data, signaling method mixes data and voice.

AT command set A telecommunication device control protocol. For details, see TIA-602 or V.25ter.

BRI ISDN Basic Rate Interface, consisting of one D channel and two B channels.

BYTE For the purposes of this document, the definition of a byte is 8 bits.

Call management Refers to a process that is responsible for the setting up and tearing down of calls. This same
process also controls the operational parameters of the call. The term “call,” and therefore
“call management,” describes processes which refer to a higher level of call control, rather
than those processes responsible for the physical connection.

Communication
interface

Refers to a USB interface that identifies itself as using the Communication Class definition.

Data interface Refers to a USB interface that identifies itself as using the Data Class definition.

DCE Data Circuit Terminating Equipment; for example, a modem or ISDN TA.

Device management Refers to requests and responses that control and configure the operational state of the
device. Device management requires the use of a Communication Class interface.

DSVD Digital Simultaneous Voice and Data, signaling method mixes data and digitized voice.

DTE Data Terminal Equipment; for example, a PC.

Heatherington Escape
Sequence

A reliable technique used in modems to switch between data mode and command mode.
Developed by Dale Heatherington, an employee of Hayes during the early 1980s. This is
covered under United States patent number 4,549,302.

ISDN Integrated Services Digital Network.

ITU International Telecommunications Union (formerly CCITT).

Management element Refers to a type of USB pipe that manages the communication device and its interfaces.
Currently, only the Default Pipe is used for this purpose.

Master interface A Communication Class interface, which has been designated the master of zero or more
interfaces that implement a complete function in a USB communication device. This
interface will accept management requests for the union.

Notification element Refers to a type of USB pipe. Although a notification element is not required to be an
interrupt pipe, a notification element is typically defined in this way.

POTS Plain Old Telephone Service. See PSTN.

PRI Primary Rate Interface, which consists of one or two D channels and up to 30 B channels.

PSTN Public Switched Telephone Network.

TA Terminal Adapter, which is the equivalent of a modem for ISDN.

TIA Telecommunications Industry Association.

TIES Time Independent Escape Sequence, which is an alternative method to the Heatherington
Escape Sequence for switching between command mode and data mode on an analog
modem. This was developed by a group of modem manufacturers in 1991.

Union A relationship between a collection of one or more interfaces that can be considered to form
a functional unit.

Video phone A device which simultaneously sends voice and video with optional data.

V.25ter This is the ITU-T standard for Serial Asynchronous Automatic Dialing and Control, which is
commonly known as the “AT” command set.

V.4 This is the ITU-T standard for general structure of signals of international alphabet number 5
code for data transmission over the public telephone network.

USB Class Definitions for Communication Devices

Version 1.0 3 May 8, 1998

2. Management Overview
Several types of communication devices can benefit from the USB. This specification provides models for
telecommunication devices, such as telephones and analog modems. It describes:

• Specifications for:

− Communication Device Class

− Communication Interface Class

− Data Interface Class

• Framework for building a communication device:

− Assembling the relevant USB logical structures into configurations.

− Communication Class interface and its usage.

− Data Class interface and its usage.

− Usage of additional class types or vendor specific interfaces.

• Implementation examples of communication devices, such as a basic telephone, a digital telephone, and an
analog modem.

USB Class Definitions for Communication Devices

Version 1.0 4 May 8, 1998

3. Functional Characteristics
This section describes the functional characteristics of the Communication Device Class, Communication Interface
Class and Data Interface Class, including:

• Device organization:

− Endpoint requirements.

− Constructing interfaces from endpoints.

− Constructing configurations from a variety of interfaces, some of which are defined by other class
specifications.

− Identifying groups of interfaces within configurations that make functional units and assigning a master
interface for each union.

• Device operation

Although this specification defines both the Communication Interface Class and Data Interface Class, they are two
different classes. All communication devices shall have an interface using the Communication Class to manage the
device and optional specify themselves as communication devices by using the Communication Device Class code.
Additionally, the device has some number of other interfaces used for actual data transmission. The Data Interface
Class identifies data transmission interfaces when the data does not match the structure or usage model for any other
type of class, such as Audio.

3.1 Device Organization

A communication device has three basic responsibilities:

• Device management

• Call management

• Data transmission

The device shall use a Communication Class interface to perform device management and optionally for call
management. The data streams are defined in terms of the USB class of data that is being transmitted. If there is no
appropriate USB class, then the designer can use the Data Class defined in this specification to model the data
streams.

Device management refers to the requests and notifications that control and configure the operational state of the
device, as well as notify the host of events occurring on the device.

Call management refers to a process that is responsible for the setting up and tearing down of calls. This same
process also controls the operational parameters of the call. The term “call,” and therefore “call management,”
describes processes that refer to a higher level of call control than those processes responsible for the physical
connection.

Data transmission is accomplished using interfaces that are in addition to the Communication Class interface. These
interfaces can use any defined USB class or can be vendor-specific.

3.1.1 Communication Device Management

There are two levels of device management for communication devices. The most basic form of device management
results from control transfers made on endpoint 0 as outlined in the USB Specification, Sections 9.1 through 9.4.
Device management is also required at a higher level, which is specific to communication devices. An example would
be configuration of country-specific details for proper configuration of the telephone services.

USB Class Definitions for Communication Devices

Version 1.0 5 May 8, 1998

To allow device management at the communication device level, a Union shall be made between all the interfaces
that make up the functional unit of the device. A functional descriptor is used to define the group of interfaces that
make up a functional unit within a device and is outlined in Section 5.2.1.8, “Union Functional Descriptor,” of this
specification.

With the increasing popularity of multi-channel devices, a new class of device may need to expose multiple device
management interfaces for device management at the communication device level. This would allow individual
control of the multiple channels, such as an ISDN device. In this case, the Union would be between the
Communication Class interface providing call control and the various interfaces it was managing at the moment.

3.2 Device Operation

Communication devices present data to the host in a form defined by another class, such as Audio, Data, or Human
Interface. To allow the appropriate class driver to manage that data, the host is presented with an interface(s), which
obeys the specification of that class. The interface that is required may change according to events that are initiated
by the user or the network during a communication session: for example, the transition from a data only call to a data
and voice call.

To allow the host to properly deal with the situation where multiple interfaces are used to create a single function, the
device can optionally identify itself at the device level with the Communication Device Class code. This allows the
host, if needed, to load any special drivers to properly configure the multiple interfaces into a single function in the
host.

Static characteristics of the device, such as the physical connections, are described in terms of the USB device,
interface, and endpoint descriptors. The data that moves over the physical interfaces are dynamic in nature, causing
the characteristics of the interfaces to change as the data requirements change. These dynamic changes are defined in
terms of messages transmitted between the device and host over the Communication Class interface. The device can
use a standard or proprietary mechanism to inform its host software when an interface is available and what the
format of the data will be. The host software can also use this same mechanism to retrieve information about data
formats for an interface and select a data format when more than one is available.

3.3 Interface Definitions

Two classes of interfaces are described in this specification: Communication Class interfaces and Data Class
interfaces. The Communication Class interface is a management interface and is required of all communication
devices. The Data Class interface can be used to transport data whose structure and usage is not defined by any other
class, such as Audio. The format of the data moving over this interface can be identified using the associated
Communication Class interface.

3.3.1 Communication Class Interface

This interface is used for device management and, optionally, call management. Device management includes the
requests that manage the operational state of the device, the device responses, and event notifications. Call
management includes the requests for setting up and tearing down calls, and the managing of their operational
parameters.

The Communication Class defines a Communication Class interface consisting of a management element and
optionally a notification element. The management element configures and controls the device, and consists of
endpoint 0. The notification element transports events to the host, and in most cases, consists of a interrupt endpoint.

Notification elements pass messages via an interrupt or bulk endpoint, using a standardized format. Messages are
formatted as a standardized 8-byte header, followed by a variable-length data field. The header identifies the kind of
notification, and the interface or endpoint associated with the notification; it also indicates the length of the variable
length portion of the message.

USB Class Definitions for Communication Devices

Version 1.0 6 May 8, 1998

The Communication Class interface shall provide device management by furnishing a management element (endpoint
0); the interface optionally can provide host notification by furnishing a notification element. Only the management
element is required for a complete Communication Class interface. The management element also meets the
requirements for devices as outlined in the USB Specification. Call management is provided in the communication
interface and optionally multiplexed on a data interface. The following configurations describe how the device might
provide call management with and without the use of the Communication Class interface:

• The device does not provide any call management and is made up of only a management element (endpoint 0). In
this case, the Communication Class interface is minimally represented and only provides device management
over a management element (endpoint 0). Currently, there is no Control Model to represent this situation.

• The device does not provide an internal implementation of call management and only accepts minimum set of
call management commands from the host. In this case, both a management element and a notification element
represent the Communication Class interface. This corresponds to the Direct Line Control Model, as described
in Section 3.5.1.1 “Direct Line Control Model.”

• The device provides an internal implementation of call management over the Data Class interface but not the
Communication Class interface. In this case, the Communication Class interface is also minimally represented
and only provides device management over a management element (endpoint 0). This configuration most closely
corresponds to the Abstract Control Model in which commands and data are multiplexed over the Data Class
interface. Activation of the command mode from data mode is accomplished using the Heatherington Escape
Sequence or the TIES method. For more information about the Abstract Control Model, see Section 3.5.1.2,
“Abstract Control Model.”

• The device provides an internal implementation of call management that is accessed by the host over the
Communication Class interface. In this case, the Communication Class interface performs both call and device
management, and consists of a management element (endpoint 0) and a notification element (interrupt
endpoint). The management element will transport both call management and device management commands.
The notification element will transport asynchronous event information from the device to the host, such as
notification of an available response, which then prompts the host to retrieve the response over the management
element. This corresponds to the Abstract Control Model. For more information about the Abstract Control
Model, see Section 3.5.1.2, “Abstract Control Model.”

3.3.2 Data Class Interface

The Data Class defines a data interface as an interface with a class type of Data Class. Data transmission on a
communication device is not restricted to interfaces using the Data Class. Rather, a data interface is used to transmit
and/or receive data that is not defined by any other class. This data could be:

• Some form of raw data from a communication line.

• Legacy modem data.

• Data using a proprietary format.

