
USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 1

Universal Serial Bus

Content Security Method 4

Elliptic Curve Content Protection
Protocols

CERTICOM

USB 1.0 Release Candidate

Revision 0.9

January 31, 2000

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 2

Revision History

Revision Date Filename Author Description

0.9 1/25/2000 CSM4_v0_9 USB DWG promotion to .9

0.8a 12/23/1999 Csm4_v0_8a Added detailed USB interface descriptions.

0.8 11/1/1999 Csm4_v0_8 Promoted to .8 at 10/22/1999 USB DWG
meeting.

0.7 9/22/1999 Csm4_v0_7 Separated CSM Appendices into individual
CSM specification per Sept 1999 CSWG
meeting

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 3

Contributors

Simon Blake-Wilson Certicom

Peter de Rooij Certicom

Universal Serial Bus Class Definitions
 Copyright 1999 by Certicom Corporation

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN
THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT
THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Please send comments via electronic mail to pderooij@certicom.com

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 4

Table of Contents

Revision History .. 2

Contributors... 3

Table of Contents.. 4

List of Tables... 5

List of Figures.. 5

1 Introduction ... 6
1.1 Purpose...6
1.2 Scope ..6
1.3 Related Documents ...6
1.4 Terms and Abbreviations...7

2 USB Content Security Class Additions.. 8
2.1 Requests ...8

2.1.1 Request Format ... 8
2.1.2 Command Request PUT_CMD... 8

2.1.3 Command Request GET_RESP... 9

2.2 Content Security Interrupt IN Notification (IINS)...9
2.3 USB ECCPP Descriptors...9

2.3.1 Device Descriptor... 9
2.3.2 Configuration Descriptor... 9
2.3.3 Content Security Interface Descriptor ... 9

2.3.4 CS Channel Descriptor... 10
2.3.5 USB ECCPP Content Security Method Descriptor .. 10

2.3.6 USB ECCPP String Descriptor ... 11
2.3.7 General Descriptor Implementation Details... 11

3 Basic Elliptic Curve Content Protection Protocol... 12
3.1 Overview ...12
3.2 Stage 0: Initialization..12
3.3 Stage 1: Authentication..13

4 Enhanced Elliptic Curve Content Protection Protocol ... 14
4.1 Overview ...14
4.2 Stage 0: Initialization..15
4.3 Stage 1: Certificate Exchange and Key Derivation...15

4.3.1 Key Derivation.. 15

4.4 Stage 2: MAC Exchange ...16
4.5 Stage 3: Content Exchange ...16

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 5

List of Tables

Table 1. General Request Format... 8

Table 2. PUT_CMD Command Request ... 9

Table 3. GET_RESP Command Request ... 9

Table 4. Content Security Interface Descriptor ... 10

Table 5. CS Channel Descriptor ... 10

Table 6. USB ECCPP Content Security Method Descriptor.. 11

Table 7. USB ECCPP String Descriptor.. 11

Table 8. Parameters to Requests in Basic ECCPP, Authentication Stage.................. 13

Table 9. Parameters to Requests in Enhanced ECCPP, Certificate Exchange and Key
Derivation Stage.. 15

Table 10. Parameters to Requests in Enhanced ECCPP, MAC Exchange Stage 16

Table 11. Format of encrypted payload... 16

List of Figures

Figure 1. The Basic Elliptic Curve Content Protection Protocol.................................... 12

Figure 2. The Enhanced Elliptic Curve Content Protection Protocol 14

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 6

1 Introduction

1.1 Purpose
This paper describes the USB services, functions, and processes required for the following two Elliptic Curve
Content Protection Protocols (ECCPP) to be used with the “USB Device Class Definition for Content
Security Devices” [CS]:

1. A method known as ‘the Basic Elliptic Curve Content Protection Protocol’ which performs device
authentication using the elliptic curve digital signature algorithm (ECDSA) as specified in ANSI
X9.62 [9.62].

