
For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

CCS Feature Specification:
Logical-Devices

Revision 1.0

October 27, 1999

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 ii

Revision History
Revision Issue Date Comments

1.0 10/27/1999 1.0 Release

Contributors
Mark Williams Microsoft Corporation

John Dunn Microsoft Corporation

Steve McGowan Intel Corporation

Kenneth Ray Microsoft Corporation

Husni Roukbi Microsoft Corporation

Mats Webjörn UniAccess AB

Universal Serial Bus Common Class Feature Specification: Logical-Devices
 Copyright 1998, 1999 by USB-Implementers’ Forum

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER
INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS
SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS
GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY
FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO
NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE
SUCH RIGHTS.
All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Please send comments via electronic mail to ccscomments@usb.org

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 iii

Table of Contents

1. INTRODUCTION ... 1

1.1 PURPOSE .. 1

1.2 SCOPE .. 1

1.3 RELATED DOCUMENTS.. 1

1.4 TERMS AND ABBREVIATIONS... 2

2. MANAGEMENT OVERVIEW .. 3

3. FUNCTIONAL CHARACTERISTICS .. 5

3.1 BACKGROUND .. 5

3.2 FEATURE REQUIREMENTS.. 5

3.3 FEATURE SPECIFICATION... 6

4. OPERATIONAL MODEL.. 7

4.1 OVERVIEW ... 7

4.2 ADDRESSABILITY.. 8

4.3 LD STATE DIAGRAM ... 8

5. DESCRIPTORS... 9

5.1 PHYSICAL-DEVICE DESCRIPTORS... 9

5.1.1 Configuration Descriptor..9

5.1.2 Interface Descriptor ...11

5.1.3 CCS Version Descriptor...11

5.1.4 Logical-Device Descriptor..12

5.2 LD DESCRIPTORS ... 13

5.2.1 LD Device Descriptor ..13

5.2.2 LD Configuration Descriptor...13

5.2.3 LD Interface Descriptor ...13

5.2.4 LD Endpoint Descriptor...13

5.2.5 LD String Descriptor ...13

5.2.6 Supporting Plug and Play and Unknown or Proprietary Class Codes...13

5.2.7 Alternate Settings ..14

6. REQUESTS ... 15

6.1 SUMMARY – USES OF STANDARD REQUESTS BY A LOGICAL-DEVICE.. 15

6.2 DEVICE REQUESTS .. 17

6.2.1 GET_DESCRIPTOR Request ..17

6.2.2 GET_CONFIGURATION Request...17

6.2.3 SET_CONFIGURATION Request ...18

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 iv

7. CLASS INTERACTIONS ... 19

7.1 INTERACTION WITH THE INTERFACE POWER MANAGEMENT FEATURE ... 19

8. EXAMPLE... 20

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 1

1. Introduction

1.1 Purpose
This document describes requirements and specifications for enabling host system software to group sets of
interfaces or create one or more logical devices on a single USB device.

1.2 Scope

The information in this document:

• Allows a USB device developer to tie multiple interfaces to a single class code.

• Allows the creation of multiple Logical-Devices in a single physical device.

• Defines methods that are compatible with existing system software implementations.

• Enables host system software to create one abstract data structure for each Logical-Device when the physical
device is hot plugged into the host, and use the data structure to independently manage the Logical-Device
until the physical device is hot unplugged from the host.

1.3 Related Documents

USB Specification, Version 1.1, available at http://www.usb.org.

USB Common Class Specification, Version 1.0, available at http://www.usb.org.

CCS Feature Specification: Interface Power Management, available at http://www.usb.org.

CCS Feature Specification: Version Descriptor, available at http://www.usb.org.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 2

1.4 Terms and Abbreviations

CAPABILITY A visible function provided by one or more
interfaces, such as speakers, keypad, etc.

CCS Common Class Specification

DEVICE A physical USB device that performs one or more
functions.

DLD Dynamic Logical-Device

DYNAMIC LOGICAL-DEVICE A dynamic logical-device capability provided to a
host by a device through the use of CCS
mechanisms. Dynamic Logical-Devices can be
used to create Logical-Devices at run time. Refer
to the CCS Feature Specification: Logical Device
for more information.