At this time, it is the responsibility of the host software and device to communicate with each other over some other
interface (such as a Communication Class interface) to determine the appropriate format to use. As more complicated
communication devices are defined, it may become necessary to define a method of describing the protocol used
within the Data Class interface. The attributes of a Data Class interface are as follows:

• The Interface descriptor uses the Data Class code as its class type. This is the only place that the Data Class
code is to be used.

• The data is always a byte stream. The Data Class does not define the format of the stream, unless a protocol
data wrapper is used.

USB Class Definitions for Communication Devices

Version 1.0 7 May 8, 1998

• If the interface contains isochronous endpoints, on these endpoints, the data is considered synchronous.

• If the interface contains bulk endpoints, on these endpoints, the data is considered asynchronous.

Isochronous pipes are used for data that meets the following criteria:

• Constant bit rate.

• Real-time communication that requires low latency.

In general, isochronous endpoints can be used where raw information (either sampled or direct) from the network is
sent to the host for further processing and interpretation. For example, an inexpensive ISDN TA could use an
isochronous pipe for transport of the raw-sampled bits off a network connection. In this case, the host system would
be responsible for the different network protocol that makes up an ISDN connection. This type of interface shall only
be used in situations in which an Audio Class interface would not provide the necessary definitions or control.

The type and formatting of the media to be used is specified via messaging over the management element of a
Communication Class interface when the host activates an interface or the device requests that an interface be
activated. The bandwidth of the pipe is defined by the Endpoint descriptors and can be changed by selecting an
alternate interface of an appropriate bandwidth.

3.3.2.1 Protocol Data Wrapper

To support embedded high-level protocols in a device, the data and commands between host and device must retain
their order. This ensures that a protocol stack that is designed to run in a real time operating system can be split into
two parts running in separate devices. Therefore, commands and data for a protocol have to be multiplexed onto the
same interface using a wrapper; this wrapper also has the facility to send data to any layer of the stack. Each protocol
specifies how to define protocol-specific commands and data fields going across its upper interface edge.

The host and device agree upon the wrapper feature at the same time as the definition of the protocol of the data is
established. It is the responsibility of the host software and the device to communicate with each other over some
other interface (such as a Communication Class interface) to determine the protocol. The wrapper is not used if there
is no protocol established. It is optional to use the wrapper if the established protocol could use it; it is mandatory to
use the wrapper if the protocol requires it.

To enable the different types of protocol stacks found on communication devices, two general forms have been
defined for the data wrapper header as defined in Table 1. The structure for both forms is the same, the only
difference is the usage of the source protocol ID. If no source protocol is needed or unknown, then offset 3,
bSrcProtocol is set to 00h.

The second form of the data wrapper header allows for both a source and destination protocol for the more structured
protocol stack where both are needed. Both data wrapper forms impose no other restrictions on the data format, other
than the general requirement of it being byte data and the source protocol ID of 00h being reserved for the source
protocol ID.

Note: Use of a Protocol Data Wrapper on a isochronous pipe is not recommended, because of the possible loss
of data because of the unreliable nature of isochronous pipes.

USB Class Definitions for Communication Devices

Version 1.0 8 May 8, 1998

Table 1: Data Class Protocol Wrapper Layout

Offset Field Size Value Description

0 bmOption 2 Bitmap D15..D0: Size of wrapper in bytes

2 bDstProtocol 1 Protocol Destination protocol ID.

3 bSrcProtocol 1 Protocol Source protocol ID.

4 to n-1 bData n-4 Number Data bytes

3.4 Endpoint Requirements

The following sections describe the requirements for endpoints in Communication Class or Data Class interfaces.

3.4.1 Communication Class Endpoint Requirements

The Communication Class interface requires one endpoint, a management element. It optionally can have an
additional endpoint, the notification element. The management element uses the default endpoint for all standard and
Communication Class-specific requests. The notification element normally uses an interrupt endpoint.

3.4.2 Data Class Endpoint Requirements

The type of endpoints belonging to a Data Class interface are restricted to being either isochronous or bulk, and are
expected to exist in pairs of the same type (one In and one Out).

3.5 Device Models

Particular USB communication device configurations are constructed from the interfaces described in previous
sections and those described by other class specifications. All communication devices consist of a Communication
Class interface plus zero or more other data transmission interfaces, adhering to some other USB class requirements
or implemented as vendor-specific interfaces. For example, the following descriptors are appropriate for a
communication device:

• Device descriptor contains the class code of the Communication Device Class, defined in Table 8. Optionally,
the device descriptor contains a class code of 00h, which indicates that the host should look at the interfaces to
determine how to use the device.

• An Interface descriptor with the Communication Class code, which contains a management element and
optionally a notification element.

• Zero or more other interfaces with class codes of various types such as Audio, Data, etc.

USB Class Definitions for Communication Devices

Version 1.0 9 May 8, 1998

The device models outlined in the following sections are divided into several categories. As this specification
develops, other models will be added. The term model describes a type of device and the interfaces that make it up.
The term control model describes the type of Communication Class interface being used and is assigned a SubClass
code for that interface. A control model can be used in several device models in which the method of device control
and call management are similar.

3.5.1 USB POTS Modem Models

A USB telephony device used on a POTS line has several types of interfaces that could be presented to the host. The
arrangement and use of those different interfaces depends upon the type of POTS telephony device and the basic
model used to build the device.

The difference between the various models of telephony devices can be divided according to the amount of processing
the device performs on the analog signal before presenting it to the host. To help illustrate how the different types of
interfaces could be put together to build a USB POTS telephony device, three example models are presented in the
following sections.

3.5.1.1 Direct Line Control Model

The Direct Line Control Model contains two examples: the Direct Line Model (or DL Model) and the Datapump
Model.

A Communication Class interface of type Direct Line Control Model will consist of a minimum of two pipes; one is
used to implement the management element and the other to implement a notification element. In addition, the device
can use two or more pipes to implement channels over which to carry vendor-specific data.

3.5.1.1.1 DL Model
The DL Model is the simplest type of connection to a POTS line. At this level, the USB device is only converting the
analog POTS line signal to digital data and presenting it to the USB bus. The modem modulation protocol (e.g. V.34,
V.32bis) is implemented in the host. Instead of using the Data Class, the Audio Class is used to present the digitally
converted data to the host. This type of connection could also be useful for a voice-only device, such as an answering
machine.

Because the DL Model is the simplest, it provides a perfect example of why a device requires the Direct Line Control
Model control codes. The key feature of a DL Model device is low cost, so reducing the processing power
requirements on the USB device is essential. The DL Model uses a Direct Line Control Model SubClass code in the
descriptor definition of its Communication Class interface.

Note: In many cases, a Data Class interface might not be used to present data to the host. Where the USB
device is constructed with minimal intelligence, some analog class-specific interface control codes are required.

USB Class Definitions for Communication Devices

Version 1.0 10 May 8, 1998

Carrier Modulation (datapump)

Data Compression (V.42bis)

Error Correction (V.42)
 Command
 and
 Control

Audio Class
Interface

POTS Interface (CODEC)

Control

Communication
Class InterfaceUSB Host

USB Device

Data Access Arrangement (DAA)

Figure 1: DL Model

These requests for controlling the interface between the USB device and the POTS line are presented in Table 2.
There are also some additional signals that fall outside the analog phone signal which shall go back to the host as
notifications, which are represented in Table 3. These requests and notifications are transported via the
Communication Class interface for the device.

Table 2: Requests  Direct Line Control Model*

Request Code Description Req’d/Opt

SET_AUX_LINE_STATE 10h Request to connect or disconnect secondary jack from POTS
circuit or CODEC, depending on hook state.

Optional

SET_HOOK_STATE 11h Select relay setting for on-hook, off-hook, and caller ID. Required

PULSE_SETUP 12h Initiate pulse dialing preparation. Optional

SEND_PULSE 13h Request number of make/break cycles to generate. Optional

SET_PULSE_TIME 14h Setup value for time of make and break periods when pulse
dialing.

Optional

RING_AUX_JACK 15h Request for a ring signal to be generated on secondary
phone jack.

Optional

*These requests are specific to the Communication Class.

The only class-specific request codes that are valid for a Communication Class interface with a Communication Class
SubClass code of Direct Line Control Model are listed in the previous Table 2. The other class-specific requests not
listed in the previous table, such as SEND_ENCAPSULATED_COMMAND, are inappropriate for a Direct Line
Control Model and would generate a STALL condition if sent to such an interface. For example, hanging up the line
would be accomplished by using SET_HOOK_STATE, rather than by sending “ATH” via
SEND_ENCAPSULATED_COMMAND.

USB Class Definitions for Communication Devices

Version 1.0 11 May 8, 1998

Table 3: Notifications  Direct Line Control Model*

Notification Code Description Req’d/Opt

AUX_JACK_HOOK_
STATE

08h Indicates hook state of secondary device plugged into the
auxiliary phone jack.

Optional

RING_DETECT 09h Message to notify host that ring voltage was detected on
POTS interface.

Required

* These notifications are specific to the Communication Class.

The only class-specific notification codes, which are valid for a Communication Class interface with a
Communication Class SubClass code of Direct Line Control Model, are listed in the previous table. The other class-
specific notifications not listed in the previous table, such as RESPONSE_AVAILABLE, are inappropriate for a
Direct Line Control Model and shall not be sent by such a device.

3.5.1.1.2 Datapump Model
The Datapump view of the device is the next logical break and is similar to the DL Model. In the Datapump view, the
USB device handles the carrier modulation instead of the host. Because there are no standard interfaces for
Datapumps, and it would be difficult to generalize the I/O space and registers required, it is assumed a vendor-
specific interface is employed based on the specifics of the Datapump being used.

The POTS line interface requests and notifications required for the Datapump USB device are the same as the DL
Model as described in Table 2 and Table 3, so the Direct Line Control Model SubClass code would be used.

Data Compression (V.42bis)

Error Correction (V.42)

Command
and

Control

Vendor Defined I/F

Carrier Modulation (datapump)

 Control

Communication
Class InterfaceUSB Host

USB Device

Data Access Arrangement (DAA)

Figure 2: Datapump Model

3.5.1.2 Abstract Control Model

With an Abstract Control Model, the USB device understands standard V.25ter (AT) commands. The device contains
a Datapump and micro-controller that handles the AT commands and relay controls. The device uses both a Data
Class interface and a Communication Class interface. For an illustration of the use of both interfaces, see Figure 3.
The device can also, at times, make use of other class interfaces; for example a device could use an Audio Class
interface for the audio functions in a speakerphone.