2. A method known as ‘the Enhanced Elliptic Curve Content Protection Protocol’ which performs
mutual host-device authentication and content encryption using the elliptic curve Diffie-Hellman
protocol.

Both these methods use elliptic curve cryptography to provide security. Elliptic curve cryptography
(ECC) is increasingly becoming the algorithm of choice for providing security in constrained
environments. ECC has recently been approved by ANSI for securing financial transactions and is also
being standardized within IEEE, ISO, NIST, and several other standards bodies.

The low computational cost of ECC, combined with minimized protocol overhead, make the methods
proposed here particularly efficient compared to other possibilities. Both the methods will require
assignment of a 128-bit GUID to enable their inclusion in the USB content protection specification.

1.2 Scope
This appendix describes the USB command structure and Content Security Interface (CSI) services
necessary to perform the mentioned Elliptic Curve Content Protection Protocols (Basic and Enhanced
ECCPP).

The Content Security Class specification allows Content Security Methods (CSM) to define additional
requests as needed. Four additional Requests are defined to transfer commands and responses between the
Host and Device. In addition, USB notification values are defined for the USB Content Security
Notification format.

1.3 Related Documents
[CS] Universal Serial Bus Device Class Definition for Content Security Devices.

[USB 1.1] Universal Serial Bus Specification Version 1.1.

[USB CCS] USB Common Class Specification Version 1.0.

[X9.62] ANSI X9.62-1999, Public Key Cryptography for the Financial Services Industry: the Elliptic
Curve Digital Signature Algorithm (ECDSA), American Bankers Association, 1999.

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 7

1.4 Terms and Abbreviations
CS Content Security

CSC Content Security Class; refers to: Universal Serial Bus Device Class Definition for Content
Security Devices [CS]

CSI Content Security Interface

CSM Content Security Method

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Standard, see ANSI X9.62.

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 8

2 USB Content Security Class Additions
The USB Device Class Definition For Content Security Devices allows Content Security Methods to
define additional services as needed. Basic and Enhanced ECCPP require two additional USB Requests to
transfer the ECCPP commands and responses. An Interrupt IN notification service is needed to allow
USB devices to initiate authentication.

2.1 Requests
The Elliptic Curve Content Protection Protocols (ECCPP) require two additional USB requests to transfer
the commands (host requests, including request data) and responses rather than defining a unique USB
request for each individual request and corresponding response.

There are two additional requests that provide for the transport of encrypted data over the control
endpoint.

This section details the structure of these requests.

2.1.1 Request Format
The General Request format ECCPP for is as follows:

Offset Field Size Value Description
0 bmRequestType 1 Bitmap Characteristics of request:

D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host

D6..5: Type
1 = Class

D4..0: Recipient
1 = Interface
2 = Endpoint

1 bRequest 1 Value USB ECCPS (CSM-4) Requests PUT_CMD, GET_RESP
2 wValue 2 Value The high byte of wValue is reserved and set to a value of 0.

The low byte is the bMethod[CSM-4] in the CS Standard
Descriptor section 2.3.4, where CSM-4 refers to the index n
corresponding to CSM-4

4 wIndex 2 Value The high byte is the Channel ID.
The low byte is the Interface number of the Content Security
Interface (CSI).

6 wLength 2 Count Byte length of the request or response frame.

Table 1. General Request Format

2.1.2 Command Request PUT_CMD
The PUT_CMD is used to transfer an ECCPP command with the corresponding parameters from the Host
to the Device.

