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Abstract

Transactions are gaining ground as a programmer-friendly means of ex-

pressing concurrency, as microarchitecture trends make it clear that parallel

systems are in our future. This thesis presents the design and implemen-

tation of four e�cient and powerful transaction systems: ApeX, an object-

oriented software-only system; UTM and LTM, two scalable systems using

custom processor extensions; and HyApeX, a hybrid of the software and

hardware systems, obtaining the bene�ts of both.

The software transaction system implements strong atomicity, which

ensures that transactions are protected from the in
uence of nontransac-

tional code. Previous software systems use weaker atomicity guarantees

because strong atomicity is presumed to be too expensive. In this thesis

strong atomicity is obtained with minimal slowdown for nontransactional

code. Compiler analyses can further improve the e�ciency of the mecha-

nism, which has been formally veri�ed with the Spin model-checker.

The low overhead of ApeX allows it to be pro�tably combined with a

hardware transaction system to provide fast execution of short and small

transactions, while allowing fallback to software for large or complicated

transactions. I present UTM, a hardware transactional memory system al-

lowing unbounded virtualizable transactions, and show how a hybrid system

can be obtained.

Thesis Supervisor: Martin Rinard

Title: Professor of Computer Science and Engineering
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[Parallel programming] is hard.

Teen Talk Barbie

(apocryphal)

Chapter 1

Introduction

How can we fully utilize the coming generation of parallel systems? The

primitives available to today's programmers are largely inadequate. Trans-

actions have been proposed as an alternative to the existing mechanisms

for expressing concurrency and synchronization, but current implementa-

tions of transactions are either too limited or too ine�cient for general use.

This thesis presents the design and implementation of e�cient and powerful

transaction systems to help address the challenges posed by current trends

in computing hardware.

1.1 The rising challenge of multicore systems

Processor technology is nearing its limits: even though transistor quantities

continue to grow exponentially, we are now unable to e�ectively harness

those vast quantities of transistors to create speedier single processors. The

smaller transistors yield relatively slower signal propagation times, doom-

ing attempts to create a single synchronized processor from all of those re-

sources. Instead, hardware manufacturers are providing tightly integrated

multicore systems which integrate multiple parallel processors on one chip.

The widespread adoption of parallel systems creates problems: how can

we ensure that operations occur in an appropriate order? How can we

13



CHAPTER 1. INTRODUCTION

ensure certain operations occur atomically, so that other components of

the parallel system only observe data structures in well-de�ned states?

Atomicity in shared-memory multiprocessors is conventionally provided

via mutual-exclusion locks (see, for example, [93, p. 35]). Although locks

are easy to implement using test-and-set, compare-and-swap, or load-linked/

store-conditional instructions, they introduce a host of di�culties. Protocols

to avoid deadlock when locking multiple objects often involve acquiring the

locks in a consistent linear order, making programming with locks error-

prone and introducing signi�cant time and space overheads in the resulting

code. The granularity of each lock must also be explicitly chosen, as locks

that are too �ne introduce unnecessary space and time overhead, while locks

that are too coarse sacri�ce attainable parallelism (or may even deadlock).

Every access to a shared object must hold some lock protecting that object,

regardless of whether another thread is actually attempting to access the

same object.

1.2 Advantages of transactions

Transactions are an alternative means of providing concurrency control.

A transaction can be thought of as a sequence of loads and stores performed

as part of a program which either commits or aborts. If a transaction

commits, then all of the loads and stores appear to have run atomically

with respect to other transactions. That is, the transaction's operations are

not interleaved with those of other transactions. If a transaction aborts,

then none of its stores take e�ect and the transaction may be restarted,

with some mechanism to ensure forward progress.

By structuring concurrency at a high level with transactions, human

programmers no longer need to manage the details required to ensure atom-

icity. A full mental model of the global concurrency structure must be kept

in mind when writing synchronization code, which programmers have dif-

�culty correctly maintaining. The simpler \global atomicity" guaranteed

14



1.3. UNLIMITED TRANSACTIONS

under the transactional model eliminates potential errors and simpli�es the

conceptual model of the system, making future modi�cations safer as well.

The transaction primitives presented in this thesis can exploit opti-

mistic concurrency, provide fault tolerance, and prevent delays by using

nonblocking synchronization. Although transactions can be implemented

using mutual exclusion (locks), our algorithms utilize nonblocking synchro-

nization [40, 54, 56, 65, 73] to exploit optimistic concurrency among trans-

actions. Nonblocking synchronization o�ers several advantages; from the

system builder's perspective the principle advantage is fault tolerance. In a

traditionally constructed system, a process that fails or pauses while holding

a lock within a critical region can prevent all other processes from making

progress. It is in general not possible to restore locked data structures to

a consistent state after such a failure. Nonblocking synchronization o�ers

a graceful solution, as non-progress or failure of any one thread does not

a�ect the progress or consistency of other threads or the system.

Implementing transactions using nonblocking synchronization o�ers per-

formance bene�ts as well. When mutual exclusion is used to enforce atomic-

ity, page faults, cache misses, context switches, I/O, and other unpredictable

events may result in delays to the entire system. Nonblocking synchroniza-

tion allows undelayed processes or processors to continue to make progress.

In real-time systems, the use of nonblocking synchronization can prevent

priority inversion in the system [60], although naive implementations may

result in starvation of low-priority tasks (see Section 8.2 for a discussion).

1.3 Unlimited transactions

The transactional memory abstraction [49, 50, 63, 81, 87, 89], has been

proposed as a general and 
exible way to allow programs to read and modify

disparate primary memory locations as a single operation (atomically), much

as a database transaction can atomically modify many records on disk.

15



CHAPTER 1. INTRODUCTION

Hardware transactional memory (HTM) supports atomicity through

architectural means, whereas software transactional memory (STM)

supports atomicity through languages, compilers, and libraries. I will present

both software and hardware implementations of the transaction model.

Researchers of both HTM and STM commonly express the opinion that

transactions need never touch many memory locations, and hence it is rea-

sonable to put a (small) bound on their size [49, 50].1 For HTM implementa-

tions, they conclude that a small piece of additional hardware|typically in

the form of a �xed-size content-addressable memory and supporting logic|

should su�ce. For STM implementations, some researchers argue addition-

ally that transactions occur infrequently, and hence the software overhead

would be dwarfed by the other processing done by an application. In con-

trast, this thesis supports transactions of arbitrary size and duration. Just

as most programmers need not pay any attention to the exact size and re-

placement policy of their system's cache, programmers ought not concern

themselves with limits or implementation details of their transaction system.

My goal is to make concurrent and fault-tolerant programming easier,

without incurring excessive overhead. This thesis advocates unbounded

transactions because neither programmers nor compilers can easily cope

when an architecture imposes a hard limit on transaction size. An imple-

mentation might be optimized for transactions below a certain size, but

must still operate correctly for larger transactions. The size of transactional

hardware should be an implementation parameter, like cache size or memory

size, which can vary without a�ecting the portability of binaries.

In Chapter 7 I show how a fast hardware implementation for frequent

short transactions can gracefully fail over to a software implementation de-

signed to e�ciently execute large long-lived transactions. The hybrid ap-

1For example, [49, section 5.2] states, \Our [HTM] implementation relies on the as-

sumption that transactions have short durations and small data sets"; while the STM

described in [50] has quadratic slowdown when transactions touch many objects: perfor-

mance is O((R+W)R), where R and W are the number of objects opened for reading and

writing, respectively.
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1.4. STRONG ATOMICITY

proach allows more sophisticated transaction models to be implemented,

while allowing a simpler hardware transaction mechanism to provide speed

in the common case.

1.4 Strong atomicity

Blundell, Lewis, and Martin [17] distinguish between strongly atomic

transaction systems, which protect transactions from interference from non-

transactional code, and weakly atomic transaction systems which do not

a�ord this protection. Nearly all current software transaction systems are

weakly atomic,2 however, despite the pitfalls thus opened for the unwary

programmer, because of the perceived di�culty in e�ciently implementing

the required protection.

Strong atomicity is clearly preferable, as the programmer will inevitably

overlook some nontransactional references to shared data; we wish to pre-

serve correctness in this common case. Blundell et al. point out that pro-

grams written for a weakly atomic model (to run on a current software

transaction system, say) may deadlock when run under strong atomicity

(for example, on a hardware transaction system). The transaction systems

considered in this thesis preserve the correct atomic behavior of transactions

even in the face of unsynchronized accesses from outside the transaction.

1.5 Summary of contributions

In summary, this thesis makes the following contributions:

� I provide e�cient implementations of strongly atomic transaction

primitives to enable their general use. My experiments have not

2There are some systems which use type systems to disallow nontransactional access

to objects with a \shared" type [45, 50, 84], but to my knowledge all systems which allow

(or cannot prevent) access to shared objects from nontransactional code do so unsafely

[26, 31, 44, 51, 53, 87].

17



CHAPTER 1. INTRODUCTION

shown an overhead of more than 150% in real applications, although

proper compiler support should reduce that worst case considerably.

� The transaction primitives presented in this thesis can exploit op-

timistic concurrency, provide fault tolerance, and prevent delays by

using nonblocking synchronization.

� This thesis proposes systems which can support transactions of arbi-

trary size and duration, sparing the programmer from detailed knowl-

edge of the system's implementation details.

� I present both software and hardware implementations of the trans-

action model. The software transaction system runs real programs

written in Java; I discuss the practical implementation details encoun-

tered. The hardware transaction systems require only small changes

to the processor core and cache.

� I show how a fast hardware implementation for frequent short trans-

actions can gracefully fail over to a software implementation designed

to e�ciently execute large long-lived transactions.

In Chapter 2 I provide some concurrent programming examples that

illustrate the limitations of current lock-based methodologies. I also provide

examples illustrating the uses (some novel) of a transaction system, and

conclude with a brief caution about the current limits of transactions.

In Chapter 3 I present the design of ApeX, an e�cient software-only

implementation of transactions. Software-only transactions can be imple-

mented on current hardware, and can easily accommodate many di�erent

transaction and nesting models. Software transactions excel at certain long-

lived transactions, where the overhead is small compared to the transaction

execution time. An early version of ApeX was published as [4]. I conclude

by presenting a microbenchmark that demonstrates the performance limits

of the design.
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1.5. SUMMARY OF CONTRIBUTIONS

In Chapter 4 I discuss the practical implementation of ApeX. I present

details of the compiler analyses and transformations performed, as well as

solutions to problems that arise when implementing Java. I then present

benchmark results using real applications, discuss the bene�ts and limita-

tions revealed, and describe how the limits could be overcome.

Chapter 6 explores one such limitation in depth, describing how large

arrays �t into an object-oriented transaction scheme. I present a potential

solution to the problem based on fast functional arrays.

In Chapter 7 I present LTM and UTM, hardware systems that enable

fast short transactions. The transaction model is more limited, but short

committing transactions may execute with no overhead. The additional

hardware is small and easily added to current processor and memory system

designs. This portion of the chapter is joint work with Krste Asanovi�c,

Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie, and has been

previously published as [6, 7].

At the end of the chapter, I present HyApeX, a hybrid transaction

implementation that builds on the strengths of simple hardware support

while allowing software fallback to support a robust and capable transac-

tion mechanism. Unlike the extended hardware scheme, the transaction

model is still easy to change and update; the hardware primarily supports

fast small transactions and con
ict checking in the common case. I discuss

some ways compilers can further optimize software and hybrid transaction

systems. These opportunities may not be available to pure-hardware imple-

mentations.