A Communication Class interface of type Abstract Control Model will consist of a minimum of two pipes; one is used
to implement the management element and the other to implement a notification element. In addition, the device can
use two pipes to implement channels over which to carry unspecified data, typically over a Data Class interface.

USB Class Definitions for Communication Devices

Version 1.0 12 May 8, 1998

For POTS line control, an Abstract Control Model shall either support V.25ter commands embedded in the data
stream or V.25ter commands sent down the Communication Class interface. When V.25ter commands are
multiplexed in the data stream, the Heatherington Escape Sequence or the TIES method would define the only
supported escape sequences.

Data Compression (V.42bis)

Error Correction (V.42)

Data Class
Interface

Carrier Modulation (datapump)

 Control

Communication
Class Interface

USB Host

USB Device

Data Access Arrangement (DAA)

Figure 3: Abstract Control Model

Error correction and data compression could be implemented on the host, and not necessarily on the device. This type
of device differs from the Direct Line Control Model, because the data from the USB device is presented to the host
via a native class-defined interface rather than a vendor-specific Datapump interface. Also, V.25ter commands are
used to control the POTS line interface. V.80 defines one way that the host can control the DCE data stream to
accomplish this, but there are also proprietary methods.

3.5.1.2.1 Abstract Control Model Serial Emulation
The Abstract Control Model can bridge the gap between legacy modem devices and USB devices. To support certain
types of legacy applications, two problems need to be addressed. The first is supporting specific legacy control
signals and state variables which are addressed directly by the various carrier modulation standards. Because of
these dependencies, they are important for developing an analog modem, which presents an Abstract Control Model
type Communication Class interface to the host. To support these requirement additional requests (Table 4) and
notifications (Table 5) have been created.

The second significant item which is needed to bridge the gap between legacy modem designs and the Abstract
Control Model is a means to multiplex call control (AT commands) on the Data Class interface. Legacy modem
designs are limited by only supporting one channel for both "AT" commands and the actual data. To allow this type
of functionality, the device must have a means to specify this limitation to the host.

When describing this type of device, the Communication Class interface would still specify a Abstract Control Model,
but call control would actually occur over the Data Class interface. To describe this particular characteristic, the Call
Management Functional Descriptor (Section 5.2.1.2) would have bit D1 of bmCapabilities set.

For devices that support both modes, call control over the Communication Class interface and call control over a Data
Class interface, and need to switch between them, then the GetCommFeature (Section 6.2.4) request is used to switch
between modes.

USB Class Definitions for Communication Devices

Version 1.0 13 May 8, 1998

Table 4: Requests  Abstract Control Model*

Request Code Description Req’d/Opt

SEND_ENCAPSULATED_
COMMAND

00h Issues a command in the format of the
supported control protocol.

Required

GET_ENCAPSULATED_
RESPONSE

01h Requests a response in the format of the
supported control protocol.

Required

SET_COMM_FEATURE 02h Controls the settings for a particular
communication feature.

Optional

GET_COMM_FEATURE 03h Returns the current settings for the
communication feature.

Optional

CLEAR_COMM_FEATURE 04h Clears the settings for a particular
communication feature.

Optional

SET_LINE_CODING 20h Configures DTE rate, stop-bits, parity, and
number-of-character bits.

Optional
+

GET_LINE_CODING 21h Requests current DTE rate, stop-bits, parity,
and number-of-character bits.

Optional
+

SET_CONTROL_LINE_STATE 22h RS-232 signal used to tell the DCE device the
DTE device is now present.

Optional

SEND_BREAK 23h Sends special carrier modulation used to
specify RS-232 style break.

Optional

* These requests are specific to the Communication Class.
+ For an analog modem, it is strongly recommended to support these requests.

The only class-specific request codes that are valid for a Communication Class interface with a Communication Class
SubClass code of Abstract Control Model are listed in the previous Table 4. The other class-specific requests not
listed in the previous table, such as SET_HOOK_STATE, are inappropriate for an Abstract Control Model and would
generate a STALL condition if sent to such an interface. For example, hanging up the line would be accomplished by
sending “ATH” via SEND_ENCAPSULATED_COMMAND, rather than by using SET_HOOK_STATE.

Table 5: Notifications  Abstract Control Model*

Notification Code Description Req’d/Opt

NETWORK_CONNECTION 00h Notification to host of network connection status. Optional
+

RESPONSE_AVAILABLE 01h Notification to host to issue a
GET_ENCAPSULATED_RESPONSE request.

Required

SERIAL_STATE 20h Returns the current state of the carrier detect, DSR,
break, and ring signal.

Optional
+

* These notifications are specific to the Communication Class.
+ For an analog modem, it is strongly recommended to support these requests.

USB Class Definitions for Communication Devices

Version 1.0 14 May 8, 1998

The only class-specific notification codes, which are valid for a Communication Class interface with a
Communication Class SubClass code of Abstract Control Model, are listed in the previous Table 5. The other class-
specific notifications not listed in the previous table, such as RING_DETECT, are inappropriate for an Abstract
Control Model and shall not be sent by such a device.

3.5.2 USB Telephone Model

A USB telephone device has a type of Communication Class interface that will be presented to the host, and it has the
SubClass code of Telephone Control Model. A telephone device will not typically present a Data Class interface.

3.5.2.1 Telephone Control Model

Telephone devices with multiple lines will have a separate Communication Class interface for each physical line
connected to the device. Each individual interface will correspond to a different physical line representing a network
connection to the device.

Functional descriptors will be used to describe the various capabilities of a USB telephone device. These functional
descriptors are defined in Section 5.2.1, “Functional Descriptors.”

A Communication Class interface of SubClass code Telephone Control Model will consist of a minimum of two
pipes: one to implement the management element and the other to implement the notification element. This model
describes the simplest version of a USB telephone device using only a Communication Class interface; other, more
complicated implementations are possible.

To create more complicated implementations of a USB telephone device for example, use an Audio Class interface to
provide the audio capabilities of a telephone and a Human Interface Device Class interface to provide the keypad
capabilities of a telephone.

Line & Call Control

 Control

Communication
Class Interface

USB Host

USB Device

Ringer

Figure 4: Telephone Control Model

The requests for controlling the USB telephone device via its Communication Class interface are presented in Table
6. Unsolicited messages from the USB telephone device to the host are sent using the notification element messages
that are presented in Table 7. These requests and notifications are transported via the Communication Class interface
for the device.

USB Class Definitions for Communication Devices

Version 1.0 15 May 8, 1998

Table 6: Requests  Telephone Control Model*

Request Code Description Req’d/Opt

SET_COMM_FEATURE
02h Used to set a unique communication feature, which is

normally specific to a particular device.
Optional

GET_COMM_FEATURE 03h Returns the current settings for the communication
feature.

Optional

CLEAR_COMM_FEATURE 04h Clears the settings for a particular communication
feature.

Optional

SET_RINGER_PARMS
30h Configures the ringer for a telephone device. Optional

GET_RINGER_PARMS
31h Gets the current ringer configuration for a telephone

device.
Required

SET_OPERATION_PARMS 32h Configures the operational mode of the telephone. Optional

GET_OPERATION_PARMS 33h Gets the current operational mode of the telephone. Optional

SET_LINE_PARMS 34h Allows changing the current state of the line
associated with the interface, providing basic call
capabilities, such as dialing and answering calls.

Required

GET_LINE_PARMS 35h Gets current status of the line. Required

DIAL_DIGITS 36h Dials digits on the network connection. Required

* These requests are specific to the Communication Class.

Table 7: Notifications  Telephone Control Model*

Request Code Description Req’d/Opt

CALL_STATE_CHANGE 28h Reports a state change on a call. Required

LINE_STATE_CHANGE 29h Reports a state change on a line. Optional

* These notifications are specific to the Communication Class.

USB Class Definitions for Communication Devices

Version 1.0 16 May 8, 1998

4. Class-Specific Codes for Communication Devices
This section lists the codes for the Communication Device Class, Communication Interface Class and Data Interface
Class, including subclasses and protocols. These values are used in the bDeviceClass, bInterfaceClass,
bInterfaceSubClass, and bInterfaceProtocol fields of the standard device descriptors as defined in USB Specification,
Section 9.6.1 and 9.6.3.

4.1 Communication Device Class Code

The following table defines the Communication Device Class code:

Table 8: Communication Device Class Code

Code Class

02h Communication Device Class

4.2 Communication Interface Class Code

The following table defines the Communication Class code:

Table 9: Communication Interface Class Code

Code Class

02h Communication Interface Class

4.3 Communication Interface Class SubClass Codes

The following table defines the SubClass codes for the Communication Interface Class:

Table 10: Communication Interface Class SubClass Codes

Code SubClass

00h RESERVED

01h Direct Line Control Model

02h Abstract Control Model

03h Telephone Control Model

04h-7Fh RESERVED (future use)

80h-FEh RESERVED (vendor-specific)

USB Class Definitions for Communication Devices

Version 1.0 17 May 8, 1998

The Datapump Model, as described in Section 3.5.1.1.2, “Datapump Model,” is not listed in Communication Class
SubClass codes, because a device of that type will use a Direct Line Control Model for POTS line control and a
vendor-specific interface.

4.4 Communication Interface Class Control Protocol Codes

A communication control protocol is used by the USB host to control communication functions in the device or on the
network. This specification defines code values for certain standard control protocols. It also reserves codes for
additional standard or vendor-specific control protocols.

Table 11: Communication Interface Class Control Protocol Codes

Protocol
code

Reference
document

Description

00h USB Specification RESERVED

01h V.25ter Common AT commands (also known as
“Hayes™ compatible”)

02h-FEh RESERVED (future use)

FFh USB Specification RESERVED (vendor-specific)

4.5 Data Interface Class Codes

The following table defines the Data Interface Class code:

Table 12: Data Interface Class Code

Code Class

0Ah Data Interface Class

This specification does not address the format of the data transferred over the data interface; it is expected that this
interface will be implemented via the asynchronous or synchronous data modes, over bulk or isochronous pipes,
respectively. This specification places no other requirements on the Interface descriptor.