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 9

bmRequestType bRequest wValue wIndex wLength Data
0 01 00001B PUT_CMD

(0x80)
High Byte: 00
reserved
Low Byte:
bMethod[CSM-4]

High Byte:
Channel ID
Low Byte:
CSI Interface Number

Length of
command

command
(including
parameters)

Table 2. PUT_CMD Command Request

2.1.3 Command Request GET_RESP
The GET_RESP is used to transfer ECCPP response data from the Device to the Host.

bmRequestType bRequest wValue wIndex wLength Data
1 01 00001B GET_RESP

(0x81)
High Byte: 00
reserved
Low Byte:
bMethod[CSM-4]

High Byte:
Channel ID
Low Byte:
CSI Interface Number

Length of
response

response

Table 3. GET_RESP Command Request

2.2 Content Security Interrupt IN Notification (IINS)
The USB Interrupt IN service is somewhat of a misnomer; it is implemented such that the Host
periodically polls the USB Device. This provides the Device with an opportunity to send a notification to
the Host. Recall that USB is designed so that the Host has total control over whom and when a compliant
Device may access and use the USB.

The ECCPP methods use the standard IINS format as described in [CS].

2.3 USB ECCPP Descriptors
This section describes information relevant to the instantiation and use of USB ECCPP Content Security
Class descriptors and associated USB descriptors. At the end of this section is a subsection that describes
processes and attributes that are common to the descriptor outlined in this section.

2.3.1 Device Descriptor
Fields of Note: bDeviceClass is set to zero in order to cause loading of all descriptors.

2.3.2 Configuration Descriptor
Determined and Set by Device Manufacturer.

2.3.3 Content Security Interface Descriptor
Field Value Description

bLength 0x09 Size of this descriptor, in bytes: 9
bDescriptorType 0x04 Specified by Table 9-5 of USB 1.1

bInterfaceNumber Number Number of interface. A zero-based
value identifying the index in the
array of concurrent interfaces

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 10

Field Value Description
supported by this configuration.
bAlternateSetting Number Value
used to select an alternate setting for
the interface identified in the prior
field.

bNumEndpoints Number Number of endpoints used by this
interface (excluding endpoint 0) are
CSM dependent.

bInterfaceClass Class Content Security Interface Class
codes (assigned by the USB).

bInterfaceSubClass Number 1 for Basic ECCPP, 2 for Enhanced
ECCPP.

bInterfaceProtocol 0x00 Not used. Must be set to 0.
iInterface Index SBM, Index of a string descriptor that

describes this interface.

Table 4. Content Security Interface Descriptor

2.3.4 CS Channel Descriptor
Field Value Description

bLength Number Byte length of this descriptor.
bDescriptorType 0xXX CHANNEL_DESCRIPTOR, Specified by Table A.2 of USB DCD CSC

bChannelID Number Number of the Channel, must be a zero-based value that is unique across the
device.

bmAttributes Number D7..D5: Reserved and set to zero
D4..D0: Recipient Type

0 = Not used
1 = Interface
2 = Endpoint
3..31 = Reserved

bRecipient Number Identifier of the target recipient.
If the Recipient field of bmAttributes = 1, then the value in the bRecipient field is an
interface number.

If the Recipient field of bmAttributes = 2, then the value in the bRecipient field is an
endpoint address, where:
D7..D5: Direction

0 = OUT
1 = IN

D6..D4: Reserved and set to zero
D3..D0: Endpoint number

bMethod[0] Index Index of a class-specific CSM descriptor that describes one of the Content Security
Methods offered by the device. Must be a one-based value that is unique across the
device. The value of 0 (zero) is reserved and must not be used in this field.

… …
bMethod[N] Index Index of a class-specific CSM descriptor that describes one of the Content Security

Methods offered by the device. Must be a one-based value that is unique across the
device. The value of 0 (zero) is reserved and must not be used in this field.

Table 5. CS Channel Descriptor

2.3.5 USB ECCPP Content Security Method Descriptor
Field Value Description

bLength Number Byte length of this descriptor.

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 11

bDescriptorType 0xXX CSM_DESCRIPTOR, Specified by Table A.2 of USB DCD CSC [CS]
bMethodID CSM Index of this class-specific CSM descriptor, must be a one-based value that is

unique across the device. The bMethodID value of 0 is reserved (for more
information, see the definition of the Get Channel Settings and Set Channel Settings
requests in section 6).