COMPOSITE DEVICE A USB device that provides more than one
function to a host by the declaration of class
codes at the interface level.

FUNCTION A capability provided to a host by a device, such
as an ISDN connection, a digital microphone, or
speakers.

LOGICAL-DEVICE A logical capability provided to a host by a device
through the use of CCS mechanisms. Logical-
Devices can be used to tie multiple interfaces to a
single class code and to define multiple functions
in a single device.

LD Logical-Device

PNP Plug and Play

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 3

2. Management Overview
This section provides the background that motivated this feature, an overview of the contents of this document and
a brief summary of each of the subsequent sections. It does not establish any requirements or guidelines.

Device vendors can build multiple functions into a device. Each function is self-describing to host system software
because the device is required to provide an Interface descriptor for each interface.

In general, when host system software enumerates a USB device, it creates an abstract data structure for each
interface on a device. Host system software fills some of the elements of this abstract data structure, which
represents the interface, with information it reads from the Interface descriptor. The host maintains dynamic
information about the operational state of the device in other parts of the data structure.

A simple strategy on the part of the host would be to build and maintain one data structure for each interface on the
device. This simple strategy is shown in the following diagram, where each horizontal solid line represents an
interface in the USB device, each circle represents a data structure that represents an interface to the host, and each
dotted line represents an association between data structure and interface. The diagram shows a device with four
interfaces, and the host has associated one data structure with each interface.

However, a more flexible strategy can have advantages to both builders of system software and builders of devices.

The following diagram shows the strategy enabled by the Common Class Logical-Device feature specified in this
document. Once again, a physical device is shown with four interfaces. However, there is a one-to-one association
of data structure to interface for only two of the interfaces. The other two interfaces are associated with the same
data structure; this is a 2-to-1 mapping of device interfaces to a host data structure.

There is no need to limit the many-to-one mapping of interfaces to a data structure to the 2-to-1 mapping shown in
the example diagram. 3-to-1 mappings, 4-to-1 mappings, and so on, are possible.

Useable host system software can be built that always uses this simple strategy.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 4

Each data structure on the host can be called a “Logical-Device.” In order to carry out this scheme, the host
requires the device to report the Logical-Devices it contains, which is using the Logical-Device (LD) mechanism
described in this document.

The following sections of this specification are:

• Section 3, Functional Characteristics, describes the capabilities provided by the Logical-Device feature and
lists the benefits to both the host and the device of the feature.

• Section 4, Operational Model, defines the interactions between the device and host when using the Logical-
Device feature.

• Section 5, Descriptors, specifies the format of Logical-Device related descriptors and gives rules for the
placement of those descriptors in the list of descriptors returned by a device.

• Section 6, Requests, lists the requests the host uses when using this feature.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 5

3. Functional Characteristics
This section provides a description of each of the functional characteristics and the capabilities provided by the
Logical-Device (LD) feature, and lists the benefits to both the host and the device of the feature.

A key requirement of LD’s is backwards compatibility with existing system software. The best method of
accomplishing this is to provide an out-of-band channel that for access to LD related descriptors and services.

3.1 Background

Device drivers for USB are searched for and located based on descriptor information from the USB device. The
“keys” used in the driver search and their priorities are listed in a table in section 3.10 “Locating USB Drivers”, of
the USB Common Class Specification. Keys for this driver search are based on information from both the Device
and Interface descriptors.

A simplified description of the search method follows: In the case of USB Class drivers, the search algorithm first
examines the information in the Device descriptor to determine whether a single class driver controls the device as
a whole. If a class code of 0 is found in the Device descriptor then the search will be extended to the Interface
descriptors. Typically each class code found at the interface level is mapped to a separate device driver.

Problems arise when a single function requires the services of multiple USB classes. For instance, a
Communications Device Class (CDC) function defines class codes in two interfaces: a Data class interface for data
and a CDC class interface for control. These two interfaces are components of the same function. In order to allow
a single driver to control both interfaces of the function, the current driver search algorithm requires that a class
code be declared in the device descriptor.