USB Class Definitions for Communication Devices

Version 1.0 18 May 8, 1998

5. Descriptors

5.1 Standard USB Descriptor Definitions

This section defines requirements for the standard USB descriptors for the Communication Device Class,
Communication Interface Class and Data Interface Class.

5.1.1 Device Descriptor

Communication device functionality resides at the interface level, with the exception being the definition of the
Communication Device Class code. The device code is used solely to identify the device as a communication device
and as such, multiple interfaces might be used to form USB functions. This is important to the host for configuration
of the drivers to properly enumerate the device. All communication devices will have at least one Communication
Class interface that will function as the device master interface. The following tables define the values to properly
build a device descriptor and the accompanying interface descriptors.

Table 13: Communication Device Class Descriptor Requirements

Offset Field Size Value Description

4 bDeviceClass 1 02h Communication Device Class code as defined
in Table 8.

5 bDeviceSubClass 1 00h Communication Device Subclass code,
unused at this time.

6 bDeviceProtocol 1 00h Communication Device Protocol code, unused
at this time.

5.1.2 Configuration Descriptor

The Communication Device Class uses the standard configuration descriptor defined in Section 9.6.2,
“Configuration” of the USB Specification.

5.1.3 Interface Descriptors

The Communication Interface Class uses the standard Interface descriptor as defined in Section 9.6.3, “Interface” of
the USB Specification. The fields defined in the following table shall be used as specified. The use of the remaining
fields of the Communication Interface Class descriptor remains unchanged.

USB Class Definitions for Communication Devices

Version 1.0 19 May 8, 1998

Table 14: Communication Class Interface Descriptor Requirements

Offset Field Size Value Description

5 bInterfaceClass 1 Class Communication Interface Class code, as
defined in Table 9.

6 bInterfaceSubClass 1 SubClass Communication Interface Class SubClass
code, as defined in Table 10.

7 bInterfaceProtocol 1 Protocol Communication Interface Class Protocol code,
which applies to the subclass, as specified in
the previous field, is defined in Table 11.

The Data Interface Class also uses the standard Interface descriptor as defined in Section 9.6.3, “Interface” of the
USB Specification. The fields defined in the following table shall be used as specified. The use of the remaining
fields of the Data Interface Class descriptor remains unchanged.

Table 15: Data Class Interface Descriptor Requirements

Offset Field Size Value Description

5 bInterfaceClass 1 Class Data Interface Class code, as defined in Table
12.

6 bInterfaceSubClass 1 00h Data Interface Class SubClass code, unused
at this time.

7 bInterfaceProtocol 1 00h Data Interface Class Protocol code, unused at
this time.

5.1.4 Endpoint Descriptors

The Communication Interface Class and Data Interface Class use the standard Endpoint descriptor, as defined in
Section 9.6.4, “Endpoint” of the USB Specification.

5.2 Class-Specific Descriptors

This section describes class-specific descriptors for the Communication Interface Class and Data Interface Class. A
class-specific descriptor exists only at the Interface level. Each class-specific descriptor is defined as a concatenation
of all of the functional descriptors for the Interface. The first functional descriptor returned by the device for the
interface shall be a header functional descriptor.

5.2.1 Functional Descriptors

Functional descriptors describe the content of the class-specific information within an Interface descriptor. Functional
descriptors all start with a common header descriptor, which allows host software to easily parse the contents of
class-specific descriptors. Each class-specific descriptor consists of one or more functional descriptors.

USB Class Definitions for Communication Devices

Version 1.0 20 May 8, 1998

Table 16: Functional Descriptor General Format

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this descriptor, in bytes (n).

1 bDescriptorType 1 Constant CS_INTERFACE, as defined in Table 17.

2 bDescriptorSubtype 1 Constant Identifier (ID) of functional descriptor. For a
list of the supported values, see Table 18.

3 to n-1 (function specific data) n-3 Misc. These fields will vary depending on the
functional descriptor being represented.

The bDescriptorType values are the same ones defined in the USB Device Class Definition for Audio Devices
Specification. They were derived by using the DEVICE, CONFIGURATION, STRING, INTERFACE, and
ENDPOINT constants defined in the USB Specification in Table 9-4 and by setting the class-specific bit defined
within the Common Class Specification to generate corresponding class-specific constants.

Table 17: Type Values for the bDescriptor Field

Descriptor type Value

CS_INTERFACE 24h

CS_ENDPOINT 25h

USB Class Definitions for Communication Devices

Version 1.0 21 May 8, 1998

Table 18: bDescriptor SubType in Functional Descriptors

Descriptor
subtype

Comm IF
descriptor

Data IF
descriptor

Functional description

00h Yes Yes Header functional descriptor,
which marks the beginning of
the concatenated set of
functional descriptors for the
interface.

01h Yes No Call Management functional
descriptor.

02h Yes No Abstract Control Management
functional descriptor.

03h Yes No Direct Line Management
functional descriptor.

04h Yes No Telephone Ringer functional
descriptor.

05h Yes No Telephone Call and Line State
Reporting Capabilities
functional descriptor.

06h Yes No Union functional descriptor

07h Yes No Country Selection functional
descriptor

08h-FFh N/A N/A RESERVED (future use)

5.2.1.1 Header Functional Descriptor

The class-specific descriptor shall start with a header that is defined in Table 16. The bcdCDC field identifies the
release of the USB Class Definitions for Communication Devices Specification (this specification) with which this
interface and its descriptors comply.

Table 19: Class-Specific Descriptor Header Format

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this descriptor in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant Header functional descriptor subtype as
defined in Table 18.

3 bcdCDC 2 Number USB Class Definitions for Communication
Devices Specification release number in
binary-coded decimal.

USB Class Definitions for Communication Devices

Version 1.0 22 May 8, 1998

5.2.1.2 Call Management Functional Descriptor

The Call Management functional descriptor describes the processing of calls for the Communication Class interface.
It can only occur within the class-specific portion of an Interface descriptor.

Table 20: Call Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Call Management functional descriptor
subtype, as defined in Table 18.

3 bmCapabilities 1 Bitmap The capabilities that this configuration
supports:

D7..D2: RESERVED (Reset to zero)

D1: 0 - Device sends/receives call
management information only
over the Communication Class
interface.
1 - Device can send/receive call
management information over a
Data Class interface.

D0: 0 - Device does not handle call
management itself.
1 - Device handles call
management itself.

The previous bits, in combination, identify
which call management scenario is used. If
bit D0 is reset to 0, then the value of bit D1
is ignored. In this case, bit D1 is reset to zero
for future compatibility.

4 bDataInterface 1 Number Interface number of Data Class interface
optionally used for call management. *

* Zero based index of the interface in this configuration.(bInterfaceNum)

5.2.1.3 Abstract Control Management Functional Descriptor

The Abstract Control Management functional descriptor describes the commands supported by the Communication
Class interface, as defined in Section 3.5.1.2, with the SubClass code of Abstract Control. It can only occur within
the class-specific portion of an Interface descriptor.

USB Class Definitions for Communication Devices

Version 1.0 23 May 8, 1998

Table 21: Abstract Control Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Abstract Control Management functional
descriptor subtype as defined in Table 18.

3 bmCapabilities 1 Bitmap The capabilities that this configuration
supports. (A bit value of zero means that the
request is not supported.)

D7..D4: RESERVED (Reset to zero)

D3: 1 - Device supports the
notification Network_
Connection.

D2: 1 - Device supports the request
Send_Break

D1: 1 - Device supports the request
combination of
Set_Line_Coding,
Set_Control_Line_
State, Get_Line_Coding, and the
notification Serial_State.

D0: 1 - Device supports the request
combination of
Set_Comm_Feature,
Clear_Comm_Feature, and
Get_Comm_Feature.

The previous bits, in combination, identify
which requests/notifications are supported by
a Communication Class interface with the
SubClass code of Abstract Control Model.

5.2.1.4 Direct Line Management Functional Descriptor

The Direct Line Management functional descriptor describes the commands supported by the Communication Class
interface, as defined in Section 3.5.1.1, with the SubClass code of Direct Line. It can only occur within the class-
specific portion of an Interface descriptor.

USB Class Definitions for Communication Devices

Version 1.0 24 May 8, 1998

Table 22: Direct Line Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Direct Line Management functional
descriptor subtype, as defined in Table 18.

3 bmCapabilities 1 Bitmap The capabilities that this configuration
supports. (A value of zero means that the
request or notification is not supported.)

D7..D3: RESERVED (Reset to zero)

D2: 1 - Device requires extra
Pulse_Setup request during
pulse dialing sequence to
disengage holding circuit. (see
Section 6.2.8)

D1: 1 - Device supports the request
combination of
Set_Aux_Line_State,
Ring_Aux_Jack, and notification
Aux_Jack_Hook_State.

D0: 1 - Device supports the request
combination of Pulse_Setup,
Send_Pulse, and
Set_Pulse_Time.

The previous bits, in combination, identify
which requests/notifications are supported by
a Communication Class interface with the
SubClass code of DL Control Modem.

5.2.1.5 Telephone Ringer Functional Descriptor

The Telephone Ringer functional descriptor describes the ringer capabilities supported by the Communication Class
interface, as defined in Section 3.5.2.1, with the SubClass code of Telephone Control. It can only occur within the
class-specific portion of an Interface descriptor.

For a multiple line phone device, where separate Communication Class interfaces would exist for each line supported
by the phone, typically one interface would be designated via a Union functional descriptor to be the controlling
interface for the device. If only one ringer existed for all the lines, the Telephone Ringer Functional descriptor would
only be needed for the descriptor of this controlling interface.

USB Class Definitions for Communication Devices

Version 1.0 25 May 8, 1998

Table 23: Telephone Ringer Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Telephone Ringer functional descriptor
subtype as defined in Table 18.

3 bRingerVolSteps 1 Number Number of discrete steps in volume
supported by the ringer, values are:
 0: 256 discrete volume steps.
 1: 1 discrete volume step (i.e., fixed
 volume).
 2: 2 discrete volume steps (i.e., 0 and
 255).
 3: 3 discrete volume steps.

4 bNumRingerPatterns 1 Number Number of ringer patterns supported, values
of 1 to 255 with a value of 0 being reserved
for future use.