In Chapter 8 I discuss remaining challenges to the use of ubiquitous

transactions for synchronization, and present some ideas toward solutions.

Chapter 9 discusses related work, and my �nal chapter summarizes my

�ndings and draws conclusions.
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You have a hardware or a

software problem.

Service manual for

Gestetner 3240

Chapter 2

Transactional programming:

The good, bad, and the ugly

Before diving into the design of an e�cient transaction system, I motivate

the transactional programming model by presenting four common scenarios

that are needlessly di�cult using lock-based concurrency. I then present

four novel applications that a transactional model facilitates. To ground

the discussion in reality, I conclude by enumerating a few cases where trans-

actions may not be the best solution.

2.1 Four old things you can’t (easily) do with locks

Locks engender poor modularity and composability, an inability to deal

gracefully with asynchronous events, and fragile and complex safety pro-

tocols that are often expressed externally to their implementations. These

limitations of locks are well-known [52]. I present four common tasks which

locks make unnecessarily di�cult: making localized changes to synchro-

nization, performing atomic operations on containers, creating a thread-safe

double-ended queue, and handling asynchronous exceptions.
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Tweak performance with localized changes

Preventing deadlocks and races requires global protocols and non-local rea-

soning. It is not enough to simply specify a lock of a certain granularity

protecting certain data items; the order or circumstances in which the lock

may be acquired and released must also be speci�ed globally, in the context

of all locks in the system, in order to prevent deadlocks or unexpected races.

This requirement prevents the programmer from easily tuning the system

using localized changes: every small change must be re-veri�ed against the

protocols speci�ed in the whole-program context in order to prevent races

and/or deadlock.

Furthermore, this whole-program protocol is not typically expressed di-

rectly in code. With common programming languages, acquire/release or-

dering and guarantees must be expressed externally, often as comments in

the source code that easily drift out of sync with the implementation. For

example, in [6] we counted the comments in the Linux �lesystem layer, and

found that about 15% of these relate to locking protocols; often describing

global invariants of the program which are di�cult to verify. Many reported

kernel bugs involve races and deadlocks.

Atomically move data between thread-safe containers

Another common programming pitfall with locks is their non-composability .

For example, given two thread-safe container classes implemented with locks,

it is impossible to safely compose the get function of one with the put func-

tion of the other to create an atomic move. We must peek inside the imple-

mentation of the containers to synthesize an appropriate locking mechanism

for such an action|for example, to acquire the appropriate container, ele-

ment, or other locks on both containers|and even then, we need to resort

to some global lock ordering to guard against deadlock. Modularity must

be broken in order to synthesize the appropriate composed function, if it is

possible at all.
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In the Jade programming language, Rinard presents a partial solution

using \implicitly synchronized" objects [83, p14]. Lock acquisition for each

module is exposed in the module's API as an executable \access declara-

tion." Operation composition is accomplished by creating an access dec-

laration for the composed operation which invokes the appropriate access

declarations for the components. The runtime system orders the lock ac-

quisitions to prevent deadlock. This process su�ces for conservative mutual

exclusion, but pre-declaration makes it di�cult to express optimistic locking

protocols, where one or more locks are only rarely required.

Transactions do not su�er from the composability problem [45]. Because

transactions only specify the atomicity properties, not the locks required,

the programmer's job is made easier and implementations are free to opti-

mistically synchronize in any way that preserves atomicity.1

Create a thread-safe double-ended queue

Herlihy suggests creating a thread-safe double-ended queue using locks as

\sadistic homework" for computer science students [52]. Although double-

ended queues are a simple data structure, creating a scalable locking protocol

is a non-trivial exercise. One wants dequeue and enqueue operations to

complete concurrently when the ends of the queue are \far enough" apart,

while safely handling the interference in the small-queue case. In fact, the

solution to this assignment was a publishable result, as Michael and Scott

demonstrated in 1996 [75].

The simple \one lock" solution to the double-ended queue problem, ruled

out as unscalable in the locking case, is scalable and e�cient for nonblocking

transactions [52, 56].

1Section 2.2 presents a concrete example.
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Handle asynchronous exceptions

Properly handling asynchronous events is di�cult with locks, because it is

impossible to safely go o� to handle the event while holding an arbitrary

set of locks|and it is impossible to safely drop the locks. The solution

implemented in the Real-Time Speci�cation for Java [19] and similar systems

(see [71, section 9]) is to generally forbid asynchronous events within locked

regions, allowing the programmer to explicitly specify certain points within

the region at which execution can be interrupted, dropping all locks in order

to do so. Maintaining the correctness in the face of even explicitly declared

interruption points is still di�cult.

Transactional atomic regions handle asynchronous exceptions gracefully,

by aborting the transaction to allow an event to occur.

2.2 Four new things transactions make easy

I present four examples in this section, illustrating how transactions can

support fault tolerance and backtracking, simplify locking, and provide a

more intuitive means for specifying thread-safety properties. I �rst examine

a destructive traversal algorithm, showing how a transaction implementa-

tion can be treated as an exception-handling mechanism. I show how a

variant of this mechanism can be used to implement backtracking search.

Using a network 
ow example, I then show how the transaction mechanism

can be used to simplify the locking discipline required when synchronizing

concurrent modi�cations to multiple objects. Finally, I show an existing

race in the Java standard libraries (in the class java.lang.StringBuffer).

\Transacti�cation" of the existing class corrects this race.

Destructive traversal

Many recursive data structures can be traversed without the use of a stack by

using pointer reversal. This technique is widely used in garbage collectors,
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// destructive list traversal.
void traverse(List l) {
List last = null, t;

/* zip through the list, reversing links */
for (int i=0; i<2; i++) {

do {
if (i==0) visit(l); // visit node
t = l.next;
l.next = last;
last = l;
l = t;

} while (l!=null);
l = last;
// now do again, backwards. (restoring links)

}
}

Figure 2.1: Destructive linked-list traversal.

and was �rst demonstrated in this context by Schorr and Waite [86]. An

implementation of a pointer-reversal traversal of a simple singly-linked list

is shown in Figure 2.1.

The traverse() function traverses the list, visiting nodes in order and

then reversing the next pointer. When the end of the list is reached, the

reversed links are traversed to restore the list's original state.

Of course, I have chosen the simplest possible data structure here, but

the technique works for trees and graphs|and the reader may mentally

substitute their favorite hairy update on a complicated data structure.

In normal execution, the data structure is left complete and intact after

the operation. But imagine that an exception or fault occurs inside the

visit() method at some point during the traversal: an assertion �res, an

exception occurs, the hardware hiccups, or a thread is killed. Control may

leave the traverse() method, but the data structure is left in shambles.

What is needed is some exception-handling procedure to restore the proper

state of the list. This handler can be manually coded with Java's exist-

ing try/catch construct, but the exception-handling code must be tightly-

coupled to the traversal if it is going to undo the list mutations.
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Instead, I can provide a non-deterministic choice operator, try/else,

and write the recovery code at a higher level as:

try {
traverse(list);

} else { // try-else construct
throw new Error();

}

The try/else block appears to make a non-deterministic choice between

executing the try or the else clause, depending on whether the try would

succeed or not. This construct can be straightforwardly implemented with

a transaction around the traversal, always initially attempting the try. Ex-

ceptions or faults cause the transaction to abort; when it does so all the

heap side-e�ects of the try block disappear.

Backtracking search

Introducing an explicit fail statement allows us to use the same try/else

to facilitate backtracking search. Backtracking search is used to imple-

ment practical2 regular expressions, parsers, logic programming languages,

Scrabble-playing programs [9], and (in general) any problem with multiple

solutions or multiple solution techniques.

As a simple example, let us consider a recursive-decent parser such as

that shown in Figure 2.2. We don't know whether to apply the sum()

or difference() production until after we've parsed some common left

pre�x. We can use backtracking to attempt one rule (sum) and fail out of it

inside the eat() method, in the process undoing any data structure updates

performed on this path, and then attempt the other possible production.

Optimistic synchronization

Let's now turn our attention now to parallel codes, the more conventional

application of transaction systems. Consider a serial program for computing

2As opposed to the limited regular expressions demonstrated in theory classes which

are always neatly compiled to deterministic �nite automata [33].
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char buffer[];
int pos;

void eat(char token) {
if (buffer[pos++] != token)

fail;
}

int expr() {
try {
return sum();

} else {
return difference();

}
}

int sum() {
int a = number();
eat(ADD);
int b = number();
return a+b;

}

int difference() {
int a = number();
eat(MINUS);
int b = number();
return a-b;

}

Figure 2.2: A simple backtracking recursive-decent parser, using transac-

tional try/else/fail.
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network 
ow (see, for example, [24, Chapter 26]). The inner loop of the code

pushes 
ow across an edge by increasing the \excess 
ow" on one vertex

and decreasing it by the same amount on another vertex. One might see

the following Java code:

void pushFlow(Vertex v1, Vertex v2, double flow) {
v1.excess += flow; /* Move excess flow from v1 */
v2.excess -= flow; /* to v2. */

}

To parallelize this code, one must preclude multiple threads from modi-

fying the excess 
ow on those two vertices at the same time. Locks provide

one way to enforce this mutual exclusion:

void pushFlow(Vertex v1, Vertex v2, double f) {
Object lock1, lock2;
if (v1.id < v2.id) { /* Avoid deadlock. */
lock1 = v1; lock2 = v2;

} else {
lock1 = v2; lock2 = v1;

}
synchronized(lock1) {
synchronized(lock2) {
v1.excess += f; /* Move excess flow from v1 */
v2.excess -= f; /* to v2. */

} /* unlock lock2 */
} /* unlock lock1 */

}

This code is surprisingly complicated and slow compared to the orig-

inal. Space for each object's lock must be reserved. To avoid deadlock,

the code must acquire the locks in a consistent linear order, resulting in

an unpredictable branch in the code. In the code shown, I have required

the programmer to insert an id �eld into each vertex object to maintain a

total ordering. The time required to acquire the locks may be an order of

magnitude larger than the time to modify the excess 
ow. What's more,

all of this overhead is rarely needed! For a graph with thousands or millions

of vertices, the number of threads operating on the graph is likely to be

less than a hundred. Consequently, the chances are quite small that two

di�erent threads actually con
ict. Without the locks to implement mutual

exclusion, however, the program would occasionally fail.
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Software transactions (and some language support) allow the program-

mer to parallelize the original code using an atomic keyword to indicate

that the code block should appear to execute atomically:

void pushFlow(Vertex v1, Vertex v2, double flow) {
atomic { /* Transaction begin. */

v1.excess += flow; /* Move excess flow from v1 */
v2.excess -= flow; /* to v2. */

} /* Transaction end. */
}

This atomic region can be implemented as a transaction, and with an ap-

propriately nonblocking implementation, it will scale better, execute faster,

and use less memory than the locking version [6, 40, 44, 49, 73, 87]. From

the programmer's point of view, I have also eliminated the convoluted lock-

ing protocol which must be observed rigorously everywhere the related �elds

are accessed, if deadlock and races are to be avoided.

Further, I can implement atomic using the try/else exception-handling

mechanism I have already introduced:

for (int b=0; ; b++) {
try {

// atomic actions
} else {

backOff(b);
continue;

}
break; // success!

}

I non-deterministically choose to execute the body of the atomic block

if and only if it will be observed by all to execute atomically. The same lin-

guistic mechanism I introduced for fault tolerance and backtracking provides

atomic regions for synchronization as well.