A USB speaker function would declare 3 interfaces: an Audio Class [AudioStreaming Subclass] interface for data,
an Audio Class [AudioControl Subclass] interface for control, and a HID class interface for user input. The Audio
class does not declare a class code at the device level. Instead it when an Audio class interface is found the audio
class driver assumes that all remaining interfaces in the device are related to the audio function. The audio class
driver is invoked for both of the audio class interfaces and the driver must also be capable of locating the associated
HID interface and taking it over.

Both approaches exclude the possibility of additional functions existing on the device and adopt class specific
solutions to a common problem; how does a function tie together multiple interfaces.

LD’s address both of these problems and a few more. LD’s provide a standard method of tying multiple interfaces
to a single function and allowing multiple functions to reside in a single USB device. LD’s also allow a function to
declare PnP information independent of the device that contains it, thus allowing it to appear as a device in it’s
own right.

3.2 Feature Requirements

The requirements of a LD feature are:

• A USB device can self-report groupings of interfaces into LD’s.

• The host can obtain the LD information from the device.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 6

• The host can identify LD’s provided by alternate vendors.

• The new feature has a minimal impact on the Universal Serial Bus Specification.

• The LD feature is backward compatibility with USB device and interface designs that comply with the
Universal Serial Bus Specification.

3.3 Feature Specification

The defined LD feature has to following capabilities:

• Associate multiple interfaces into a single function

• Support multiple functions on a single physical device

• Functions to provide PnP enumeration information

• Allow functions to emulate physical devices to preserve existing device drivers

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 7

4. Operational Model

4.1 Overview

A USB device indicates its CCS functionality by exposing a configuration containing a single Interface descriptor
with a CCS class code, immediately followed by a CCS Version descriptor, followed by other CCS Feature specific
descriptors, and any permanent CCS related endpoints.

Figure 4. Operational Model-1: CCS Functionality Descriptors

Configuration

Interface
Class = CCS

CCS Endpoints

CCS Version

Other CCS Feature
specific descriptors

…

This is to allow current implementations of USB enumerators that look at a Class-code either at a device’s Device
or Interface descriptor to determine the CCS driver that it should bind to the interface. Using any other method to
invoke CCS functionality in a device would mean that the CCS driver could not be automatically invoked without
modifying existing enumerators. The CCS Class code, which always must be declared in an Interface descriptor,
allows the existing enumeration mechanism to support CCS functionality.

If a CCS capable device needs backward compatibility with existing non-CCS-capable hosts for some of its
interfaces then it shall expose a “legacy” 1.0-compliant configuration as its first configuration, and expose CCS
functionality on a higher numbered configuration. A CCS-capable host must during enumeration check all
configurations on a device and select the one containing CCS functionality.

The CCS Version descriptor identifies the CCS features that the device requires and their versions. For a complete
description of CCS Version descriptor refer to “CCS Feature Specification: Version Descriptor”.

A device then indicates its capability of grouping interfaces together into Logical-Devices (LD’s) by including a
CCS Logical-Device descriptor (together with all other CCS Feature specific descriptors). But it is only used to
identify the number of static and dynamic LD’s that the device supports. The CCS driver must issue
GET_DESCRIPTOR requests, overloaded with a Logical-Device ID, in order to obtain descriptors for each specific
LD. See section 0 for details.

Each LD is described using the same descriptors used to describe a standard device, that is Device, Configuration,
Interface, Endpoint and String descriptors. This way a LD contains all the PnP information the CCS driver needs
to enumerate it just as if it was a standard device. See section 0 for details. Note, CCS functionality may not be
declared in a LD.

A LD may also be dynamic, meaning that all LD´s may not be obtained initially, but at a later moment. See section
0 for details.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 8

4.2 Addressability

Logical devices are addressed by specifying a Logical-Device ID in the wIndex field of a standard request addressed
to the device. When wIndex is zero, the physical-device is the target. When wIndex is non-zero, the specified
Logical-Device is the target.