ICSMDescriptor Index Index of string descriptor that describes the Content Security Method.
bcdVersion 0x0010 CSM Descriptor Version in Binary-Coded Decimal (i.e., version 2.10 is 0x0210).
guidMethod → 128-bit GUID Assigned by CSC [CS, Appendix A]:

A12278E1-5572-11d3-B939-00A0C9BA4C6C

[Note PdR: the GUID does not appear in CS anymore! Who assigns them now?]

Table 6. USB ECCPP Content Security Method Descriptor

2.3.6 USB ECCPP String Descriptor
Field Value Description

bLength Number Byte length of this descriptor.

bDescriptorType 0x03 Specified by Table 9-5 of USB 1.1

bString → The value of this field is as follows and contained within the square brackets

[Elliptic Curve Content Protection Protocol Version 1.00]

Table 7. USB ECCPP String Descriptor

2.3.7 General Descriptor Implementation Details
There are several descriptor descriptions containing data that talks about an “Index of”. This Index maybe
either a byte offset from a Device specific address or it may be the natural numbers 0, 1, 2, 3, …, which
are by some Device specific method correlated to the associated object. This index may not be sequential
or the same across devices.

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 12

3 Basic Elliptic Curve Content Protection Protocol
This appendix describes a protocol which provides device authentication and can be implemented on a
low-cost USB Content Security Device. The basic authentication protocol is only rigorous enough to be
suitable for low-cost consumer devices in the typical consumer environment, but does provide after-the-
fact evidence of criminal intent.

The protocol is identified by a 128-bit GUID value that is specified in [CS].

3.1 Overview
The protocol is based on the elliptic curve digital signature algorithm (ECDSA). In short, to execute the
protocol the host sends a random challenge to the device being authenticated, and the device signs the
challenge using ECDSA and returns the signature along with its certificate to the host.

This protocol is designed to be efficient on low-cost devices. It is estimated that ~2K of ROM and ~300
bytes of RAM are required to implement the ECDSA signing performed during the protocol by the
device. Used in a slow 16-bit micro-controller device, ECDSA is approximately 4 times faster than DSA,
and the protocol takes in the order of hundreds of milliseconds to complete. Used in a slow 8-bit micro-
controller device without a multiplier, where use of DSA or RSA may be infeasible, the protocol takes in
the order of a second to complete.

The host always initiates the Basic ECCPP; either because it has determined itself that content security is
required, or because it is notified by the device that content security is required.

The basic elliptic curve content protection protocol is shown in the following diagram.

Host Device

Generate 128-bit random R R
→ Sign R using KPrivDev (the device

private key).

Validate CertTA(KPubDevice) and
verify Signature.

Signature, CertTA(KPubDevice)
←

Figure 1. The Basic Elliptic Curve Content Protection Protocol

The protocol itself consists of a device authentication stage. The protocol must be preceded by an
initialization stage which is performed during the setup of each device and host. These stages are
described in more detail in the subsequent sections.

3.2 Stage 0: Initialization
Initialization is described for informational purposes only. Its execution is outside the scope of USB.

Each device generates an ECDSA key pair consisting of a private key KPrvDevice and a public key KPubDevice

and obtains from the Trust Authority an X.509 certificate CertTA(KPubDevice) containing its public key.

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 13

Each host obtains the ECDSA public key KPubTA of the Trust Authority.

All signatures (including signatures on certificates) will be performed using ECDSA as specified in ANSI
X9.62 and IEEE P1363. Devices will use NIST’s 163-bit elliptic curve sect163k1 when they produce
signatures, and the TA will use NIST’s 283-bit elliptic curve sect283k1 when it signs certificates. (See
http://csrc.nist.gov/encryption for the NIST curves.)

3.3 Stage 1: Authentication
To authenticate a device, the host first generates a 128-bit random challenge RHost and sends it to the
device, in the parameter to the PUT_CMD request. In response to this request, the device signs the
challenge using ECDSA with its private key KPrvDevice.