5.2.1.6 Telephone Operational Modes Functional Descriptor

The Telephone Operational Modes functional descriptor describes the operational modes supported by the
Communication Class interface, as defined in Section 3.5.2.1, with the SubClass code of Telephone Control. It can
only occur within the class-specific portion of an Interface descriptor. The modes supported are Simple, Standalone,
and Computer Centric. See Section 6.2.18, “SetOperationParms” for a definition of the various operational modes
and Table 37 for the definition of the operational mode values.

For a multiple line phone device, where separate Communication Class interfaces would exist for each line supported
by the phone, typically one interface would be designated via a Union functional descriptor to be the controlling
interface for the device. In this case, the Telephone Operational Modes descriptor would only be needed for the
descriptor of this controlling interface.

USB Class Definitions for Communication Devices

Version 1.0 26 May 8, 1998

Table 24: Telephone Operational Modes Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Telephone Operational Modes functional
descriptor subtype as defined in Table 18.

3 bmCapabilities 1 Bitmap This configuration supports the following
operational modes:

D7..D3: RESERVED (Reset to zero)

D2: 0 - Does not support Computer
Centric mode.
1 - Supports Computer Centric
mode.

D1: 0 - Does not support Standalone
mode.
1 - Supports Standalone mode.

D0: 0 - Does not support Simple
mode.
1 - Supports Simple mode.

5.2.1.7 Telephone Call and Line State Reporting Capabilities Descriptor

The Telephone Call and Line State Reporting Capabilities functional descriptor describes the abilities of a telephone
device to report optional call and line states. All telephone devices, as a minimum, shall be capable of reporting the
following call states:

• Idle

• Dialtone

• Dialing

• Connected

• Ringing

• Answered

Call state reports that are optional and will be described by this descriptor are states such as:

• Interrupted dialtone

• Ringback

• Busy

• Fast busy (also known as equipment busy or reorder tone)

• Caller ID

• Distinctive ringing decoding

USB Class Definitions for Communication Devices

Version 1.0 27 May 8, 1998

Line state reports are optional and will be described by this descriptor.

The Telephone Call State Reporting Capabilities functional descriptor can exist in the class-specific portion of a
Communication Class interface, as defined in Section 3.5.2.1, with the SubClass code of Telephone Control. For a
multiple line phone device, where separate Communication Class interfaces would exist for the each line supported
by the phone, typically one interface would be designated via a Union functional descriptor, to be the controlling
interface for the device. In this case, the Telephone Call State Reporting Capabilities Functional descriptor would
only be needed for the descriptor of this controlling interface, if each of the Communication Class interfaces
supported the same call state reporting capabilities.

USB Class Definitions for Communication Devices

Version 1.0 28 May 8, 1998

Table 25: Telephone Call State Reporting Capabilities Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Telephone Call State Reporting Capabilities
descriptor subtype, as defined in Table 18.

3 bmCapabilities 4 Bitmap Call and line state reporting capabilities of the
device when the following bits are set:

D31-D6: RESERVED (Reset to zero)

D5: 0 – Does not support line state
change notification.
1 – Does support line state change
notification.

D4: 0 – Cannot report dual tone multi-
frequency (DTMF) digits input
remotely over the telephone line.
1 – Can report DTMF digits input
remotely over the telephone line.

D3: 0 – Reports only incoming
ringing.
1 – Reports incoming distinctive
ringing patterns.

D2: 0 – Does not report caller ID.
1 – Reports caller ID information.

D1: 0 – Reports only dialing state.
1 – Reports ringback, busy, and
fast busy states.

D0: 0 – Reports only dialtone (does
not differentiate between normal
and interrupted dialtone).
1 – Reports interrupted dialtone
in addition to normal dialtone.

USB Class Definitions for Communication Devices

Version 1.0 29 May 8, 1998

5.2.1.8 Union Functional Descriptor

The Union functional descriptor describes the relationship between a group of interfaces that can be considered to
form a functional unit. It can only occur within the class-specific portion of an Interface descriptor. One of the
interfaces in the group is designated as a master or controlling interface for the group, and certain class-specific
messages can be sent to this interface to act upon the group as a whole. Similarly, notifications for the entire group
can be sent from this interface but apply to the entire group of interfaces. Interfaces in this group can include
Communication, Data, or any other valid USB interface class (including, but not limited to, Audio, HID, and
Monitor).

Table 26: Union Interface Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union functional descriptor SubType as
defined in Table 18.

3 bMasterInterface 1 Constant The interface number of the Communication
or Data Class interface, designated as the
master or controlling interface for the
union.*

4 bSlaveInterface0 1 Number Interface number of first slave or associated
interface in the union. *

N+3 bSlaveInterfaceN-1 1 Number Interface number of N-1 slave or associated
interface in the union. *

* Zero based index of the interface in this configuration.(bInterfaceNum)

5.2.1.9 Country Selection Functional Descriptor

The Country Selection functional descriptor identifies the countries in which the communication device is qualified to
operate. The parameters of the network connection often vary from one country to another, especially in Europe. Also
legal requirements impose certain restrictions on devices because of different regulations by the governing body of
the network to which the device must adhere. This descriptor can only occur within the class-specific portion of an
Interface descriptor and should only be provided to a master Communication Class interface of a union. The country
codes used in the Country Selection Functional Descriptor are not the same as the country codes used in dialing
international telephone calls. Implementers should refer to the ISO 3166 specification for more information.

USB Class Definitions for Communication Devices

Version 1.0 30 May 8, 1998

Table 27: Country Selection Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Country Selection functional descriptor
Subtype as defined in Table 18.

3 iCountryCodeRelDate 1 Index Index of a string giving the release date for
the implemented ISO 3166 Country Codes.

Date shall be presented as ddmmyyyy
with dd=day, mm=month, and yyyy=year.

4 wCountryCode0 2 Number Country code in hexadecimal format as
defined in ISO 3166, release date as
specified in offset 3 for the first supported
country.

2N+2 wCountryCodeN-1 2 Number Country code in hexadecimal format as
defined in ISO 3166, release date as
specified in offset 3 for Nth country
supported.

5.3 Class-Specific Device Descriptor

This descriptor contains information applying to the entire communication device. The Communication Device Class
does not currently use any class-specific descriptor information at the Device level.

5.3.1 Class-Specific Configuration Descriptor

The Communication Device Class currently does not use any class-specific descriptor information at the
Configuration level.

5.3.2 Class-Specific Interface Descriptor

The Communication Class uses a class-specific descriptor at the Interface level, which can handle one or more
functional descriptors. The Data Class does not currently use any class-specific descriptor information at the Interface
level.

USB Class Definitions for Communication Devices

Version 1.0 31 May 8, 1998

Table 28: Sample Class Specific Interface Descriptor*

Offset Field Size Value Description

0 bFunctionLength 1 05h Size of this functional descriptor, in bytes.

1 bDescriptorType 1 24h CS_INTERFACE

2 bDescriptorSubtype 1 01h Header. This is defined in Table 18, which
defines this as a header.

3 bcdCDC 2 0100h USB Class Definitions for Communication
Devices Specification release number in
binary-coded decimal.

5 bFunctionLength 1 04h Size of this functional descriptor, in bytes.

6 bDescriptorType 1 24h CS_INTERFACE

7 bDescriptorSubtype 1 02h Abstract Control Management functional
descriptor subtype as defined in Table 18.

8 bmCapabilities 1 0Fh This field contains the value 0Fh, because
the device supports all the corresponding
commands for the Abstract Control Model
interface.

* This descriptor is specific to the Communication Class.

USB Class Definitions for Communication Devices

Version 1.0 32 May 8, 1998

6. Communication Interface Class Messages

6.1 Overview

The Communication Interface Class supports the standard requests defined in Section 9.4, “Standard Device
Requests” of the USB Specification. In addition, the Communication Interface Class has some class-specific requests
and notifications. These are used for device and call management.

6.2 Management Element Requests

The Communication Interface Class supports the following class-specific requests. This section describes the requests
that are specific to the Communication Interface Class. These requests are sent over the management element and can
apply to different device views as defined by the Communication Class interface codes.

Table 29: Class-Specific Requests

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SEND_ENCAPSULATED
_COMMAND

Zero Interface
Endpoint

Amount of
data, in
bytes,
associated
with this
recipient.

Control
protocol-based
command

10100001B
10100010B

GET_ENCAPSULATED
_RESPONSE

Zero Interface
Endpoint

Amount of
data, in
bytes,
associated
with this
recipient.

Protocol-
dependent data
response

00100001B
00100010B

SET_COMM_FEATURE Feature
Selector

Interface
Endpoint

Length of
State Data

State

10100001B
10100010B

GET_COMM_FEATURE Feature
Selector

Interface
Endpoint

Length of
Status Data

Status

00100001B
00100010B

CLEAR_COMM_
FEATURE

Feature
Selector

Interface
Endpoint

Zero None

00100001B
00100010B

SET_AUX_LINE_STATE 0 –Disconnect
1 – Connect

Interface
Endpoint

Zero None

00100001B
00100010B

SET_HOOK_STATE Relay Config. Interface
Endpoint

Zero None

00100001B
00100010B

PULSE_SETUP Enable/
Disable

Interface
Endpoint

Zero None

USB Class Definitions for Communication Devices

Version 1.0 33 May 8, 1998

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SEND_PULSE Cycles Interface
Endpoint