GET/SET-DESCRIPTOR requests for STRING descriptors present a special problem, because wIndex is used to
specify the string index. A device using the Logical-Device Feature must allocate string indexes across the
physical-device and all Logical-Devices without overlap.

See section 0 for a list of standard requests.

4.3 LD state diagram

The following state diagram displays the enumeration processes of static LD’s.

Configured

SetConfiguration(LD,n)

SetConfiguration(Device,n)

Not addressed

Addressed

SetConfiguration(LD,0)

Physical Detach ,
Bus reset

SetConfiguration(Device,0)

Static Logical-Device Operations

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 9

5. Descriptors
This section defines the feature-specific descriptors for the Logical-Device feature.

These descriptors enable USB device developers to describe LD’s on their physical-device to the host system
software. Host system software uses the information in the descriptors to create one abstract data structure for each
LD when the physical-device is hot plugged into the host. Host system software can then use the data structure to
independently manage the LD’s until the physical-device is hot unplugged from the host.

5.1 Physical-Device Descriptors

Physical-device descriptors are returned by a GET_DESCRIPTOR request with wIndex equal to 0.

5.1.1 Configuration Descriptor

A physical-device uses a standard USB Configuration descriptor.

If the physical-device supports remote wakeup then bmAttributes bit D5 (RemoteWakeup) is set to 1.. If any
logical-device is expected to generate a wakeup event then the physical-device must set the RemoteWakeup bit in
it's Configuration descriptor to 1.

The MaxPower field of the physical-device's configuration descriptor represents the maximum power consumption
of the physical-device from the USB, in this specific configuration, when the physical-device and all logical-
devices are fully operational.

Table 5.Descriptors-1: CCS Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant CONFIGURATION

2 wTotalLength 2 Number See Core Spec.

4 bNumInterfaces 1 Number See Core Spec.

5 bConfigurationValue 1 Number See Core Spec.

6 iConfiguration 1 Index See Core Spec.

7 bmAttributes 1 Bitmap Configuration characteristics

D7 See Core Spec.
D6 Self Powered
D5 Remote Wakeup
D4..0 See Core Spec.

A physical-device configuration that uses
power from the bus sets D6.

If the physical-device configuration or any
logical-device configurations support remote
wakeup, D5 is set to 1.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 10

Offset Field Size Value Description

8 MaxPower 1 mA Maximum power consumption of USB
physical-device from the bus in this specific
configuration when the physical-device and all
logical-devices are fully operational.
Expressed in 2 mA units (i.e., 50 = 100 mA).

See Core Spec.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 11

5.1.2 Interface Descriptor

The CCS Interface descriptor is a standard Interface descriptor with bInterfaceClass set to CCS Class code.

Table 5.Descriptors-2: CCS Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant INTERFACE Descriptor Type

2 bInterfaceNumber 1 Number See Core Spec.

3 bAlternateSetting 1 Number See Core Spec.

4 bNumEndpoints 1 Number See Core Spec.

5 bInterfaceClass 1 Class CCS Class code.

6 bInterfaceSubClass 1 SubClass Subclass code. Always 0

7 bInterfaceProtocol 1 Protocol Protocol code. Always 0

8 iInterface 1 Index See Core Spec.

5.1.3 CCS Version Descriptor

A device that employs Logical Device functionality must declare a CCS Version Descriptor. The CCS Version
descriptor will contain a Version Information Record for the CCS Logical Device feature.

The Feature ID (bFeatureID) for the LD feature is 01h.

All Feature Flags (bmFeatureFlags) are reserved and set to 0.

This document describes Revision 1.0 of the Logical-Device Feature.

See the CCS Version Descriptor Feature Specification for a detailed description of the CCS Version Descriptor.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 12

5.1.4 Logical-Device Descriptor

If LD support is indicated in the CCS Version descriptor then a single Logical-Device descriptor must follow the
CCS Version descriptor. The Logical-Device descriptor identifies the maximum number of logical-devices
supported by a physical-device. For convenience, static and dynamic logical-devices are identified in the LD
descriptor. The properties of static LDs are known at enumeration time, while the properties of dynamic LDs are
not. Refer to the CCS Feature Specification: Dynamic Logical-Devices for more information on use and operation
of dynamic LDs.