The host retrieves this signature, along with the device certificate CertTA(KPubDevice) in the response, using
the GET_RESP request.

PUT_CMD 0x01, 16, R

GET_RESP 0x01, ||CertTA(KPubDevice)||, CertTA(KPubDevice), ||Signature||, Signature

Table 8. Parameters to Requests in Basic ECCPP, Authentication Stage

Finally, the host validates the device’s certificate, optionally checks that the device’s certificate has not
been revoked, and verifies the device’s signature on its challenge.

If all these checks are successful, the host completes authentication of the device and subsequently
transfers content in the clear to the device.

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 14

4 Enhanced Elliptic Curve Content Protection Protocol
This appendix describes a protocol which provides mutual host-device authentication and content
encryption.

The protocol is identified by a 128-bit GUID value that is specified in [CS].

4.1 Overview
The protocol is based on the elliptic curve Diffie-Hellman protocol (ECDH). In short, to execute the
protocol the host and device first exchange certificates and random challenges. The host and the device
may then exchange MACs computed using a MAC key derived from the Diffie-Hellman shared secret.
Finally the host and the device exchange content encrypted using encryption keys derived from the
Diffie-Hellman shared secret. If MACs are exchanged, the protocol provides explicit mutual
authentication, while if MACs are not exchanged, the protocol provides implicit mutual authentication
since only bona fide devices will be able to decrypt content.

The enhanced elliptic curve content protection protocol is shown in the following diagram. Dashed lines
in the figure indicate optional messages; optional operations are enclosed in square brackets.

Host Device

Generate 128-bit random RHost RHost, CertTA(KPubHost)
→ Generate 128-bit random RDevice

Validate CertTA(KPubDevice)

Derive shared key from Diffie-
Hellman shared secret and both
random numbers.

RDevice, CertTA(KPubDevice)
←

Validate CertTA(KPubHost).

Derive shared key from Diffie-
Hellman shared secret and both
random numbers.

[Generate forward MAC] [forward MAC]
−−−−−−−−−−−−−−−−→ [Verify forward MAC]

[Verify forward MAC]

[backward MAC]
←−−−−−−−−−−−−−−−−

[Generate backward MAC]

Exchange encrypted content ←→ Exchange encrypted content

Figure 2. The Enhanced Elliptic Curve Content Protection Protocol

The protocol itself consists of a certificate exchange stage, followed by a key derivation stage, followed
by an optional MAC exchange stage, followed by a content exchange phase. The protocol must be

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 15

preceded by an initialization stage which is performed during the setup of each device and host. These
stages are described in more detail in the subsequent sections.

4.2 Stage 0: Initialization
Initialization is described for informational purposes only. Its execution is outside the scope of USB.

Each device generates an ECDH key pair consisting of a private key KPrvDevice and a public key KPubDevice

and obtains from the Trust Authority an X.509 certificate CertTA(KPubDevice) containing its public key.

Each host generates an ECDH key pair consisting of a private key KPrvHost and a public key KPubHost and
obtains from the Trust Authority an X.509 certificate CertTA(KPubHost) containing its public key.

Each device and host obtains the ECDSA public key KPubTA of the Trust Authority.

All devices and host will use static ECDH with the cofactor Diffie-Hellman primitive as specified in
ANSI X9.63 and IEEE P1363 when they agree MAC and encryption keys. Devices and hosts will use
NIST’s 163-bit elliptic curve sect163k1 when they agree keys (see http://csrc.nist.gov/encryption for the
NIST curves). All certificates will be signed using ECDSA as specified in ANSI X9.62 and IEEE P1363.
The TA will use NIST’s 283-bit elliptic curve sect283k1 when it signs certificates.