Zero None

00100001B
00100010B

SET_PULSE_TIME Timing Interface
Endpoint

Zero None

00100001B
00100010B

RING_AUX_JACK Number of
Rings

Interface
Endpoint

Zero None

00100001B
00100010B

SET_LINE_CODING Zero Interface
Endpoint

Size of
properties

Line Coding
Structure

10100001B
10100010B

GET_LINE_CODING Zero Interface
Endpoint

Size of
Structure

Line Coding
Structure

00100001B
00100010B

SET_CONTROL_LINE
_STATE

Control
Signal
Bitmap

Interface
Endpoint

Zero None

00100001B
00100010B

SEND_BREAK Duration of
Break

Interface
Endpoint

Zero None

00100001B
00100010B

SET_RINGER_PARMS Zero Interface
Endpoint

4 Ringer
Configuration
bitmap

10100001B
10100010B

GET_RINGER_PARMS Zero Interface
Endpoint

4 Ringer
Configuration
bitmap

00100001B
00100010B

SET_OPERATION_
PARMS

Operation
Mode

Interface
Endpoint

Zero None

10100001B
10100010B

GET_OPERATION_
PARMS

Zero Interface
Endpoint

2 Operation
mode

00100001B
00100010B

SET_LINE_PARMS Lines State
Change

Interface
Endpoint

Length of
Data

None/Data

10100001B
10100010B

GET_LINE_PARMS Zero Interface
Endpoint

Size of
Structure

Line Status
Information
structure

00100001B
00100010B

DIAL_DIGITS Zero Interface
Endpoint

Length of
Dial String

Dialing string

USB Class Definitions for Communication Devices

Version 1.0 34 May 8, 1998

Table 30: Class-Specific Request Codes

Request Value

SEND_ENCAPSULATED_COMMAND
00h

GET_ENCAPSULATED_RESPONSE
01h

SET_COMM_FEATURE
02h

GET_COMM_FEATURE
03h

CLEAR_COMM_FEATURE
04h

RESERVED (future use) 05h-0Fh

SET_AUX_LINE_STATE
10h

SET_HOOK_STATE
11h

PULSE_SETUP
12h

SEND_PULSE
13h

SET_PULSE_TIME
14h

RING_AUX_JACK
15h

RESERVED (future use) 16h-1Fh

SET_LINE_CODING
20h

GET_LINE_CODING
21h

SET_CONTROL_LINE_STATE
22h

SEND_BREAK
23h

RESERVED (future use) 24h-2Fh

SET_RINGER_PARMS
30h

GET_RINGER_PARMS
31h

SET_OPERATION_PARMS
32h

GET_OPERATION_PARMS
33h

USB Class Definitions for Communication Devices

Version 1.0 35 May 8, 1998

Request Value

SET_LINE_PARMS
34h

GET_LINE_PARMS
35h

DIAL_DIGITS
36h

RESERVED (future use)
37h-FFh

6.2.1 SendEncapsulatedCommand

This request is used to issue a command in the format of the supported control protocol of the Communication Class
interface.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SEND_ENCAPSULATED
_COMMAND

Zero Interface
Endpoint

Amount of
data, in bytes,
associated
with this
recipient.

Control
protocol-based
command

6.2.2 GetEncapsulatedResponse

This request is used to request a response in the format of the supported control protocol of the Communication Class
interface.

bmRequestType bRequest wValue wIndex wLength Data

10100001B
10100010B

GET_
ENCAPSULATED_
RESPONSE

Zero Interface
Endpoint

Amount of
data, in
bytes,
associated
with this
recipient.

Protocol
dependent data

USB Class Definitions for Communication Devices

Version 1.0 36 May 8, 1998

6.2.3 SetCommFeature

This request controls the settings for a particular communication feature of a particular target.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_COMM_FEATURE Feature
Selector

Interface
Endpoint

Length of
State Data

State

For more information about the defined list of feature selectors per target, see Section 6.2.4, “GetCommFeature.”

6.2.4 GetCommFeature

This request returns the current settings for the communication feature as selected.

bmRequestType bRequest wValue wIndex wLength Data

10100001B
10100010B

GET_COMM_
FEATURE

Feature
Selector

Interface
Endpoint

Length of
Status
Data

Status

Table 31 Communication Feature Selector Codes

Feature selector Code Targets Length
of Data

Description

RESERVED 00h None None Reserved for future use

ABSTRACT_STATE 01h Interface or
Endpoint

2 Two bytes of data describing multiplexed
state and idle state for this Abstract Model
communications device. This selector is only
valid for Abstract Control Model.

COUNTRY_SETTING 02h Interface or
Endpoint

2 Country code in hexadecimal format as
defined in ISO 3166, release date as
specified in offset 3 of the Country Selection
Functional Descriptor. This selector is only
valid for devices that provide a Country
Selection Functional Descriptor, and the
value supplied shall appear as supported
country in the Country Selection Functional
Descriptor

USB Class Definitions for Communication Devices

Version 1.0 37 May 8, 1998

For the ABSTRACT_STATE selector, the following two bytes of data are defined:

Table 32 Feature Status Returned for ABSTRACT_STATE Selector

Bit position Description

D15..D2 RESERVED (Reset to zero)

D1
Data Multiplexed State

1: Enables the multiplexing of call management commands on a Data
Class.

0: Disables multiplexing.

D0
Idle Setting

1: All of the endpoints in this interface will not accept data from the
host or offer data to the host. This allows the host call management
software to synchronize the call management element with other
media stream interfaces and endpoints, particularly those associated
with a different host entity (such as a voice stream configured as a
USB Audio Class device).

0: The endpoints in this interface will continue to accept/offer data.

6.2.5 ClearCommFeature

This request controls the settings for a particular communication feature of a particular target, setting the selected
feature to its default state. The validity of the feature selectors depends upon the target type of the request.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

CLEAR_COMM_
FEATURE

Feature
Selector

Interface
Endpoint

Zero None

For more information about for the defined list of feature selectors per target, see Section 6.2.4, “GetCommFeature.”

6.2.6 SetAuxLineState

This request is used to connect or disconnect a secondary jack to POTS circuit or CODEC, depending on hook state.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_AUX_LINE_STATE 0 –Disconnect
1 - Connect

Interface
Endpoint

Zero None

USB Class Definitions for Communication Devices

Version 1.0 38 May 8, 1998

State selector values in the wValue field are used to instruct the device to connect or disconnect the secondary phone
jack from the POTS circuit or CODEC, depending on hook state. Device will acknowledge the status change.

6.2.7 SetHookState

This request is used to set the necessary POTS line relay code for on-hook, off-hook, and caller ID states.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_HOOK_STATE Relay
Config.

Interface
Endpoint

Zero None

The wValue will instruct the device to configure the necessary relays for going off-hook, on-hook, or into a snooping
state for receiving caller ID data.

Table 33: POTS Relay Configuration Values

Code Value

ON_HOOK 0000h

OFF_HOOK 0001h

SNOOPING 0002h

6.2.8 PulseSetup

This request is used to prepare for a pulse-dialing cycle.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

PULSE_SETUP Enable/
Disable

Interface
Endpoint

Zero None

If wValue field contains the value FFFFh, the request is being sent to disengage the holding circuit after the dialing
sequence has been completed. Any other value in the wValue field is meant to prepare the device for a pulse-dialing
cycle.

Not all devices require a PulseSetup request to disengage the holding circuit after a pulse dialing cycle. The extra
request in the dialing cycle is generally required for devices designed to be usable in multiple countries. The device
indicates whether the extra request is required or not by setting bit D2 of Direct Line Management Functional
Descriptor, in Section 5.2.1.4.

USB Class Definitions for Communication Devices

Version 1.0 39 May 8, 1998

6.2.9 SendPulse

This request is used to generate a specified number of make/break pulse cycles.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SEND_PULSE Cycles Interface
Endpoint

Zero None

The wValue field contains the number of make/break pulse cycles to generate.

6.2.10 SetPulseTime

This request sets the timing of the make and break periods for pulse dialing.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_PULSE_TIME Timing Interface
Endpoint

Zero None

The wValue field specifies the break time period in the high byte and the make time period in the low byte. The time
periods are specified in milliseconds.

6.2.11 RingAuxJack

This request is used to generate a ring signal on a secondary phone jack.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

RING_AUX_JACK Number
of Rings

Interface
Endpoint

Zero None

The wValue field contains the number of ring signals to generate on a secondary phone jack of the device.

USB Class Definitions for Communication Devices

Version 1.0 40 May 8, 1998

6.2.12 SetLineCoding

This request allows the host to specify typical asynchronous line-character formatting properties, which may be
required by some applications. This request applies to asynchronous byte stream data class interfaces and endpoints;
it also applies to data transfers both from the host to the device and from the device to the host.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_LINE_CODING Zero Interface
Endpoint

Size of
Structure

Line Coding
Structure

For the definition of valid properties, see Table 34, Section 6.2.13, “GetLineCoding.”

6.2.13 GetLineCoding

This request allows the host to find out the currently configured line coding.

bmRequestType bRequest wValue wIndex wLength Data

10100001B
10100010B

GET_LINE_CODING Zero Interface
Endpoint

Size of
Structure

Line
Coding
Structure

The line coding properties are defined in the following table:

Table 34: Line Coding Structure

Offset Field Size Value Description

0 dwDTERate 4 Number Data terminal rate, in bits per second.

4 bCharFormat 1 Number Stop bits
0 - 1 Stop bit
1 - 1.5 Stop bits
2 - 2 Stop bits

5 bParityType 1 Number Parity
0 - None
1 - Odd
2 - Even
3 - Mark
4 - Space

6 bDataBits 1 Number Data bits (5, 6, 7, 8 or 16).

USB Class Definitions for Communication Devices

Version 1.0 41 May 8, 1998

6.2.14 SetControlLineState

This request generates RS-232/V.24 style control signals.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_CONTROL_LINE
_STATE

Control Signal
Bitmap

Interface
Endpoint

Zero None

Table 35: Control Signal Bitmap Values for SetControlLineState

Bit position Description

D15..D2 RESERVED (Reset to zero)

D1 Carrier control. This signal corresponds to V.24 signal 105 and RS-232
signal RTS.

0 - Deactivate carrier
1 - Activate carrier

D0 Indicates to DCE if DTE is present or not. This signal corresponds to V.24
signal 108/2 and RS-232 signal DTR.

0 - Not Present
1 - Present

6.2.15 SendBreak

This request sends special carrier modulation that generates an RS-232 style break.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SEND_BREAK Duration
of Break

Interface
Endpoint

Zero None

The wValue field contains the length of time, in milliseconds, of the break signal. If wValue contains a value of
FFFFh, then the device will send a break until another SendBreak request is received with the wValue of 0000h.

USB Class Definitions for Communication Devices

Version 1.0 42 May 8, 1998

6.2.16 SetRingerParms

This request configures the ringer for the communication device, either on a global basis (master interface of the
union), or on a per-line basis for multiple line devices.

BmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_RINGER_PARMS Zero Interface
Endpoint

4 Ringer
Configuration
bitmap

This command is sent to the interface; the command sets up the ringer characteristics for the communication device or
for the line. The Ringer Configuration bitmap is defined in the following table:

Table 36: Ringer Configuration Bitmap Values

Bit position Description

D31 0=A ringer does not exist.
1=A ringer exists.

When using the GetRingerParms request to return the Ringer
Configuration bitmap, a value of zero for this bit means a ringer does not
exist for the addressed element (i.e. device or line).

D30..D16 RESERVED (Reset to zero)

D15..D8 Ringer Volume Setting
0 - Ringer Volume Off
255 - Maximum Ringer Volume

D7..D0 Ringer Pattern Type Selection
This corresponds to an internal ringer pattern or sound supported within the
device, which could be a distinctive ringing type pattern or a sound effect
type ring like a chirping sound, siren sound, etc.

6.2.17 GetRingerParms

This request returns the ringer capabilities of the device and the current status of the device’s ringer, including its
enabled state and current selection.

bmRequestType bRequest wValue wIndex wLength Data

10100001B
10100010B

GET_RINGER_PARMS Zero Interface
Endpoint

4 Ringer
Configuration
bitmap

USB Class Definitions for Communication Devices

Version 1.0 43 May 8, 1998

This command is typically sent to the master interface of the union. If the ringer for each line can be configured
independently, then sending the command to the interface representing a line gets the ringer information for that line.
For a description of the returned Ringer Configuration bitmap values, see Table 36.

6.2.18 SetOperationParms

Sets the operational mode for the device, between a simple mode, standalone mode and a host centric mode.
Standalone mode means no control from the host; host centric mode means all control is performed from the host.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_OPERATION_PARMS Operation
Mode

Interface
Endpoint

Zero None

The wValue field is used to specify the mode of operation to be used. Current supported modes of operation are
defined in the following table:

Table 37: Operation Mode Values

Operation
mode

Description

0 Simple Mode
Communication device operates in standalone fashion, and sends no
status information to the host and accepts only SetOperationMode
commands from host. The device is capable of independent operation..

1 Standalone Mode
Communication device operates in standalone fashion, but sends
complete status information to the host and will accept any command
from the host.

2 Host Centric Mode
Communication device is completely controlled by computer but will
not perform any communication functions without host control.

In the case of dialing on a phone device, mode 0 would correspond to operating as a typical phone, where the phone
would dial out the digits over the phone line. Mode 1 would be the same, except each of the digits dialed by the
phone would be reported to the host. In mode 2, the phone would simply report which digits were pushed on the
phone keypad to the host, and the host would be responsible for dialing the digits over the phone line.

USB Class Definitions for Communication Devices

Version 1.0 44 May 8, 1998

6.2.19 GetOperationParms

This request gets the current operational mode for the device.

bmRequestType bRequest wValue wIndex wLength Data

10100001B
10100010B

GET_OPERATION_PARMS Zero Interface
Endpoint

2 Operation
mode

The returned operation mode value describes the current operational mode of the device, as specified in Table 37.

6.2.20 SetLineParms

This request is used to change the state of the line, corresponding to the interface or master interface of a union to
which the command was sent.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

SET_LINE_PARMS Line State
Change

Interface
Endpoint

Length of
Data

Data

Some of the commands will require extra data, which will be provided in a packet transmitted during the Data phase.
Current line state change values supported are defined in the following table:

Table 38: Line State Change Value Definitions

Line State
change value

Description

0000h Drop the active call on the line.

0001h Start a new call on the line.

0002h Apply ringing to the line.

0003h Remove ringing from the line.

0004h Switch to a specific call on the line. Data is used to pass a 1-byte call
index that identifies the call.

USB Class Definitions for Communication Devices

Version 1.0 45 May 8, 1998

6.2.21 GetLineParms

This request is used to report the state of the line that corresponds to the interface or master interface of a union to
which the command was sent.

bmRequestType bRequest wValue wIndex wLength Data

10100001B
10100010B

GET_LINE_PARMS Zero Interface
Endpoint

Size of
Structure

Line Status
Information
Structure

This command is issued to the interface or master interface of a union representing a specific line. The returned Line
Status Information structure is defined in the following table:

Table 39: Line Status Information Structure

Offset Field Size Value Description

0 wLength 2 Number Size of this structure, in
bytes.

2 dwRingerBitmap 4 Bitmap Ringer Configuration bitmap
for this line. For the format
of this field, see Table 36.

6 dwLineState 4 Bitmap Defines current state of the
line.

10 dwCallState0 4 Bitmap Defines current state of first
call on the line.

6 + N*4 dwCallStateN-1 4 Bitmap Defines current state of call
N on the line.

The Line State bitmap format provided within the line status information is defined in the following table:

Table 40: Line State Bitmap

Bit position Description

D31 Active flag
 0 - No activity on the line.
 1 - Line is active (i.e. not idle).

D30..D8 RESERVED (Reset to zero)

D7..D0 Index of active call on this line.
Equals 255 if no call exists on the line.

USB Class Definitions for Communication Devices

Version 1.0 46 May 8, 1998

The Call State bitmap format provided within the line status information is defined in the following table:

Table 41: Call State Bitmap

Bit position Description

D31 Active flag
 0 - No active call.
 1 - Call is active (i.e., not idle).

D30..D16 RESERVED (Reset to zero)

D15..D8 Call state change value. (For definitions of call state change values, see
Table 47.)

D7..D0 Call state value. (For definitions of call state values, see Table 42.)

Table 42: Call State Value Definitions

Call state value Description

00h Call is idle.

01h Typical dial tone.

02h Interrupted dial tone.

03h Dialing is in progress.

04h Ringback. Call state additional data, D15..D8, contains extra
information, as defined in Table 47.

05h Connected. Call state additional data, D15..D8, contains extra
information, as defined in Table 47.

06h Incoming call. Call state additional data, D15..D8, contains extra
information, as defined in Table 47.

USB Class Definitions for Communication Devices

Version 1.0 47 May 8, 1998

6.2.22 DialDigits

This request dials the DTMF digits over the specified line.

bmRequestType bRequest wValue wIndex wLength Data

00100001B
00100010B

DIAL_ DIGITS Zero Interface
Endpoint

Length of
Dialing String

Dialing string

The data packet consists of a dialing command, with only the following characters in V.4 supported as being part of
the command:

Table 43: Characters in a Dialing Command

Characters Action

0-9 Dial the specified digit.

* # Dial the specified DTMF key.

P p Use pulse dialing for dialing all subsequent digits.

T t Use tone dialing for dialing all subsequent digits.

! Insert a hook switch flash into the dialing string.

, (Comma) Pause the dialing for a fixed period of time defined by the
device (usually 2 seconds).

; (Semicolon) Indicates that more digits will be provided later.

W w Wait for dial tone or interrupted dial tone before continuing to dial digits.

D d Hold tone on. All subsequent dialing tones are left on until hold tone off
is received.

U u Hold tone off. All held dialing tones are turned off.

USB Class Definitions for Communication Devices

Version 1.0 48 May 8, 1998

6.3 Notification Element Notifications

This section defines the Communication Interface Class notifications that the device uses to notify the host of
interface, or endpoint events.

Table 44: Class-Specific Notifications

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

NETWORK_CONNECTION 0 - Disconnect
1 - Connected

Interface
Endpoint

Zero None

10100001B
10100010B

RESPONSE_AVAILABLE Zero Interface
Endpoint

Zero None

10100001B
10100010B

AUX_JACK_HOOK_
STATE

0 – On hook
1 – Off hook

Interface
Endpoint

Zero None

10100001B
10100010B

RING_DETECT Zero Interface
Endpoint

Zero None

10100001B
10100010B

SERIAL_STATE Zero Interface
Endpoint

2 UART
State
bitmap

10100001B
10100010B

CALL_STATE_CHANGE Call Index and
Call State
Change Value

Interface
Endpoint

Length of
data

Variable-
length
structure
containing
additional
information
for call
state
change.

10100001B
10100010B

LINE_STATE_CHANGE Value Interface
Endpoint

Length of
data

Variable
length Line
State
structure.

USB Class Definitions for Communication Devices

Version 1.0 49 May 8, 1998

Table 45: Class-Specific Notification Codes

Notification Value

NETWORK_CONNECTION
00h

RESPONSE_AVAILABLE
01h

RESERVED (future use) 02h-07h

AUX_JACK_HOOK_STATE
08h

RING_DETECT
09h

RESERVED (future use) 0Ah-1Fh

SERIAL_STATE
20h

RESERVED (future use) 21h-27h

CALL_STATE_CHANGE
28h

LINE_STATE_CHANGE
29h

RESERVED (future use)
2Ah-FFh

6.3.1 NetworkConnection

This notification allows the device to notify the host about network connection status.

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

NETWORK_CONNECTION 0 - Disconnect
1 - Connected

Interface
Endpoint

Zero None

6.3.2 ResponseAvailable

This notification allows the device to notify the host that a response is available. This response can be retrieved with
a subsequent GetEncapsulatedResponse request.

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

RESPONSE_AVAILABLE Zero Interface
Endpoint

Zero None

USB Class Definitions for Communication Devices

Version 1.0 50 May 8, 1998

6.3.3 AuxJackHookState

This notification indicates the loop has changed on the auxiliary phone interface of the USB device. The secondary or
downstream device, which is connected to the auxiliary phone interface, has changed hook states.

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

AUX_JACK_
HOOK_STATE

0 – On hook
1 – Off hook

Interface
Endpoint

Zero None

On devices that provide separate control of the auxiliary or downstream phone interface, this notification provides a
means of announcing hook state changes of devices plugged into that interface. When the USB device has separate
control of this phone interface, it is helpful to know when the secondary device, which is plugged into the auxiliary
phone interface, switches between the on-hook/off-hook states.

The wValue field returns whether loop current was detected or not detected. Notification is only sent when the state
changes.

6.3.4 RingDetect

This notification indicates ring voltage on the POTS line interface of the USB device.

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

RING_DETECT Zero Interface
Endpoint

Zero None

6.3.5 SerialState

This notification sends asynchronous notification of UART status.

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

SERIAL_STATE Zero Interface
Endpoint

2 UART State
bitmap

The Data field is a bitmapped value that contains the current state of carrier detect, transmission carrier, break, ring
signal, and device overrun error. These signals are typically found on a UART and are used for communication status
reporting. A state is considered enabled if its respective bit is set to 1.