Table 5.Descriptors-3: Logical-Device Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 T.B.D LOGICAL_DEVICE Descriptor Type

2 bLogicalDeviceCount 1 Number The number of Logical-Devices supported
by the device. Logical-Device IDs start at
1 and consecutively increment to
bLogicalDeviceCount.

3 bFirstDynamicLD 1 Number This is Logical-Device ID of the first
Dynamic Logical-Device. An value of 0
indicates that no Dynamic Logical-
Devices exist.

bLogicalDeviceCount defines total number of LD’s supported by the device. This allows the system to allocate any
resources that may be required to support the LD’s at device enumeration time.

A subset of the LD’s may be dynamic, i.e the characteristics of the LD are not know at enumeration time. LD 1 to
LD bfirstDynamicLD-1 are static and can be enumerated by retrieving their device and configuration descriptors at
enumeration time. LD bfirstDynamicLD to LD bLogicalDeviceCount are dynamic and are enumerated after the
receipt of a Dynamic Logical-Device notification. For a complete description of Dynamic Logical-Devices’s refer
to “CCS Feature Specification: Dynamic Logical-Device”. If no Dynamic Logical-Devices exist bfirstDynamicLD
equals 0 and the number of static Logical-Devices is defined by bLogicalDeviceCount.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 13

5.2 LD Descriptors

The LD descriptors are returned by a GET_DESCRIPTOR request with wIndex not equal to 0. LD’s can take any
descriptors that comply with the Universal Serial Bus Specification, with restrictions listed below.

5.2.1 LD Device Descriptor

LDs use standard Device descriptors. The same rules that apply to standard device descriptor members, apply to
the LD’s device descriptor members.

5.2.2 LD Configuration Descriptor

LDs uses a standard Configuration descriptor. The same rules that apply to standard configuration descriptor
members apply to the LD’s configuration descriptor members, with the following exceptions.

For each LD bmAttributes bit D6 (SelfPower) indicates whether the LD is self powered or draws its power from the
USB power provided to the physical device.

The MaxPower field of the logical-device's configuration descriptor is set to 0. It is up to the device vendor to
ensure that the bus power consumption of all logical-devices in included in the MaxPower field of the physical-
devices Configuration descriptor..

5.2.3 LD Interface Descriptor

LDs use a standard Interface descriptor. Note that interface numbers must be allocated across the physical-device
and all LDs without overlap. When the recipient of a request is an interface the interface number, which is
contained in wIndex, must be unique to unambiguously specify the target interface.

5.2.4 LD Endpoint Descriptor

LDs use a standard Endpoint descriptor. Note that a device can support, at most, 31 endpoint addresses, where
endpoint address 0 is always the control endpoint. These endpoints must be allocated across the physical-device
and all LDs without overlap. When the recipient of a request is an endpoint the interface number, which is
contained in wIndex, must be unique to unambiguously specify the target endpoint.

5.2.5 LD String Descriptor

LDs use a standard String descriptor. Note that string indexes must be allocated across the physical-device and all
LDs without overlap.

5.2.6 Supporting Plug and Play and Unknown or Proprietary Class Codes

The physical-device Device descriptor provides vendor and product IDs and optionally, serial number information.
Logical-devices provide equivalent information, which can be used for equivalent purposes.

The vendor, product, and serial number information declared in the LD Device descriptor takes precedence over
the same information in the physical-device Device descriptor. However a zero value in the idVendor, idProduct,
iManufacturer, iProduct or iSerialNumber member of a LD Device descriptor allows the value to default back to
the respective member declared in the physical-device Device descriptor.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 14

Section 3.10 of the Universal Serial Bus Common Class Specification identifies "keys" used to locate device
drivers. In many cases the Logical-Device ID (LDID) must be included in the key to identify a unique instance of a
Logical-Device.

For instance, if all LDs have the same VID/PID, then VID+PID+LDID must be used for binding drivers, and
VID+PID+Serial+LDID is used for device instance identification. Note that if a serial numbers are supplied for
individual LDs they must be unique.