Bug fixing

The existing monitor synchronization methodology for Java, building on

such features in progenitors such as Emerald [16, 61],3 implicitly associates

3See Section 9.4.
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an lock with each object. Data races are prevented by requiring a thread to

acquire an object's lock before touching the object's shared �elds. The lack

of races is not su�cient to prevent unanticipated parallel behavior, however.

Flanagan and Qadeer [29] demonstrated this insu�ciency with an ac-

tual bug they discovered in the Sun JDK 1.4.2 Java standard libraries.

The java.lang.StringBuffer class, which implements a mutable string

abstraction, is implemented as follows:

public final class StringBuffer ... {
private char value[];
private int count;
...
public synchronized
StringBuffer append(StringBuffer sb) {
...

A: int len = sb.length();
int newcount = count + len;
if (newcount > value.length)
expandCapacity(newcount);

// next statement may use stale len
B: sb.getChars(0, len, value, count);

count = newcount;
return this;

}
public synchronized int length() { return count; }
public synchronized void getChars(...) { ... }

}

The library documentation indicates that the methods of this class are

meant to execute atomically, and the synchronized modi�ers on the meth-

ods are meant to accomplish this.

The append() method is not atomic, however. Another thread may

change the length of the parameter sb (by adding or removing characters)

between the call to sb.length() at label A and the call to sb.getChars(...)

at label B. This non-atomicity may cause incorrect data to be appended to

the target or a StringIndexOutOfBoundException to be thrown. Although

the calls to sb.length() and sb.getChars() are individually atomic, they

do not compose to form an atomic implementation of append().

Replacing synchronized with atomic in this code gives us the seman-

tics we desire: the atomicity of nested atomic blocks is guaranteed by the
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atomicity of the outermost block, ensuring that the entire operation appears

atomic.

Both the network 
ow example and this StringBuffer example require

synchronization of updates to more than one object. Monitor synchroniza-

tion is not well-suited to this task. Atomic regions implemented with trans-

actions can be used to simplify the locking discipline required to synchro-

nize multiobject mutation and provide a more intuitive speci�cation for the

desired concurrent properties. Further, the StringBuffer example shows

that simply replacing synchronized with atomic provides a alternative se-

mantics that may in fact correct existing synchronization errors. For many

Java programs, the semantics of atomic and synchronized are identical;

see Section 8.3.

2.3 Some things we still can’t (easily) do

The transaction mechanism presented here is not a universal replacement for

all synchronization. In particular, transactions cannot replace mutual ex-

clusion required to serialize I/O, although the needed locks can certainly be

built with transactions. The challenge of integrating I/O within a transac-

tional context is discussed in Section 8.4. Large programs|the Linux kernel,

for example|have been written such that locks are never held across con-

text switches or I/O operations, however. Transactions provide a complete

solution for this limited form of synchronization.

Blocking producer-consumer queues, or other options that require a

transaction to wait upon a condition variable, may introduce complications

into a transaction system: transactions cannot immediately retry when they

fail, but instead must wait for some condition to become true. Section 4.4.4

describes some solutions to this problem, ranging from naive (keep retrying

and aborting with exponential backo� until the condition is �nally true) to

clever; the clever solutions require additional transaction machinery.
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Easy things should stay easy,

hard things should get easier,

and impossible things should get

hard.

Motto for Perl 6 developmentChapter 3

Designing a software

transaction system

In this chapter I detail the design of ApeX, a high-performance software

transaction system. I �rst present a methodology for isolating likely trans-

actions from benchmarks. I then describe the system goals, and use quan-

titative data from benchmarks to buttress the design choices. I formalize

an implementation meeting those goals in the modeling language Promela.

The correctness of this implementation can be model-checked using the Spin

tool; the details of this e�ort are in Appendix A.

After outlining the design of ApeX in this chapter, Chapter 4 discusses

its practical implementation.

3.1 Finding transactions

One of the di�culties of proposing a novel language feature is the lack of

benchmarks for its evaluation. Although there is no existing body of code

that uses transactions, there is a substantial body of code that uses Java

(locking) synchronization. This thesis utilizes the Flex compiler [3] to

substitute atomic blocks (methods) for synchronized blocks (methods) in

order to evaluate the properties Java transactions are likely to have. The
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semantics are not precisely compatible: the existing Java memory model

allows unsynchronized updates to shared �elds to be observed within a

synchronized block, while such updates are never visible to a transaction

expressed with an atomic block.1 Despite the di�erences in semantics, the

automatic substitution of atomic for synchronized does, in fact, preserve

the correctness of the benchmarks I examine here.

The initial results of this chapter explore the implications of exposing

the transaction mechanism to user-level code through a compiler. I compiled

the SPECjvm98 benchmark suite with the Flex Java compiler, modi�ed to

turn synchronized blocks and methods into transactions, in order to inves-

tigate the properties of the transactions in such \automatically converted"

code. Flex performed method cloning to distinguish methods called from

within transactions, and implemented nested locks as a single transaction

around the outermost.2 I instrumented this transformed program to pro-

duce a trace of memory references and transaction boundaries for analysis.

I found both large transactions (involving millions of cache lines) and fre-

quent transactions (up to 45 million of them). We will show that these

properties are not unusual for typical applications.

The SPECjvm98 benchmark suite represents a variety of typical Java ap-

plications that use the capabilities of the Java standard library. Although

the SPECjvm98 benchmarks are largely single-threaded, they contain syn-

chronized code within the thread-safe Java standard libraries which is trans-

formed into transactions. Because in this evaluation I am looking at trans-

action properties only, the multithreaded 227 mtrt benchmark is identical

to its serialized version, 205 raytrace. For consistency, I present only the

latter.

1The Java 5.0 revision of the Java memory model [68{70] narrows the semantic gap.

The full memory model includes details|such as volatile �elds|which I do not treat

in this work. Section 8.3 discusses the challenges involved in automatic transacti�cation,

and [41] contains a fuller discussion of the interactions between transactions and high-level

memory models.
2See Section 4.2 for more details on this transformation.
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total transactional biggest

program memory ops transactions memory ops transaction

201 compress 2,981,777,890 2,272 <0.1% 2,302

202 jess 405,153,255 4,892,829 9.1% 7,092

205 raytrace 420,005,763 4,177 1.7% 7,149,099

209 db 848,082,597 45,222,742 23.0% 498,349

213 javac 472,416,129 668 99.9% 118,041,685

222 mpegaudio 2,620,818,169 2,991 <0.1% 2,281

228 jack 187,029,744 12,017,041 34.2% 14,266

Figure 3.1: Transacti�cation of SPECjvm98 benchmark suite: resulting

transaction counts and sizes, compared to total number of memory oper-

ations (loads and stores). These numbers represent full input size runs.

IIII

IVII

205_raytrace

209_db

222_mpegaudio

201_compress

202_jess
High

Low

213_javac

Large
Size of Largest Transaction

Small

memory operations
% transactional

228_jack

Figure 3.2: Classi�cation of SPECjvm98 benchmarks into quadrants based

on transaction properties.
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Figure 3.1 shows the raw sizes and frequency of transactions in the trans-

acti�ed SPECjvm98 suite. Because the run times of the benchmarks are

roughly comparable,3 transaction count is also an indicator of transaction

rate. Figure 3.2 proposes a taxonomy for Java applications with transac-

tions, grouping the SPECjvm98 applications into quadrants based on the

number and size of the transactions that they perform. Applications in

Quads II and IV require an e�cient transaction implementation, because

they contain many transactional operations. Quads III and IV contain at

least some large transactions, which pose di�culties for currently proposed

hardware transactional memory schemes. We now examine the benchmarks

in each quadrant to determine why its program logic caused it to be classi�ed

in that quadrant.

Quad I applications perform few (up to about 2000) small transactions.

These applications include 201 compress, an implementation of gzip com-

pression, and 222 mpegaudio, an MP3 decoder. Both of these applications

perform inherently serial tasks. They perform quite well with locks, and

would likely execute with acceptable performance even with a naive software

implementation of transactions, as long as the impact on nontransactional

operations was minimal.

Quad II applications perform a large number of small transactions. The

expert system 202 jess falls in this category, as does the parser generator

228 jack and small input sizes of 209 db, a database. These benchmarks

perform at least an order of magnitude more transactions than Quad I ap-

plications, and all of the transactions are small enough to comfortably �t

the known hardware transactional memory schemes [49, etc], if one were to

be implemented.

Quad III includes 205 raytrace, a ray-tracing renderer. A small number

of transactions are performed, but they may grow large. Existing bounded

3The canonical run times used for computation of the Spec ratio range from 380 to

1175 seconds. Sorted by run time: 202 jess, 380 s; 213 javac, 425 s; 228 jack, 455 s;

227 mtrt, 460 s; 209 db, 505 s; 222 mpegaudio, 1100 s; 201 compress, 1175 s.
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hardware transactional schemes do not su�ce. The large transactions may

account for a large percentage of total memory operations, which may make

software schemes impractical.

Finally, Quad IV applications such as 209 db and the 213 javac Java

compiler application perform a large number of transactional memory op-

erations with at least a few large transactions.

The 213 javac Java compiler application and the large input size of the

209 db benchmark illustrate that some programs contain extremely large

transactions. When 213 javac is run on its full input set, it contains 4 huge

transactions, each of which contains over 118 million transactional memory

operations. Closer examination reveals that the method Javac.compile(),

which implements the entire compilation process, is marked as synchronized:

the programmer has explicitly requested that the entire compilation occur

atomically.

The large transactions in Quad III and IV may be, as in this case, a result

of overly coarse-grained locking, but my goal is to relieve the programmer

from the burden of specifying correct atomic regions of smaller granularity.

Performance may bene�t from narrowing the atomic regions, but execution

with coarse regions should be possible and not prohibitively slow.

The 209 db benchmark su�ers from a di�erent problem: at one point

the benchmark atomically scans an index vector and removes an element,

creating a potentially large transaction if the index is large. The size of this

index is correlated in these benchmarks with the input size, but it need not

be: a large input could still result in a small index, and (to some degree)

vice-versa.

A similar situation arises in the java.lang.StringBuffer code shown

in Section 2.2: a call to the synchronized sb.getChars() method means

that the size of the transaction for this method grows like the length of

the parameter sb. In other words, the transaction can be made arbitrarily

large by increasing the length of sb; or, equivalently, there is no bound on

transaction size without a bound on the size of the string sb.
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Transactional size distribution for SPECjvm98
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Figure 3.3: Distribution of transaction size in the SPECjvm98 benchmark

suite. The x-axis uses a logarithmic scale.

Any transaction system that allows the programmer free reign over spec-

ifying desired transaction and/or atomicity properties will result in some ap-

plications in each of these categories. Large transactions, for example, are

a side-e�ect of modularity: when a cross-module call occurs inside a trans-

action, the abstraction boundary prevents precise knowledge of the mem-

ory accesses implicitly included. Existing hardware transactional memory

schemes only e�ciently handle relatively short-lived and small transactions

(Quad I or II), although they are e�cient for these transactions. Object-

based transaction systems can asymptotically approach that e�ciency for

long-lived transactions; the existence of which is shown in Figure 3.3, which

plots the distribution of transaction sizes in SPECjvm98 on a semi-log scale.

These initial results indicate that real applications can be transacti�ed

with modest e�ort, yielding signi�cant gains in concurrency. In other work

[6] we have shown that a factor of 4 increase in concurrency can be obtained

by doing nothing more than converting locks to transactions. Since the
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transacti�ed applications may contain large transactions, prior proposed

hardware support for transactions is inadequate.

3.2 Design goals

In this section I brie
y describe the desired properties of the ApeX software

transaction system: strong atomicity, object-orientation, low bloat, and fast

reads. Where possible I justify these desiderata using quantitative data

obtained from analyses of the SpecJVM98 benchmarks, which I implemented

using the Flex Java compiler framework.