SerialState is used like a real interrupt status register. Once a notification has been sent, the device will reset and re-
evaluate the different signals. For the consistent signals like carrier detect or transmission carrier, this will mean
another notification will not be generated until there is a state change. For the irregular signals like break, the
incoming ring signal, or the overrun error state, this will reset their values to zero and again will not send another
notification until their state changes.

USB Class Definitions for Communication Devices

Version 1.0 51 May 8, 1998

Table 46: UART State Bitmap Values

Bits Field Description

D15..D7 RESERVED (future use)

D6 bOverRun Received data has been discarded due to overrun
in the device.

D5 bParity A parity error has occurred.

D4 bFraming A framing error has occurred.

D3 bRingSignal State of ring signal detection of the device.

D2 bBreak State of break detection mechanism of the device.

D1 bTxCarrier State of transmission carrier. This signal
corresponds to V.24 signal 106 and RS-232 signal
DSR.

D0 bRxCarrier State of receiver carrier detection mechanism of
device. This signal corresponds to V.24 signal 109
and RS-232 signal DCD.

6.3.6 CallStateChange

This notification identifies that a change has occurred to the state of a call on the line corresponding to the interface
or union for the line.

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

CALL_STATE_CHANGE Call index
and call
state
change
value.

Interface
Endpoint

Length of
Data

Variable length
structure
containing
additional
information for
call state change.

The high-order byte D15-D8 of the wValue field will contain the call index, and the low-order byte D7-D0 will
contain the call state change value. Not all devices may be capable of reporting all changes of the call state, which
should not cause any problems to the higher-level software. All extra data associated with a call state change (i.e.,
Caller ID data) is returned within the data field. Currently, defined call state values are listed in the following table:

USB Class Definitions for Communication Devices

Version 1.0 52 May 8, 1998

Table 47: Call State Change Value Definitions

Call state
change

Description

00h RESERVED

01h Call has become idle.

02h Dialing.

03h
Ringback, with an extra byte of data provided to describe the type of
ringback signaling

0 = normal
1 = busy
2 = fast busy
3-254 = reserved for future use
255=unknown ringback type

04h
Connected, with an extra byte of data provided to describe the type of
connection

0 = voice connection
1 = answering machine connection
1 = fax machine connection
2 = data modem connection
3-254 = reserved for future use
255 = unknown connection type

05h Incoming Call, with the following extra bytes of data (minimum of 4
extra bytes):

 Extra data byte 0 - Indicates the ringing pattern present as:
0 = ringing pattern 1 (default or normal pattern)
1 = ringing pattern 2
2 = ringing pattern 3
3 – ringing pattern 4
4-255 = reserved for future use

 Extra data byte 1 - Size of the string (next n bytes) which contains
the time (in displayable format) of the incoming call as delivered via
Caller ID. The string is not null terminated and is encoded using one
character per byte. It is not a UNICODE string. If time is not available
then a size of 0 is required as a place setter.

 Next data byte following number - Size of string (next n bytes) which
contains the phone number of calling party as delivered via Caller ID.
The string is not null terminated and is encoded using one character per
byte. It is not a UNICODE string. If no number is available then a size
of 0 is required as a place-setter.

 Next data byte following name - Size of string (next n bytes) which
contains the name of the calling party as delivered via Caller ID. The
string is not null terminated and is encoded using one character per byte.
It is not a UNICODE string. If no name is available then a size of 0 is
required as a place-setter.

USB Class Definitions for Communication Devices

Version 1.0 53 May 8, 1998

6.3.7 LineStateChange

This notification identifies that a change has occurred to the state of the line corresponding to the interface or master
interface of an union sending the notification message.

bmRequestType bNotification wValue wIndex wLength Data

10100001B
10100010B

LINE_STATE_CHANGE Value Interface
Endpoint

Length of
data

Variable length
Line State
structure.

Some line state changes may provide extra information, and this information would be provided in the attached extra
Line State data structure. Current line state change information are defined in the following table:

Table 48: Line State Change Values

Line State
change

Description

0000h Line has become idle.

0001h Line connected to hold position.

0002h Hook-switch has gone off hook online.

0003h Hook-switch has gone on hook online.

USB Class Definitions for Communication Devices

Version 1.0 54 May 8, 1998

Appendix A Communication Device Class Examples
This appendix highlights some examples of typical communication device classes. Detailed examples are provided in
separate white papers that are not a part of this specification. The latest copies of the white papers can be found at
http://www.usb.org.

A.1 Basic Telephone
A basic telephone is defined as the household/desktop type phone common to most users. This phone has a handset,
keypad, and a 2-wire connection to a local telephone company. In this example, a USB port is added for connecting
the phone to the host.

By connecting the phone to a host via the USB, the following functions can be supported:

1. Host monitoring of incoming and outgoing calls.

2. Host-originated dialing of a call.

3. Host recording and playback of voice over the phone line.

This example is not intended to define the computer telephony application features or user interface. The example
demonstrates how the USB Communication Interface Class protocol can be used to identify, control, and monitor a
telephony device.

A.2 Modem
For compatibility with legacy computer software and to facilitate the development of generic drivers, a USB modem
should conform to the ANSI/TIA-602 standard. For common extended functions, the following standards are
recommended:

• Modem identification: ITU V.25ter +G commands

• Data modems: ITU V.25ter (modulation, error control, data compression)

• Data modems: ITU V.80 In-band DCE control and synchronous data modes for asynchronous DTE

• Fax modems: ITU T.31 or T.32 +F commands (or TIA equivalents)

• Voice modems: TIA IS-101 +V commands

• General wireless modems: PCCA STD-101 +W commands (TIA 678)

• Analog cellular modems: PCCA STD-101 Annex I (TIA 678 Annex C)

• Digital cellular modems: TIA IS-707, TIA IS-135 or GSM 7.07 +C commands.

• Text phone modems: V.25ter, +MV18 commands.

For a complete list of standard modem command sets, see the ITU Supplement to V.25ter.

Note A USB modem may provide means to accommodate common functions performed on a
16550 UART. For more information, see Section 3.5.1.2.1, “Abstract Control Model Serial
Emulation.”

USB Class Definitions for Communication Devices

Version 1.0 55 May 8, 1998

Appendix B Sample Configurations

B.1 Basic Telephony Configurations
This section defines three examples of telephony configurations: a basic telephone, a telephone with keypad, and a
combination telephone with analog modem. The minimum requirement for this type of device is a configuration with
a single Communication Class interface. If you wish to support a standard telephone keypad, you would require an
additional Human Interface Device Class interface to support the keypad. The most basic audio-capable telephone is
constructed by adding an Audio interface for audio transmission and reception. A more advanced configuration could
optionally have local Audio interfaces connected to the handset and microphone/speaker, and one Data interface. In
this case, the Data interface could be the raw linear data as sampled from the network. The responsibility for
demodulation and interpretation of this data would lie within the host at the application level (i.e., processor-based
modem).

Table 49: Telephone Configurations

Example
configuration

Interface
(class code)

Reference
section

Description

Basic telephone Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Telephone with
keypad

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

HID Class HID 1.0 I/O for a keypad interface.

Audio/data
telephone

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Audio Class Audio 1.0 I/O for uncompressed audio.

Data Class 3.3.2 Demodulated modem data.

A communication device that supports audio type media streams over its interfaces can use the selected Audio
interface to indicate which voice or audio coding formats it supports (for example, IS-101 for voice modems).

B.2 Modem Configurations
This section defines three examples of modem configurations: legacy modem, DSVD modem, and multimedia
modem. The first configuration covers legacy modems for data, fax, and voice. The second configuration covers SVD
modems, such as ASVD (ITU V.61) and DSVD (ITU V.70). The third configuration covers multimedia modems that
would be used in ITU H.324 situation.

USB Class Definitions for Communication Devices

Version 1.0 56 May 8, 1998

Table 50: Example Modem Configurations

Example
configuration

Interface
(class code)

Reference
section

Description

Legacy modem Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Data Class 3.3.2 Demodulated modem data.

SVD modem Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Data Class 3.3.2 Demodulated modem data.

Audio Class Audio 1.0 I/O for uncompressed audio.

Multimedia
modem

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Data Class 3.3.2 Demodulated modem data.

Audio Class Audio 1.0 I/O for uncompressed audio.

Image Class TBD I/O for video (for example, H.263).

Most of today’s modem type devices — single-media or multimedia — contain various types of media processing
resources such as compression engines (for example, V.42bis) or audio/video CODECs. Given the projections of
increased processing power for future host systems and the availability of appropriate media transport to and from the
host (i.e., the USB), it is likely that various models of media processing will emerge that do not rely solely on the
device for these resources. In this case, where media processing resources are located arbitrarily within the system
(for example, V.42bis on the host and V.34 on the device), interface choices for media types could vary. For example,
if a device developer chose to include an MPEG2 CODEC in a device, a bi-directional isochronous interface may be
more appropriate for transport of the video stream. Conversely, if the CODEC is not in the USB device, a bi-
directional bulk interface would be more appropriate.

The processing required for some types of media streams is asymmetrical in nature. For example, MPEG2
decompression is trivial by today’s standards, although compression requires substantial processing resources. In light
of this fact, it may be appropriate to configure an interface with the appropriate asymmetry. Continuing the MPEG
example, a device that relies on host-based decompression and device-based compression would choose an interface
that consists of an isochronous endpoint for video in the host-to-device direction and a bulk endpoint for the device-
to-host direction.

An example of the bandwidth implications of device in contrast with host-based media stream processing is outlined
in the following list. USB bandwidth is expressed in bytes per millisecond (B/ms). For example, typical performance
of V.42bis is 3-4:1 on data streams, 33.6 kb/s V.34 data could unpack to 16.8 B/ms.

USB Class Definitions for Communication Devices

Version 1.0 57 May 8, 1998

Similar bandwidth issues are relevant to audio and video, but they will be handled by the video or audio interfaces
rather than Communication Class interfaces.

• G.723 voice CODEC (5.5 - 6.5 Kb/s) could be unpacked to 11 kHz audio by the modem (22 B/ms).

• H.263 compressed video is in the 2.5 B/ms range; but if H.263 is decompressed, a typical bandwidth is
approximately 96 B/ms.