5.2.7 Alternate Settings

A LD may include alternate configurations and/or alternate interface settings.

Alternate configurations allow the characteristics of the LD to be varied after enumeration. The default setting for
a LD is always configuration zero. The SET_CONFIGURATION request, with wIndex equal to the Logical-
Device ID, is used to select a configuration for a LD or to return a LD to the default setting. The
GET_CONFIGURATION request, with wIndex equal to the Logical-Device ID, returns the current selected
configuration setting for the selected LD.

The alternate interface settings allow a LD’s interfaces and endpoints and/or their characteristics to be varied after
the LD has been configured. The semantics of alternate interfaces on LDs are identical to those for a standard
device.

The rules for declaring alternate configurations and interfaces in a LD are identical to those for a standard device.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 15

6. Requests
The Universal Serial Bus Specification defines a number of standard requests that all devices must support. This
section defines how this feature uses those standard requests, if they differ from standard implementations. This
section also defines any additional requests defined for this feature.

6.1 Summary – Uses of Standard Requests by a Logical-Device

The following table lists the standard USB requests and describes how each request is used by a LD.

In most cases if the recipient defined in bmRequestType is a device, then wIndex is overloaded to define the target
LD. A wIndex value of 0 is always used to access the device itself.

Table 6.Requests-4:LD USB Device Requests

bmRequestType bRequest wValue wIndex wLength Data

00000000B CLEAR_FEATURE Feature
Selector

Zero or
LD ID

Zero None

00000001B CLEAR_FEATURE Feature
Selector

Interface Zero None

00000010B CLEAR_FEATURE Feature
Selector

Endpoint Zero None

10000000B GET_CONFIGURATION Zero Zero or
LD ID

One Configuration
Value

10000000B GET_DESCRIPTOR Descriptor
Type (not

String) and
Descriptor

Index

Zero or
LD ID

Descriptor
Length

Descriptor

10000000B GET_DESCRIPTOR Descriptor
Type (String)

and
Descriptor

Index

Language
ID

Descriptor
Length

Descriptor

10000001B GET_INTERFACE Zero Interface One Alternate
Interface

10000000B GET_STATUS Zero Zero or
LD ID

Two Device Status

10000001B GET_STATUS Zero Interface Two Interface
Status

10000010B GET_STATUS Zero Endpoint Two Endpoint
Status

00000000B SET_ADDRESS Device
Address

Zero Zero None

00000000B SET_CONFIGURATION Configuration
Value

Zero or
LD ID

Zero None

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 16

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_DESCRIPTOR Descriptor
Type (not

string) and
Descriptor

Index

Zero or
LD ID

Descriptor
Length

Descriptor

00000000B SET_DESCRIPTOR Descriptor
Type (string)

and
Descriptor

Index

Language
ID

Descriptor
Length

Descriptor

00000000B SET_FEATURE Feature
Selector

Zero or
LD ID

Zero None

00000001B SET_FEATURE Feature
Selector

Interface Zero None

00000010B SET_FEATURE Feature
Selector

Endpoint Zero None

00000001B SET_INTERFACE Alternate
Setting

Interface Zero None

10000010B SYNCH_FRAME Zero Endpoint Two Frame Number

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 17

6.2 Device Requests

Standard requests can be sent to a specific LD recipient by placing the Logical-Device ID in the wIndex field.
There are a few exceptions to this rule and they are discussed below.

6.2.1 GET_DESCRIPTOR Request

This request returns the specified descriptor if the descriptor exists.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or
Logical-

Device ID

Descriptor
Length

Descriptor

The wIndex field determines whether the device’s or a LD’s descriptors are returned. A zero returns the device
related descriptors and a non-zero value returns the descriptors related to the selected LD.

A host can use the GET_DESCRIPTOR request to get device or configuration information from a LD in the same
way that it would retrieve the information from a physical-device. The only difference is the value of wIndex.

Since String descriptors are global for a device the syntax for obtaining them is unchanged.