3.2.1 Weak vs. strong atomicity

As previously discussed in Section 1.4, strongly atomic transaction sys-

tems protect transactions from interference from nontransactional code,

while weakly atomic transaction systems do not a�ord this protection.

Consider unsynchronized code directly altering the length �eld of the String-

Buffer class, the example discussed in Section 2.2. In a weakly atomic sys-

tem, an unsynchronized decrement to the count �eld between labels A and B

in StringBuffer.append() on page 30 causes a StringIndexOutOfBound-

Exception to be thrown in the call to getChars() at label B. This exception

should never be thrown by an atomic execution of StringBuffer.append().

Current software transaction systems implement only weak atomicity

because of the assumed expense of implementing strong atomicity. The

ApeX system achieves strong atomicity without adding excessive overhead,

so that correct operation is assured even despite concurrent nontransactional

operations on locations involved in a transaction.

3.2.2 Object-oriented vs. flat TM

The ApeX transaction system, unlike most current proposals [44, 49] (in-

cluding the UTM and LTM hardware systems presented in Chapter 7), uses
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an \object-oriented" design. Much contemporary research is focused on im-

plementing a 
at (transactional) memory abstraction in software, primarily

because 
at systems side-step the large object issues presented in Chapter 6.

The object-oriented approach, however, o�ers several bene�ts:

Efficient execution of long-running transactions. As discussed brie
y

in Sections 9.2 and 9.3, 
at word-oriented transaction schemes typi-

cally require overhead proportional to the number of words read/written

in the transaction, even if these locations have been accessed before

inside the transaction. Object-oriented schemes impose a cost pro-

portional to the number of objects touched by the transaction|but

once the cost of \opening" those objects is paid, the transaction can

continue to work inde�nitely upon those objects without paying any

further penalty. Object-oriented schemes are thus seen to be more

e�cient for long-running transactions.

Preservation of optimization opportunities. Furthermore, transaction-

local objects can be identi�ed (statically or dynamically) and cre-

ation/updates to these objects can be done without any transaction

tax at all. Word oriented schemes discard the high-level information

required to implement these optimizations.

I contend that the problems with previous object-oriented schemes can be

solved while preserving the inherent bene�ts of an object-oriented approach,

and the current thesis presents one such solution.

3.2.3 Tolerable limits for object expansion

An object-oriented transaction scheme requires transaction state informa-

tion about each object. In ApeX, this information is added directly to

the objects, to eliminate indirection cost. I measured the slowdown caused

by various amounts of object \bloat" to determine reasonable bounds on

the size of this extra information. Figure 3.4 presents these results for the
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Figure 3.4: Application slowdown with increasing object bloat for the

SPECjvm98 benchmark applications.

41



CHAPTER 3. DESIGNING A SOFTWARE TRANSACTION SYSTEM

transactional transactional

program memory ops stores %

201 compress 50,029 26.2%

202 jess 36,701,037 0.6%

205 raytrace 7,294,648 23.2%

209 db 195,374,420 6.3%

213 javac 472,134,289 22.9%

222 mpegaudio 41,422 18.6%

228 jack 63,912,386 17.0%

Figure 3.5: Comparison of loads and stores inside transactions for the

SPECjvm98 benchmark suite, full input runs.

SPECjvm98 applications; I determined that two words (eight bytes) of ad-

ditional storage per object would not impact performance unreasonably.

This amount of bloat causes a geometric mean of 2% slowdown on these

benchmarks.

3.2.4 Reads vs. writes

I also measured the number and types of reads and writes for the SpecJVM98

benchmarks. Figure 3.5 shows that transactional reads typically outnum-

ber transactional writes by at least 4 to 1; in some cases reads outnumber

writes by over 100 to 1.4 It is worthwhile, therefore, to make reads more

e�cient than writes. In particular, since the 
ag-overwrite technique dis-

cussed in Section 3.2.5 requires us to allocate additional memory to store

the \real" value of the �eld, I wish to avoid this process for transactional

reads, reserving the extra allocation e�ort for transactional writes.

4The typical ratio roughly matches the 3:1 average observed in Hennessy and Patterson

[46, pp. 105, 379].
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3.2.5 The big idea: Waving FLAGs

I would like nontransactional code to execute with minimal overhead, but

transactions should still appear atomic to nontransactional code. My basic

mechanism is loosely based on the distributed shared memory implemen-

tation of Scales and Gharachorloo [85]. I pick a special \
ag" value, and

\cross-out" locations currently involved in a transaction by overwriting them

with the 
ag value. Reading or attempting to overwrite a 
agged value in-

dicates to nontransactional code that exceptional processing is necessary;

all other nontransactional operations proceed as usual. The 
agged �eld

either is currently involved in an active transaction, belongs to a committed

or aborted transaction and requires copy back, or indicates a \false 
ag", a

�eld with a true value equal to the 
ag value (see page 46).

This technique explicitly allows safe access to �elds involved in a transac-

tion from nontransactional code, which provides strong atomicity, a design

goal of the system.

3.3 Specifying the basic mechanism

I now present algorithms that have these desired properties. TheApeX algo-

rithms provide strongly-atomic object-oriented transactions with low bloat

and fast reads. Further, the ApeX algorithms are completely nonblocking,

which allows good scaling and proper fault-tolerant behavior. Speci�cally,

one faulty or slow processor cannot hold up the remaining good processors.

I implement the synchronization required by the ApeX algorithms using

load-linked/store-conditional instructions. I require a particular variant of

these instructions that allows the location of the load-linked to be di�erent

from the target of the store-conditional. This variant is supported on many

chips in the PowerPC processor family, although it has been deprecated in

version 2.02 of the PowerPC architecture standard.5 This disjoint location

5Version 2.02 of the PowerPC architecture standard says, \If a reservation exists but

the storage location speci�ed by the stwcx. is not the same as the location speci�ed
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capability is essential to allow us to keep a �nger on one location while

modifying another: a poor man's \Double Compare And Swap" instruction.

I describe the ApeX algorithms in the Promela modeling language [57],

which I used to allow mechanical model checking of the race-safety and

correctness of the design. Portions of the model have been abbreviated for

this presentation; the full Promela model is given in Appendix A, along with

a brief primer on Promela syntax and semantics.

3.3.1 Object structures

Figure 3.6 illustrates the basic data structures of the ApeX software trans-

action implementation. Objects are extended with two additional �elds.

The �rst �eld, versions, points to a singly linked list of object versions.

Each one contains �eld values corresponding to a committed, aborted, or in-

progress transaction, identi�ed by its owner �eld. There is a single unique

transaction object for each transaction.

The other added �eld, readers, points to a singly linked list of transac-

tions that have read from this object. Committed and aborted transactions

are pruned from this list. The readers �eld is used to ensure that a trans-

action does not operate with out-of-date values if the object is later written

by the Load And Reserve instruction that established the reservation. . . it is unde�ned

whether [the operand is] stored into the word in storage addressed by [the speci�ed ef-

fective address]" and states that the condition code indicating a successful store is also

unde�ned in this circumstance [58, p 25]. The user manual for the MPC7447/7457 (\G4")

PowerPC chips states, however, \The stwcx. instruction does not check the reservation

for a matching address. The stwcx. instruction is only required to determine whether

a reservation exists. The stwcx. instruction performs a store word operation only if the

reservation exists," [32, Section 3.3.3.6] which is the behavior we require. I believe version

1.10 of the PowerPC Architecture speci�cation required this behavior, although I have not

been able to locate a copy to con�rm this requirement. The Cell architecture speci�cation

follows version 2.02 of the PowerPC speci�cation, although it adds cache-line reservation

operations that can also be used to implement our algorithm for reasonably-sized objects

aligned within cache lines; see [98] for an implementation of Java I created that observes

the appropriate alignments.
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Figure 3.6: Implementing software transactions with version lists. A trans-

action object consists of a single �eld status, which indicates if it has COM-

MITTED, ABORTED, or is WAITING. Each object contains two extra

�elds: readers, a singly-linked list of transactions that have read this ob-

ject; and versions a linked list of version objects. If an object �eld is FLAG,

then the value for the �eld is obtained from the appropriate linked version

object.
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#define FLAG 202 /* special value to represent ’not here’ */

typedef Object {
byte version;
byte readerList; /* we do LL and CAS operations on this field */
pid fieldLock[NUM_FIELDS]; /* we do LL operations on fields */
byte field[NUM_FIELDS];

};
typedef Versi0n { /* ’Version’ misspelled because SPIN #define’s it. */
byte owner;
byte next;
byte field[NUM_FIELDS];

};
typedef ReaderList {
byte transid;
byte next;

};
mtype = { waiting, committed, aborted };
typedef TransID {
mtype status;

};

Figure 3.7: Declaring objects with version lists in Promela. The byte

datatype encodes pointers. The fieldLock �eld assists in the implementa-

tion of the load-linked/store-conditional pair of operations in Promela.

nontransactionally.

There is a special 
ag value, here denoted by FLAG . It should be an

uncommon value, i.e. not a small positive or negative integer constant, nor

zero. In my implementation, I have chosen the byte 0xCA to be the 
ag

value, repeated as necessary to �ll out the width of the appropriate type.

The semantic value of an object �eld is the value in the original object

structure, unless that value is FLAG , in which case the �eld's value is the

value of the �eld in the �rst committed transaction in the object's version

list. A \false 
ag" occurs when the application wishes to \really" store the

value FLAG in a �eld. To do so we create a fully-committed version attached

to the object and store FLAG in that version, as well as in the object �eld.

Figure 3.7 declares these object structures in Promela.
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3.3.2 Operations

I support transactional read/write and nontransactional read/write as well

as transaction begin, transaction abort, and transaction commit. Trans-

action begin simply involves the creation of a new transaction identi�er

object. Transaction commit and abort are simply compare-and-swap opera-

tions that atomically set the transaction object's status �eld appropriately

if and only if it was previously in the WAITING state. The simplicity of

commit and abort are appealing: the ApeX algorithm requires no compli-

cated processing, delay, roll-back or validate procedure to commit or abort

a transaction.

I could support nontransactional read and write (that is, reads and writes

that take place outside of any transaction) by creating a new short trans-

action that encloses only the single read or write. Since nontransactional

accesses to objects can be frequent, I provide more e�cient implementations

with the same semantics.

I now present the operations one-by-one.

Nontransactional read

The readNT function performs a nontransactional read of �eld f from object

o, putting the result in v. In the common case, the only overhead is to check

that the read value is not FLAG . If the value read is FLAG, however, we copy

back the �eld value from the most-recently committed transaction (aborting

all other transactions) and try again. The copy-back procedure noti�es the

caller if this is a \false 
ag", in which case the value of this �eld really is

FLAG . We pass the kill writers constant to the copy-back procedure to

indicate that only transactional writers need be aborted, not transactional

readers. All possible races are con�ned to the copy-back procedure, which

I describe on page 49.