4.3 Stage 1: Certificate Exchange and Key Derivation
During certificate exchange, the host first generates a 128-bit random challenge RHost and sends it to the
device along with its certificate CertTA(KPubHost), as the parameters to the PUT_CMD request. In response
to this request, the device validates the host’s certificate and optionally checks that the host’s certificate
has not been revoked.

Next, the host issues a GET_RESP request. This causes the device to generate a 128-bit random
challenge RDevice, and to derive keys as detailed in 0 below. The device sends the challenge RDevice to the
host along with its certificate CertTA(KPubDevice) in the response. Upon receipt of this response, the host
validates the device’s certificate and optionally checks that the device’s certificate has not been revoked.
Next, it derives keys as detailed in 0 below

PUT_CMD 0x01, 16, RHost, ||CertTA(KPubHost)||, CertTA(KPubHost)

GET_RESP 0x01, 16, RDevice, ||CertTA(KPubDevice)||, CertTA(KPubDevice)

Table 9. Parameters to Requests in Enhanced ECCPP, Certificate Exchange and Key
Derivation Stage

4.3.1 Key Derivation
At the end of certificate exchange, both the host and the device generate session keys consisting of MAC
keys Kforward0 and Kbackward0 and encryption keys Kforwardi and Kbackwardi for i between 1 and n.
These keys are derived from the Diffie-Hellman shared secret Z (which is the x-coordinate of the point
hKPrvDeviceKPubHost = hKPrvHostKPubDevice) using the hash function SHA-1 as follows:

Kforwardi = H(Z,i,0,RHost,RDevice,KPubHost,KPubDevice)

Kbackwardi = H(Z,i,1,RHost,RDevice,KPubHost,KPubDevice)

USB CSM-4 ECCPP Specification, Revision 0.9

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

January 31, 2000 16

Forward keys will be used to secure messages sent from the host to the device, and backwards keys will
be used to secure messages sent from the device to the host. The certificate exchange stage and the key
derivation phase represent an execution of the static ECDH protocol as specified in ANSI X9.63 and
IEEE P1363 by the host and the device.

4.4 Stage 2: MAC Exchange
Subsequent to key derivation, the host and device may exchange MACs as follows if they want to achieve
mutual explicit authentication (as well as mutual implicit authentication). The host first generates a MAC
on a message containing the flow number 1, RHost, RDevice, and the identities of the parties using the MAC
scheme HMAC-with-SHA-1 under the key Kforward0, and sends the MAC to the device as the parameter
to a PUT_CMD request. The device verifies if the MAC it received is valid.

Next, the host issues a GET_RESP request. This causes the device to generate a MAC on a message
containing the flow number 2, RHost, RDevice, and the identities of the parties using the MAC scheme
HMAC-with-SHA-1 under the key Kbackward0. The device returns the MAC to the host in the response.
Finally the host verifies whether the MAC it received is valid.

PUT_CMD 0x02, 20, forward MAC

GET_RESP 0x02, 20, backward MAC

Table 10. Parameters to Requests in Enhanced ECCPP, MAC Exchange Stage

4.5 Stage 3: Content Exchange
Subsequent to key derivation, the host and device are ready to exchange content. Initially the host sends
content to the device encrypted using the block cipher DES or triple DES in CBC mode under the key
Kforward1, and the device sends content to the host encrypted under the key Kback1. At any time the
host or the device may tell the other party to update the keys they are using – this causes the parties, who
were previously encrypting content using Kforwardi and Kbackwardi, to begin encrypting content using
Kforwardi+1 and Kbackwardi+1. The mechanism chosen for this is inclusion of the value of i used for the
current block of content in the header of the content. For subsequent blocks, the same or a higgher value
of i must be used (in both directions). If a value i smaller than the last value used is encountered, this is a
fatal error. This key update procedure limits the exposure of individual keys.

Byte Index Value

0 Index i of the encryption key used for content encryption

1 First byte of (encrypted) content

… …

n Last (nth) byte of (encrypted) content

Table 11. Format of encrypted payload