6.2.2 GET_CONFIGURATION Request

This request returns the current device or LD configuration value.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_CONFIGURATION Zero Zero or
Logical-

Device ID

One Configuration
Value

The wIndex field determines whether the device’s or a LD’s configuration value is returned. A zero returns the
device configuration value, and a non-zero value returns the configuration value related to the selected LD.

For a complete description on how to get device configuration value refer to chapter 9 in the Universal Serial Bus
Specification.

A host can use the GET_CONFIGURATION request to identify the configuration value of a particular LD. A
device must respond to a valid GET_ CONFIGURATION request by returning the configuration value of the
selected LD. A returned value of 0 indicates that the LD is not configured and value of > 0 identifies the
bConfigurationValue of the selected LD’s current configuration.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 18

6.2.3 SET_CONFIGURATION Request

This request sets the device or LD configuration.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_CONFIGURATION Configuration
Value

Zero or
Logical-

Device ID

Zero None

The wIndex field determines whether the device’s or a LD’s configuration state is modified. A zero sets the device
configuration state, and a non-zero value sets the configuration state related to the selected LD.

For a complete description on how to set device configuration refer to chapter 9 in the Universal Serial Bus
Specification.

A host can use the SET_CONFIGURATION request to control the configuration state of a particular LD. A device
must respond to a valid SET_ CONFIGURATION request by modifying the state of the target LD. A configuration
value of 0 sets the LD to the Addressed state, and configuration value > 0 identifies the bConfigurationValue of the
selected LD’s configuration and sets the LD to Configured state.

A SET_CONFIGURATION(0) or a SET_CONFIGURATION(n) request to a LD before the device has received a
SET_CONFIGURATION(n) request will generate a stall.

A SET_CONFIGURATION(0) or a SET_CONFIGURATION(n) request to a device where n is different than the
device’s current configuration sets all LD’s to Addressed state.

Configuring the device does not configure any LD’s that it supports.

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 19

7. Class Interactions
A feature may choose to make extensive use of other features’ definitions to implement its capabilities. The
requirements of such interactions are described here.

7.1 Interaction with the Interface Power Management Feature

System software can power manage the individual Logical-Devices by using the Common Class Interface Power
Management feature. For the specification of the requests that are available to the host, see section 6.1 of USB
Feature Specification: Interface Power Management, Revision 1.0 .

CCS Feature Specification: Logical-Devices, Revision 1.0

For Review and Discussion Only
Draft Document Subject to Revision or Rejection
Not For Publication or General Distribution

October 27, 1999 20

8. Example
Consider a USB device that supports a single LD.

The device is enumerated just like any other USB device, the enumerator reads the Device descriptor by issuing a
GET_DESCRIPTOR (Device, 0)1.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR Descriptor Type
= Device

Descriptor Index
= 0

0 Descriptor
Length

Device
Descriptor

In the Interface descriptor returned by the following GET_DESCRIPTOR (Config, 0)1 request the enumerator finds
a CCS class code and starts up the CCS driver.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR Descriptor Type
= Configuration
Descriptor Index

= 0

0 Descriptor
Length

Device
Descriptor

The CCS driver executes another GET_DESCRIPTOR (Config, 0) 1 request to obtain the CCS Version descriptor.
In the CCS Version descriptor the CCS driver identifies the fact that the device requires LD support. The Logical-
Device descriptor which was also returned by the GET_DESCRIPTOR (Config, 0) 1 request identifies that the
device supports one LD.

To obtain the descriptors related to LD #1 the CCS driver executes a GET_DESCRIPTOR (Device, 1) 1 request to
obtain the device descriptor for the LD, and a GET_DESCRIPTOR (Configuration, 1) 1 to obtain the
Configuration, Interface and Endpoint descriptors for the LD.

Once these descriptors are retrieved the CCS driver enumerates the LD in the same way that a standard USB
device would have been enumerated.

If the Logical-Device descriptor indicated that the device supported more than one LD then the CCS enumerator
would have generated GET_DESCRIPTOR requests for each LD by incrementing the wIndex.

1 Notation: GET_DESCRIPTOR(Descriptor type, wIndex value)