The top of Figure 3.8 speci�es the nontransactional read operation in

Promela.
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inline readNT(o, f, v) {
do
:: v = object[o].field[f];

if
:: (v!=FLAG) -> break /* done! */
:: else
fi;
copyBackField(o, f, kill_writers, _st);
if
:: (_st==false_flag) ->

v = FLAG;
break

:: else
fi

od
}

inline writeNT(o, f, nval) {
if
:: (nval != FLAG) ->

do
:: atomic {

if /* this is a LL(readerList)/SC(field) */
:: (object[o].readerList == NIL) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = nval;
break /* success! */

:: else
fi

}
/* unsuccessful SC */
copyBackField(o, f, kill_all, _st)

od
:: else -> /* create false flag */

/* implement this as a short *transactional* write. */
/* start a new transaction, write FLAG, commit the */
/* transaction; repeat until successful. */
/* Implementation elided. */
...

fi;
}

Figure 3.8: Promela speci�cation of nontransactional read and write opera-

tions.
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Nontransactional write

The writeNT function performs a nontransactional write of new value nval

to �eld f of object o. For correctness, we must ensure that the reader

list is empty before we do the write. I implement this check with a load-

linked/store-conditional pair, which is modeled in Promela slightly di�er-

ently, ensuring that the write only succeeds so long as the reader list remains

empty.6 If it is not empty, we call the copy-back procedure (as in readNT),

passing the constant kill all to indicate that both transactional readers

and writers should be aborted during the copy-back. The copy-back proce-

dure leaves the reader list empty.

If the value to be written is actually the FLAG value, things get a little

bit trickier. This case does not occur often, and so the simplest correct

implementation is to treat this nontransactional write as a short transac-

tional write, creating a new transaction for this one write, and attempting

to commit it immediately after the write. This implementation is slow, but

adequate for this uncommon case.

The bottom of Figure 3.8 speci�es the nontransactional write operation

in Promela.

Field Copy-Back

Figures 3.9 and 3.10 present the �eld copy-back routine. We create a new

version owned by a pre-aborted transaction which serves as a reservation

on the head of the version list. We then write to the object �eld with a

load-linked/store-conditional pair if and only if our version is still at the

head of the versions list.7 This addresses the major race possible in this

routine.

6A standard CAS would not su�ce, as the load-linked targets a di�erent location than

the store-conditional.
7Again, a CAS does not su�ce.
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inline copyBackField(o, f, mode, st) {
_nonceV=NIL; _ver = NIL; _r = NIL; st = success;
/* try to abort each version. when abort fails, we’ve got a committed
* version. */
do
:: _ver = object[o].version;

if
:: (_ver==NIL) ->

st = saw_race; break /* someone’s done the copyback for us */
:: else
fi;
/* move owner to local var to avoid races
* (owner set to NIL behind our back) */

_tmp_tid=version[_ver].owner;
tryToAbort(_tmp_tid);
if
:: (_tmp_tid==NIL || transid[_tmp_tid].status==committed) ->

break /* found a committed version */
:: else
fi;
/* link out an aborted version */
assert(transid[_tmp_tid].status==aborted);
CAS_Version(object[o].version, _ver, version[_ver].next, _);

od;
/* okay, link in our nonce. this will prevent others from doing the
* copyback. */
if
:: (st==success) ->

assert (_ver!=NIL);
allocVersion(_retval, _nonceV, aborted_tid, _ver);
CAS_Version(object[o].version, _ver, _nonceV, _cas_stat);
if
:: (!_cas_stat) ->

st = saw_race_cleanup
:: else
fi

:: else
fi;
/* check that no one’s beaten us to the copy back, then kill readers. */
checkCopyAndKill(o,f,mode,st);
/* done */

}

Figure 3.9: First half of the �eld copy-back routine. The �nal steps have

been split o� into checkCopyAndKill, which is presented in Figure 3.10.
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inline checkCopyAndKill(o, f, mode, st) {
/* check that no one’s beaten us to the copy back */
if
:: (st==success) ->

if
:: (object[o].field[f]==FLAG) ->

_val = version[_ver].field[f];
if
:: (_val==FLAG) -> /* false flag... */

st = false_flag /* ...no copy back needed */
:: else -> /* not a false flag */

d_step { /* LL/SC */
if
:: (object[o].version == _nonceV) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = _val;

:: else /* hmm, fail. Must retry. */
st = saw_race_cleanup /* need to clean up nonce */

fi
}

fi
:: else /* may arrive here because of readT, which doesn’t set _val=FLAG*/

st = saw_race_cleanup /* need to clean up nonce */
fi

:: else /* !success */
fi;
/* always kill readers, whether successful or not. This ensures that we
* make progress if called from writeNT after a readNT sets readerList
* non-null without changing FLAG to _val (see immediately above; st will
* equal saw_race_cleanup in this scenario). */

if
:: (mode == kill_all) ->

killAllReaders(o, _r); /* see Appendix for details */
:: else /* no more killing needed. */
fi;
/* done */

}

Figure 3.10: Final portion of the �eld copy-back routine of Figure 3.9.
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Transactional Read

A transactional read is split into two parts. The �rst part, which occurs

before the read, is encapsulated in a routine named ensureReader. Its

primary task is to ensure that our transaction is on the reader list for the

object. This check is straightforward to do in a nonblocking manner as long

as we always add readers to the head of the list. The ensureReader routine

must also walk the versions list to abort any uncommitted transaction other

than our own. Since the ensureReader depends only on the object involved,

not the precise �eld, redundant read checks for di�erent �elds in the object

can be combined and hoisted so that ensureReader is performed once before

the �rst read from an object and not repeated.

At read time, we initially read from the original object. If the value read

is not FLAG, we use it. Otherwise, we look up the version object associated

with our transaction (our version is typically at the head of the version list)

and read the appropriate value from that version. The initial read-and-check

can be omitted if we know that we have already written to this �eld inside

this transaction.

The top of Figure 3.11 speci�es read-time portion of the transactional

read operation in Promela. The initial ensureReader portion is straightfor-

ward; it is included in Appendix A.

Transactional Write

Again, writes are split in two. Once for each object, we must traverse

the version list, aborting other versions and locating or creating a version

corresponding to our transaction. We must also traverse the reader list,

aborting all transactions on the list except ourself. This portion of the

algorithm is shown in the ensureWriter routine in Figure 3.12.

Once for each �eld we intend to write, we must perform a copy-through:

copy the object's �eld value into all the versions and then write FLAG to

the object's �eld. We use load-linked/store-conditional to update versions
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inline readT(tid, o, f, ver, result) {
do
::

/* we should always either be on the readerList or
* aborted here */
result = object[o].field[f];
if
:: (result==FLAG) ->

if
:: (ver!=NIL) ->

result = version[ver].field[f];
break /* done! */

:: else ->
findVersion(tid, o, ver);
if
:: (ver==NIL) ->/*use val from committed vers.*/

assert (_r!=NIL);
result = version[_r].field[f];/*false flag?*/
moveVersion(_r, NIL);
break /* done */

:: else /* try, try, again */
fi

fi
:: else -> break /* done! */
fi

od
}

inline writeT(ver, f, nval) {
/* easy enough: */
version[ver].field[f] = nval;

}

Figure 3.11: Promela speci�cation of transactional read and write opera-

tions.
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/* per-object, before write. */

inline ensureWriter(tid, o, ver) {

assert(tid!=NIL);

ver = NIL; _r = NIL; _rr = NIL;

do

:: assert (ver==NIL);

findVersion(tid, o, ver);

if

:: (ver!=NIL) -> break /* found a writable version for us */

:: (ver==NIL && _r==NIL) ->

/* create and link a fully-committed root version, then

* use this as our base. */

allocVersion(_retval, _r, NIL, NIL);

CAS_Version(object[o].version, NIL, _r, _cas_stat)

:: else ->

_cas_stat = true

fi;

if

:: (_cas_stat) ->

/* so far, so good. */

assert (_r!=NIL);

assert (version[_r].owner==NIL ||

transid[version[_r].owner].status==committed);

/* okay, make new version for this transaction. */

assert (ver==NIL);

allocVersion(_retval, ver, tid, _r);

/* want copy of committed version _r. No race because

* we never write to a committed versions. */

version[ver].field[0] = version[_r].field[0];

version[ver].field[1] = version[_r].field[1];

assert(NUM_FIELDS==2); /* else ought to initialize more fields */

CAS_Version(object[o].version, _r, ver, _cas_stat);

moveVersion(_r, NIL); /* free _r */

if

:: (_cas_stat) ->

/* kill all readers (except ourself) */

/* all changes have to be made from the front of the

* list, so we unlink ourself and then re-add us. */

do

:: moveReaderList(_r, object[o].readerList);

if

:: (_r==NIL) -> break

:: (_r!=NIL && readerlist[_r].transid!=tid)->

tryToAbort(readerlist[_r].transid)

:: else

fi;

/* link out this reader */

CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _)

od;

/* okay, all pre-existing readers dead & gone. */

assert(_r==NIL);

/* link us back in. */

ensureReaderList(tid, o);

break

:: else

fi;

/* try again */

:: else

fi;

/* try again from the top */

moveVersion(ver, NIL)

od;

/* done! */

assert (_r==NIL);

}

Figure 3.12: The per-object version-setup routine for transactional writes.

54



3.3. SPECIFYING THE BASIC MECHANISM

/* per-field, before write. */

inline checkWriteField(o, f) {

_r = NIL; _rr = NIL;

do

::

/* set write flag, if not already set */

_val = object[o].field[f];

if

:: (_val==FLAG) ->

break; /* done! */

:: else

fi;

/* okay, need to set write flag. */

moveVersion(_rr, object[o].version);

moveVersion(_r, _rr);

assert (_r!=NIL);

do

:: (_r==NIL) -> break /* done */

:: else ->

object[o].fieldLock[f] = _thread_id;

if

/* this next check ensures that concurrent copythroughs don’t stomp on each other’s versions,

* because the field will become FLAG before any other version will be written. */

:: (object[o].field[f]==_val) ->

if

:: (object[o].version==_rr) ->

atomic {

if

:: (object[o].fieldLock[f]==_thread_id) ->

version[_r].field[f] = _val;

:: else -> break /* abort */

fi

}

:: else -> break /* abort */

fi

:: else -> break /* abort */

fi;

moveVersion(_r, version[_r].next) /* on to next */

od;

if

:: (_r==NIL) ->

/* field has been successfully copied to all versions */

atomic {

if

:: (object[o].version==_rr) ->

assert(object[o].field[f]==_val ||

/* we can race with another copythrough and that’s okay; the locking strategy

* above ensures that we’re all writing the same values to all the versions

* and not overwriting anything. */

object[o].field[f]==FLAG);

object[o].fieldLock[f]=_thread_id;

object[o].field[f] = FLAG;

break; /* success! done! */

:: else

fi

}

:: else

fi

/* retry */

od;

/* clean up */

moveVersion(_r, NIL);

moveVersion(_rr, NIL);

}

Figure 3.13: The per-�eld copy-through routine for transactional writes.
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only if the object's �eld has not already been set to FLAG behind our backs

by another copy-through. The checkWriteField routine is shown in Fig-

ure 3.13.

Then, for each write, we simply write to the identi�ed version, as shown

at the bottom of Figure 3.11.

Implementation

Some details are not yet covered by our model. For example, how are �elds of

di�erent byte lengths handled? How does transactional Java code interact

with the garbage collector, or with native code in the runtime system?

Chapter 4 addresses the real-world implementation details of our software

transaction system.
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In theory, there is no di�erence

between theory and practice.

Jan L. A. van de Snepscheut

Chapter 4

ApeX implementation:

Efficient software

transactions

This chapter discusses the challenges involved in transforming the design

of Chapter 3 into a practical Java compiler. I describe the foundation of

the implementation, the Flex compiler infrastructure and its \Precise C"

backend. I then outline the transformations and analyses Flex performs.

The runtime system must also be modi�ed to support transactions; Flex

modi�es the Java Native Interface to allow most native libraries to work

seamlessly with ApeX. I list some limitations of the present implementa-

tion, including access granularity and support for static �elds and condition

variables, and discuss how they may be overcome in a production-quality

compiler. I conclude by listing additional optimizations which could be

implemented to improve ApeX performance.

4.1 The Flex compiler infrastructure

In 1998 I began implementing the Flex compiler infrastructure for Java

[3], which I used to implement the transaction systems in this thesis. Flex
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is a whole-program static compiler for Java with a runtime system built

around the GNU Classpath implementation of the Java standard libraries

[36]. Flex takes as input Java bytecode, generated by any Java 1.0-1.6 com-

piler from user code and the GNU Classpath 0.08 library implementation,

and it emits either assembly code for MIPS, Sparc, or StrongARM, or else

\portable assembly language" written in gcc 3.4's variant of C. The emitted

code is compiled and linked against the Flex runtime system and the GNU

Classpath 0.08 native libraries to produce a stand-alone binary for the target

system. The Flex compiler and analysis code is written in Java, while the

Flex runtime system is written in C. Flex has been used in over 20 pub-

lished papers [2, 4{7, 13, 14, 20, 25, 28, 30, 34, 35, 62, 82, 90{92, 95{99, 101],

on a wide range of topics.

Using C as a target

The experiments in this thesis were conducted on either the x86 or PowerPC

architectures, for which Flex does not have a native assembly backend. The

\Precise C" backend was thus used, so named because, aside from emitting

C code, it's original purpose was to investigate the possibility of precise

garbage collection while emitting high-level code. To that end, the backend

contains code to maintain a separate stack for values of non-primitive types

and to push and pop all live variables to this stack at gc points. Since

Flex's low-level IR may create derived pointers that point inside objects, for

example during loop optimizations, the Precise C backend also reconstructs

the derived pointers after the gc point, in case the objects involved have

moved.

Experiments showed that this mechanism has minimal impact on per-

formance, because variables pushed onto the explicitly managed \object

stack" are then dead across the call from the perspective of the underlying

C compiler; in e�ect our explicit stack management replaced the implicit

stack save/restore which the C compiler would otherwise have performed to

maintain its calling convention.
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Java exceptions presented another di�culty when implementing a C

backend. The mechanisms used in our assembly backends (separate re-

turn addresses for \returning" an exception, either derived by rule from the

normal return address or stored in a sorted table keyed by the normal re-

turn address) cannot be implemented in C. Flex supports two alternate

translations: the �rst uses setjmp and longjmp to branch directly from the

site where the exception is thrown to an appropriate handler, and the sec-

ond returns a pair value from every function call. In the setjmp method

Flex emits a setjmp call when a new exception-handling region (try/catch

block) is entered and a longjmp when an exception is thrown, but setjmp

and longjmp are rather expensive. The pair-return method returns a C

struct from every call consisting of the \real" return value along with an

exception value.1 When the function returns, the caller must �rst test the

exception value; if it is non-NULL, then an exception has been thrown and

the caller must handle it (if it can) or re-throw it. The mandatory test in the

pair-return method adds overhead to every function call, but it is minimal.

Experiments on x86 indicated that a small benchmark consisting of

50,000 method calls executed in 2 milliseconds (ms) using pair-return, re-

gardless of whether the calls returned normally or threw an exception. The

same benchmark using the setjmp method ran in only 1ms when all calls

returned normally, but took 73ms when each call threw an exception. As a

result, setjmp is dramatically slower for applications that heavily use excep-

tions. For example, the SPECjvm98 benchmark 228 jack executes in 460

seconds with pair return, but 703 seconds with setjmp. Figure 4.1 presents

full results for the SPECjvm98 benchmark suite.

The experiments in this thesis all use pair-return to implement excep-

tions. All experiments also use conservative garbage collection [18], making

the \Precise C" stack unnecessary.

1Methods declared as void return only the exception value, of course.
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execution time (seconds)

benchmark assembly pair return setjmp

201 compress 223.2 193.0 183.7

202 jess - 446.1 463.3

205 raytrace 265.8 854.8 858.3

209 db 591.3 578.1 597.7

222 mpegaudio 1,210.3 3,035.0 3,014.0

227 mtrt 277.0 866.0 867.9

228 jack 895.7 460.1 703.0

Figure 4.1: Speed comparison of exception return techniques for

SPECjvm98 benchmarks on a Netwinder platform. The Netwinder is a

small, low power computing platform designed by Corel Computer around

the StrongARM 110 processor. For the presented results, lower execution

time is better. The \assembly" column uses Flex's StrongARM backend

and uses a lookup table keyed on the procedure return address to �nd an

appropriate exception handler. The \pair return" and \setjmp" columns

use Flex's \Precise C" backend, and use the implementation strategies de-

scribed in the text.
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synchronized {
...
x = o.f;
...
o.f = y;
...
z = foo(a, b, c);
...

}

⇒

t = CommitRecord.newTransaction();
while(true) {
try {
...
v = ensureReader(o, t);
x = readT(o, FIELD_F, &v, t);
...
v = ensureWriter(o, t);
checkWriteField(o, FIELD_F);
writeT(o, FIELD_F, y, v); /* v.f = y */
...
z = foo$$withtrans(t, a, b, c);
...
t.commitTransaction();
break;

} catch (TransactionAbortException tex) {
t = t.retryTransaction();

}
}

Figure 4.2: Software transaction transformation. The code on the left is the

original Java source; the transformed source is on the right.

4.2 Transforming synchronization

Aside from implementing the read and write mechanisms of the software

transaction design presented in the previous chapter, several other transfor-

mations and analyses of our Java benchmarks must be performed: transac-

tions must be synthesized from the benchmark's monitor synchronization,

methods must be cloned according to the context (whether inside a trans-

action or not) of their call site, and analyses must be performed in order to

reduce redundant checks in the transformed code. In addition, some minor

desugaring is done to ease implementation.

4.2.1 Method transformation

I automatically created transactions in the benchmarks I present from Java

synchronized blocks and methods. Figure 4.2 illustrates the transformation

applied.

Entering a top-level synchronized block creates a new transaction object

and starts a new exception handler context. Exiting the block causes a call
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to the transaction's commit method. If the commit, or any other operation

inside the block, throws TransactionAbortException indicating that the

transaction must be aborted, we recreate the transaction object and loop

to retry the transaction's operations. The retryTransaction method per-

forms backo�. Although not implemented in this work, retryTransaction

may also perform livelock detection or other transaction management func-

tions.

Inside the transaction context, reads and writes must be transformed.

Before the read, the ensureReader algorithm must be invoked (see Sec-

tion 3.3.2). This is only done once for each object read in this transaction.

Section 4.2.2 describes how these checks are hoisted and combined to reduce

their number. The ensureReader routine returns a pointer to a version

object containing this transaction's �eld values for the object. The pointer

may be NULL, however, if this transaction has not written the object. The

actual read is done via the readT algorithm described in Figure 3.11 and

Section 3.3.2; it may update the cached version object for the given object

(for example, if the object has been written within this transaction since

the point at which ensureReader was invoked).2

Before each write, ensureWriter and checkWriteField must be exe-

cuted. Like ensureReader, ensureWriter (Figure 3.12) need only be per-

formed once for each object written in the transaction, and it is hoisted and

combined in the same way. The checkWriteField algorithm (Figure 3.13)

need only be executed once for each object �eld written; if the same �eld in

the same object is written multiple times, the subsequent checkWriteField

invocations can be eliminated. The actual write is performed via writeT

(Figure 3.11), which is a simple store to the version object.

Nested transactions are implemented via subsumption; that is, nested

2Since the Flex infrastructure cannot create pointers to temporaries, or alternately

return multiple values from function calls, the version object in my current implementation

cannot be updated by readT. This limitation impairs the ability to hoist and combine

ensureReader and requires redundant calls in our current implementation.
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synchronized blocks inside a transaction context are ignored: the inner

transaction is subsumed by the outermost.

Method invocations inside transaction context must be transformed,

since read and write operations are implemented di�erently depending on

whether or not the current execution is inside a transaction. Flex cre-

ates a transactional clone from each method, named with a $$withtrans

su�x, which is invoked when executing inside a transaction. The current

transaction is passed as the �rst parameter of the cloned method.3

Nontransactional code inside a method must be transformed to use the

readNT and writeNT mechanisms to perform object reads and writes (Fig-

ure 3.8); the implementation is similar to that shown in Figure 5.2 and

Figure 5.3.

4.2.2 Analyses

Performance improves if Flex can identify objects or �elds that are guaran-

teed not to be concurrently mutated and replace the checks and read/write

protocols with direct accesses. I performed two analyses of this sort; Sec-

tion 4.5 describes additional analyses which we have not implemented.

Our �rst analysis classi�es all �elds in the program according to their use

in transactional and nontransactional regions. This analysis is encapsulated

in a Flex class named GlobalFieldOracle. Fields that can never be writ-

ten within a transaction do not need the special readNT mechanism from

nontransactional code; their values can be loaded directly without testing

for FLAG. The only way that the �eld can have the FLAG value, if it is not

written within a transaction, is if it is a false 
ag, in which case its value

really is FLAG. Similarly, �elds that can never be read or written within a

transaction do not need to use the writeNT mechanism; they can just store

directly to the �eld.4 Thus, GlobalFieldOracle can make nontransactional

3Cloning must take virtual dispatch into account: cloning a method in a superclass

must also create appropriate cloned subclass implementations.
4It is not enough for the �eld not to be written; we must also protect against write-
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code more e�cient by eliminating the overhead of the software transaction

system in some cases.

While GlobalFieldOracle targets nontransactional code, the Check-

Oracle analysis classes make transactional code more e�cient by removing

unneeded read and write checks. As mentioned above, the ensureReader

and ensureWriter checks need only be invoked once on each unique object

read/written by the transaction. Similarly, checkWriteField need only

be performed once on each object �eld written by the transaction. The

CheckOracle classes hoist each check to its immediate dominator [67, 77,

94] if and only if this new location for the check is postdominated by the

current location and the new location is dominated by the de�nition of

the variable referenced in the check. This condition ensures that all paths

to the original location of the check must pass through the new location.

Moreover, it ensures that the object involved in the check is still de�ned

appropriately at the new check location, since the analysis is performed

on a single-assignment intermediate representation [2]. The check-hoisting

process is repeated until no checks can be moved higher, and then Flex

eliminates any check that is dominated by an identical check.

4.2.3 Desugaring

Flex also desugars some Java idioms to ease implementation. Java spec-

i�es a clone() method of java.lang.Object, from which every object is

derived. The top-level clone() method is somewhat magical, as it creates

an exact copy of its subclass, including all its �elds, which are otherwise

hidden from methods of a superclass. The transactional translation of this

method is also somewhat baroque: it would have to mark all �elds of the

original method as \read" by the transaction, and then construct a versioned

object written by the transaction. As an end-run around this complexity,

we desugar clone() into individual implementations in appropriate classes,

after-write con
icts.
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each of which reads all �elds of the class, and constructs a new object by-

passing its constructors, and then individually sets all the �elds to their

new values. Arrays get a similar clone() implementation that reads and

writes the elements of the array. These new implementations can then be

transformed by the transaction pass like any other piece of code that reads

and writes �elds.

The Flex infrastructure also contains a mechanism for fast initialization

of arrays. This mechanism is desugared into individual array set operations

so that it, too, can be uniformly transformed by the transaction pass.

4.3 Runtime system implementation

The Flex runtime system was extended to support transactions. The run-

time uses the standard Java Native Interface (JNI) [76] for native methods

(written in C) called from Java. Certain parts of the transaction system

were written as native methods invoked via JNI, but others interact with

the runtime system at a much lower level.

The runtime system is parameterized to allow a large number of memory

allocation strategies and collectors, but for the experiments reported here, I

used the Boehm-Demers-Weiser conservative garbage collector [18]. Ideally

the garbage collector would know enough about the transaction implemen-

tation to be able to automatically prune unneeded committed or aborted

versions from the object's version list during collection. Flex relies on op-

portunistically nulling out tail pointers during version list traversal,5 how-

ever, which may result in incomplete collections (and more memory usage

than strictly necessary).

Each transaction had a CommitRecord object storing its state, whether

COMMITTED, ABORTED, or still WAITING. Most CommitRecord methods were

written in Java, including object creation, exponential backo� on retry, and

throwing the appropriate TransactionAbortException on abort. Only the

5For example, while looking for the last committed version.
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crucial commit() and abort() operations, which atomically set the trans-

action status if and only if it is still WAITING, were written in C, as JNI

methods.

4.3.1 Implementing the Java Native Interface

No Java transaction implementation is complete without some mechanism

for executing native methods, that is, C code. One cannot banish all native

methods, since the Java standard library is built on them. If one cannot

make native code observe the readNT and writeNT protocols, one must

ensure that the native code never reads any object written in a transaction,

or writes any object read or written in a transaction.6 These restrictions

would be inconvenient.

My solution ensures not only that (separately compiled) native code

properly uses the readNT and writeNT protocols outside a transaction, but

also that reads and writes inside a transaction are handled properly. This

ability allows the use of \safe" native methods (those without external side

e�ects) inside a transaction.

I am able to transform native methods because Flex uses the Java Na-

tive Interface [76] to interact with native code. The JNI, a portion of which

is shown in Figure 4.3, abstracts �eld accesses and Java method invoca-

tions from native code, so I can substitute implementations that behave

appropriately whether in a transaction or not.

I distinguish among three classes of native methods. The �rst are na-

tive methods that are \safe" in a transactional context. That is, they have

no external side e�ects (which would need to be undone if the transac-

tion aborted) and behave correctly in a transaction if all reads, writes, and

method calls are simply replaced by the appropriate transactional protocol.

The second are methods that have a di�erent implementation in a transac-

tional context. One example would be the native methods that implement

6If one can implement writeNT but not readNT, one need only ensure that native code

does not write �elds that are also written inside a transaction, as discussed in Section 4.2.2.
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struct JNINativeInterface {
· · ·
/* Calling instance methods */
jmethodID (*GetMethodID)

(JNIEnv *env, jclass clazz, const char *name, const char *sig);
jobject (*CallObjectMethod)

(JNIEnv *env, jobject obj, jmethodID methodID, ...);
· · ·
jboolean (*CallBooleanMethod)

(JNIEnv *env, jobject obj, jmethodID methodID, ...);
· · ·
jbyte (*CallByteMethod)

(JNIEnv *env, jobject obj, jmethodID methodID, ...);
· · ·
/* Accessing fields of objects */
jfieldID (*GetFieldID)

(JNIEnv *env, jclass clazz, const char *name, const char *sig);
jobject (*GetObjectField)

(JNIEnv *env, jobject obj, jfieldID fieldID);
jboolean (*GetBooleanField)

(JNIEnv *env, jobject obj, jfieldID fieldID);
· · ·
void (*SetObjectField)

(JNIEnv *env, jobject obj, jfieldID fieldID, jobject value);
void (*SetBooleanField)

(JNIEnv *env, jobject obj, jfieldID fieldID, jboolean value);
· · ·
/* Array Operations */
jobject (*GetObjectArrayElement)

(JNIEnv *env, jobjectArray array, jsize index);
void (*SetObjectArrayElement)

(JNIEnv *env, jobjectArray array, jsize index, jobject value);
· · ·
jboolean* (*GetBooleanArrayElements)

(JNIEnv *env, jbooleanArray array, jboolean *isCopy);
jbyte* (*GetByteArrayElements)

(JNIEnv *env, jbyteArray array, jboolean *isCopy);
· · ·

};

Figure 4.3: A portion of the Java Native Interface for interacting with the

Java runtime from C native methods [76]. There are function variants for

all of the basic Java types: boolean, byte, char, short, int, long, 
oat, dou-

ble, and Object. The jobject and j*Array types are not direct references

to the heap objects, but rather opaque wrappers that preserve the garbage

collector's invariants and protect the runtime system's private implementa-

tion.
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�le I/O; in a transactional context, these methods should instead interface

with a underlying transactional �le system and arrange for the I/O oper-

ations to commit if and only if the current transaction commits. Another

example is the Object.wait() method; the appropriate alternate imple-

mentation is described in Section 4.4.4. The last class of native methods are

those that are inherently impossible in a transactional context, usually due

to irreversible external I/O (Section 8.4 discusses I/O interactions in more

detail). A compiler con�guration �le identi�es the safe native methods.

For \safe" native methods, the Flex compiler creates a thunk that stores

the transaction object in the JNI environment structure (JNIEnv) which

is passed to every JNI method. When that native method invokes the

�eld or array operations in the JNI (for example, Get*Field, Set*Field,

Get*ArrayElements, etc.) the runtime checks the environment structure

to determine whether to use the appropriate transactional or nontransac-

tional read or write protocol. When Java methods are invoked, via the

Call*Method family of methods, in a transactional context the runtime

looks up the $$withtrans su�xed version of the method (see Section 4.2.1)

and invokes it, passing the transaction object from the environment as the

�rst parameter.

For unsafe native methods, Flex generates a call to a $$withtrans-

su�xed JNI method, passing the transaction as the �rst parameter as is

done for pure Java calls inside a transaction context. The implementer is

then responsible for correct transactional behavior.

4.3.2 Preprocessor specialization

Part of the challenge in engineering a practical implementation is properly

accounting for the wide range of data types in a real programming lan-

guage. Java contains 8 primitive types in addition to types deriving from

java.lang.Object, which are themselves divided into array and non-array
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/* Framework for use of preprocessor specialization. */
/* (from readwrite.c) */

#define VALUETYPE jboolean
#define VALUENAME Boolean
#include "transact/readwrite-impl.c"
#define ARRAY
#include "transact/readwrite-impl.c"
#undef ARRAY
#undef VALUENAME
#undef VALUETYPE

/* ... etc ... */

#define VALUETYPE jdouble
#define VALUENAME Double
#include "transact/readwrite-impl.c"
#define ARRAY
#include "transact/readwrite-impl.c"
#undef ARRAY
#undef VALUENAME
#undef VALUETYPE

#define VALUETYPE struct oobj *
#define VALUENAME Object
#include "transact/readwrite-impl.c"
#define ARRAY
#include "transact/readwrite-impl.c"
#undef ARRAY
#undef VALUENAME
#undef VALUETYPE

Figure 4.4: Specializing transaction primitives by �eld size and object type:

readwrite.c. This �gure shows how readwrite.c specializes the code

in readwrite-impl.c (Figure 4.5) through the use of multiple #include

statements.
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/* Implementing generic functions. */
/* (from readwrite-impl.c) */
#include "transact/preproc.h" /* Defines ’T()’ and ’TA’() macros. */

VALUETYPE TA(EXACT_readNT)(struct oobj *obj, unsigned offset);

VALUETYPE TA(EXACT_readNT)(struct oobj *obj, unsigned offset) {
do {

VALUETYPE f = *(VALUETYPE*)(FIELDBASE(obj) + offset);
if (likely(f!=T(TRANS_FLAG))) return f;
if (unlikely(SAW_FALSE_FLAG ==

TA(copyBackField)(obj, offset, KILL_WRITERS)))
return T(TRANS_FLAG); // "false" transaction: field really is FLAG.

// okay, we’ve done a copy-back now. retry.
} while(1);
}

/* ... undefine macros at end of readwrite-impl.c ... */

Figure 4.5: Specializing transaction primitives by �eld size and object type:

readwrite-impl.c. In this snippet the readNT algorithm is implemented

using macros (de�ned in Figure 4.6, preproc.h) to implement generic �eld

types and naming conventions. The macros likely and unlikely commu-

nicate static branch prediction information to the C compiler.

/* Preprocessor specialization macros */
/* (from preproc.h) */
#define x1(x,v) x2(x,v)
#define x2(x,v) x ## _ ## v

#if defined(ARRAY)
# define A(x) x1(x,Array)
# define OBJ_OR_ARRAY(x,y) (y)
#else
# define A(x) x
# define OBJ_OR_ARRAY(x,y) (x)
#endif

#define T(x) x1(x,VALUENAME)
#define TA(x) T(A(x))

#define FIELDBASE(obj) \
OBJ_OR_ARRAY(obj->field_start,((struct aarray *)obj)->element_start)

Figure 4.6: Specializing transaction primitives by �eld size and object type:

preproc.h. In this portion of the �le, we de�ne the specialization macros

used in Figure 4.5.
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types.7

Figures 4.4, 4.5, and 4.6 demonstrate how �eld size and object type spe-

cialization are implemented in the Flex transaction runtime. The main

header and source �les do nothing but repeatedly #include an -impl-

su�xed version of the �le with VALUETYPE, VALUENAME, and ARRAY de�ned

to range over the possible primitive and array types. This technique al-

lows compact naming and de�nition of specializable functions to account

for array/object (among other) di�erences. For example, the FIELDBASE

macro (de�ned in Figure 4.5, used in Figure 4.4) allows the uniform treat-

ment of object �elds and array elements, even though the �rst array element

starts at a di�erent o�set from the �rst �eld (since array data starts with

an immutable length �eld).

Section 4.4.3 discusses some of the other challenges involved in synthe-

sizing atomic operations on subword and multiword datatypes.

4.4 Limitations

The present ApeX implementation contains a few non-fundamental limi-

tations with well-understood solutions which, nonetheless, would add ad-

ditional implementation complexity. These limitations involve static �elds,

coarse granularity of LL/SC instructions, subword and multiword �elds, and

condition variables (Object.wait()). In addition, there are limitations re-

lated to the manipulation of large objects (usually arrays); we put o� to

Chapter 6 a full discussion of the large object problem and its solutions.

7The Flex 
ag value was carefully chosen so as not to be a NaN for either of the


oating-point types, since comparisons against NaN can be surprising. The 
ag value

consists of a repeated byte value so that a new object can be initialized with all �elds

FLAG without knowledge of the exact types and locations of each �eld.
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class C {
static int f;
...
void foo() {
... = C.f;
C.f = ...;

}
}

⇒

class C$$static {
int f;

}
class C {

final static C$$static $static = new C$$static();
...
void foo() {

... = C.$static.f;
C.$static.f = ...;

}
}

Figure 4.7: Static �eld transformation. Static �elds of class C have been

hoisted into a new class C$$static. Since the new �eld $static is write-

once during initialization, it is safe to read/write directly, unlike the old

�eld f.

4.4.1 Static fields

Static �elds are not encapsulated in an object as other �elds are; they are

really a form of controlled-visibility global variable. The present implemen-

tation ignores static �elds when performing the synchronization transfor-

mation; reads and writes to static �elds are always direct. In theory this

could cause races, but in our benchmarks most static �elds are written only

during initialization. An analysis that proved that writes only occurred dur-

ing a single-threaded class initialization phase of execution could prove that

these direct accesses are safe in most cases. Proper handling of static �elds

that do not meet this condition is straightforward: new singleton classes

would be created encapsulating these �elds, and access would be via an

extra indirection. Figure 4.7 illustrates this transformation.

4.4.2 Coarse-grained LL/SC

In our description of the software transaction algorithms we have so far

neglected to state the size of the reservation created by the platform load-

linked instruction. The implicit assumption is that the reservation is roughly

word-sized: our algorithm uses load-linked to watch the pointer-valued

readerList (Figures 3.8, 3.12) and version (Figures 3.9, 3.10, 3.12, 3.13)
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�elds, and to perform the compare-and-swap operation on the transaction

status �eld necessary for aborting and committing transactions. Implemen-

tations of load-linked and store-conditional on most architectures, however,

usually place a reservation on a speci�c cache line, which spans many words.

In the case of our MPC7447 (G4) PowerPC processor, a reservation (and

cache line) is 32 bytes.

In our present implementation, we have not taken any special action

to account for this di�erence. In general, a larger-than-expected reserva-

tion may cause false con
icts between independent transactions, and the

false con
icts can lead to deadlock or livelock if contention is not managed

properly. Our implementation uses randomized8 exponential backo�, which

ensures that every transaction eventually has an opportunity to execute in

isolation, which will moot any false con
ict.

Other mechanisms to resolve contention can also be used to address

false con
icts. In an extreme case, a contention manager could invoke a

copying collector to relocate objects involved in a false con
ict, although

this tactic is likely merited only when the con
icts are extremely frequent

or when long-lived transactions make the copying cost less than the cost of

serializing the transactions involved.

Alternatively, false con
icts can be managed with a careful allocation

policy. The allocator in the present implementation ensures 8-byte align-

ment of objects. As we have done in prior work [98], the Java allocator can

be modi�ed to align objects to cache line (32-byte) boundaries, to ensure

there are no false con
icts between objects. Some of the wasted space can

be reclaimed by using a smaller alignment for objects known not to escape

from their thread, or by packing multiple objects into a cache line if they

are known never to participate in transactions that might con
ict.

8The randomization is via the varying latency of the Unix sleep syscall; stronger

randomization could be implemented if it mattered.
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4.4.3 Handling subword and multiword reads/writes

The granularity of the store-conditional instruction is more problematic.

Although we have speci�ed our algorithms assuming that a store-conditional

of any �eld is possible, in practice store-conditional operations are only

provided for a restricted set of data types: the PowerPC architecture de�nes

only 32-bit and 64-bit stores, and 32-bit implementations (like our G4) don't

implement the 64-bit variant. We need to carefully consider how to safely

implement our algorithms with only a word-sized store-conditional.

First, let us consider the case where the �eld size is larger than a word,

which for a Java implementation is limited to �elds with double and long

types. Within a transaction we can simply write two ints (for example) to

implement the store of a long; the transaction mechanism already ensures

that the multiple writes appear atomic.

This partial solution leaves only large writes outside of a transaction.

One solution is to decompose these �elds into multiple smaller �elds as

we did in the transactional case; we don't give up strong atomicity but we

allow other readers (both transactional and nontransactional) to see the par-

tial writes. The Java memory model actually permits this behavior (Java

Language Speci�cation chapter 17.7, \Non-atomic Treatment of double and

long" [37]). The speci�cation continues, \VM implementers are encouraged

to avoid splitting their 64-bit values where possible." We can easily imple-

ment this behavior as an alternative: nontransactional writes of doubles and

longs can be converted to small transactions encompassing nothing but the

multiple word-size writes.

Now let us consider subword-sized writes. Section 17.6 of the Java Lan-

guage Speci�cation speci�cally says:

One implementation consideration for Java virtual machines is

that every �eld and array element is considered distinct; updates

to one �eld or element must not interact with reads or updates

of any other �eld or element. In particular, two threads that
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update adjacent elements of a byte array separately must not

interfere or interact and do not need synchronization to ensure

sequential consistency.

Some processors do not provide the ability to write to a single

byte. It would be illegal to implement byte array updates on

such a processor by simply reading an entire word, updating

the appropriate byte, and then writing the entire word back to

memory. This problem is sometimes known as word tearing,

and on processors that cannot easily update a single byte in

isolation some other approach will be required.

Again, writes within a transaction are straightforward: reading an entire

word, updating it, and rewriting will appear atomic due to the transaction

mechanism, and no observable word tearing will occur. A minor di�culty

is the possibility of \false" con
icts between updates to adjacent �elds of an

object; these are handled as described in Section 4.4.2.

The �nal case is then nontransactional writes to subword values, which

occur frequently in real programs during string manipulations. We could

address this by using a short transaction to do the read-modify-write of the

word surrounding the subword �eld, but this is likely too expensive, con-

sidering the number of subword manipulations in most programs. A better

algorithm to address this problem is presented in Figure 4.8; compare this

to the earlier expression of the writeNT algorithm in Figure 5.3. The re-

vised algorithm steals the lower two bits of the readerList pointer to serve

as subword reservations, ensuring that racing writes to di�erent subwords

in the same word are prevented. The cost of this algorithm is mostly ex-

tra masking when the readerList is read, and an extra store (to set the

readerList reservation) on every subword write.9

9It would be nice if we could avoid updating the readerList pointer on every write

when using common access patterns, like stepping linearly through the array, but I don't

see a way to do that.
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void writeNT(struct oobj *obj, int byte_idx, small_field_t val) {
if (unlikely(val==FLAG))
unusualWrite(obj,byte_idx,val); // do a short transactional write

else {
do {
int r = (int) LL(&(obj->readerList));
if (unlikely((r & ~3) != 0)) {
// readerList is not "NULL"; have to kill readers, etc.
unusualWrite(obj,idx,val);
return;

} else if (r == (byte_idx & 3)) {
// okay to write to this subword
word_t w = obj->word[byte_idx>>2];
if (SC(&(obj->word[byte_idx>>2]), combine(w, val, byte_idx)))
return;

} else
// last write was to some other subword; switch to this one.
SC(&(obj->readerList), byte_idx & 3);

} while (1);
}

}

Figure 4.8: Nontransactional write to a small (subword) �eld. Compare to

Figure 5.3. The byte idx value is the o�set of the �eld within the objects, in

bytes, and the combine function does the appropriate shifting and masking

to combine the new subword value with the read value of the surrounding

word.

The present implementation does not specially handle subword-sized

writes, resulting in programmer-visible word tearing.

4.4.4 Condition variables

A condition variable is a synchronization device that allows threads to sus-

pend execution and relinquish the processors until some predicate on shared

data is satis�ed. When the predicate becomes true, a thread signals the con-

dition (Object.notify() and Object.notifyAll() in Java); other threads

can suspend themselves waiting for the signal (Object.wait()). In order

to prevent races between noti�cation and waiting, condition variables are

associated with a mutex (the object monitor, in Java) and wait and notify

require the lock to be held when they are called. The wait operation atomi-
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public class Drop {
//Message sent from producer to consumer.
private String message;
//True if consumer should wait for producer to send message, false
//if producer should wait for consumer to retrieve message.
private boolean empty = true;

public synchronized String take() {
//Wait until message is available.
while (empty) {

try {
wait();

} catch (InterruptedException e) {}
}
//Toggle status.
empty = true;
//Notify producer that status has changed.
notifyAll();
return message;

}

public synchronized void put(String message) {
//Wait until message has been retrieved.
while (!empty) {

try {
wait();

} catch (InterruptedException e) {}
}
//Toggle status.
empty = false;
//Store message.
this.message = message;
//Notify consumer that status has changed.
notifyAll();

}
}

Figure 4.9: Drop box example illustrating the use of condition variables in

Java, from [100].
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cally releases the lock and waits for the variable; when noti�cation is received

wait re-acquires the lock before resuming. An example of the use of these

operations in Java is provided in Figure 4.9.

Implementing these semantics properly in a transactional context is chal-

lenging; a better solution to the fundamental problem is a mechanism like

Harris and Fraser's guarded transactions [44]. A reasonable implementa-

tion is possible, however.

The JDK1.6 speci�cation for the Object.wait() method says:

A thread can also wake up without being noti�ed, interrupted,

or timing out, a so-called spurious wakeup. While this will rarely

occur in practice, applications must guard against it by testing

for the condition that should have caused the thread to be awak-

ened, and continuing to wait if the condition is not satis�ed. In

other words, waits should always occur in loops. . .

This allowance simpli�es the implementation of the noti�cation methods.

It is always safe to do the notify immediately|we needn't wait until the

transaction doing the notify is sure to commit. If we end up getting aborted

we'll just redo the notify later when we retry. So, we acquire a special mutex

(either per-object as with standard Java or global; the lock is not held long),

do the noti�cation, and release the mutex.

The wait method, however, is a commit point, since it releases and

reacquires the monitor lock. Thus, it splits the transaction containing it into

two.10 The fundamental mechanism is straightforward. We �rst acquire our

special mutex, then attempt to commit the transaction, and check the result.

If we don't commit successfully, we unlock the mutex and throw the usual

TransactionAbortException. If we have committed successfully, we can

safely wait (releasing our mutex atomically). When we're woken, we create

10Which arguably calls for a special type annotation on methods that may call wait(),

so that users are not misled into thinking a block is atomic that may invoke something

that calls wait().
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a new transaction, release our mutex, and continue. The mutex prevents

noti�cation from occurring between the commit and the wait.11

Implementation in a practical system introduces some di�culties. As de-

scribed in Section 4.2, the transaction object is passed as the �rst argument

when calling methods within a transaction context. Since Object.wait()

commits the initial transaction and begins a new one, we must either factor

out a continuation after the call to Object.wait() which can be invoked

with the new transaction after the wait is complete, or else provide a means

to update the active transaction pointer and the retry point. One way to

update the active transaction pointer is to use indirection: instead of keep-

ing a direct pointer to the transaction object, we can keep a pointer to a

cell containing the pointer; the cell can then be updated to point to the new

transaction by Object.wait(). Alternatively, an extra return value can be

added to methods called within a transaction, so that method can return

an updated transaction object as well as their usual return value. Either of

these transformations can be applied selectively to only those methods that

could possibly invoke, directly or indirectly, Object.wait(). The more dif-

�cult challenge is to update the location at which we'll resume for another

attempt when the transaction is aborted; this retry point should be imme-

diately following the wait(). The retry mechanism becomes much more

complicated, and some means to reconstruct the appropriate call-stack is

necessary.

For code like the example given in Figure 4.9 the \correct" resumption

behavior is actually identical to restarting the transaction from the original

start point (i.e. the beginning of the put() or take() method), assuming

11In the drop box example in Figure 4.9 the standard monitor lock is present to prevent

(for example) put() from setting empty to false and doing the notifyAll() after take()

has seen that empty is true but before the wait() has occurred (hence the noti�cation

would be lost). With the transaction transformation, the lost noti�cation is prevented

because put's write to empty will abort the take transaction if it occurs before take is

committed (causing the wait() to be retried), and the special mutex will prevent the

noti�cation from occurring between the commit and the wait.

79



CHAPTER 4: APEX IMPLEMENTATION

that the put() or take() isn't in a subsumed nested transaction. It is

probably worth identifying this situation through compile-time analysis, as

it simpli�es the resumption transformation considerably.

In the present implementation I implement correct notify semantics,

but I do not allow wait to be a commit point. Instead Flex takes the special

mutex and sleeps on the condition variable without attempting to commit

the transaction, and resumes executing in the same transaction when it

awakes. This is su�cient for the limited uses of wait in the benchmarks of

this thesis.

4.5 Additional optimizations

This section discusses some additional optimizations that could improve

performance on transactional code; they have not been implemented in the

present compiler. The improvements include version passing, escape analy-

sis, object immutability analysis, and fast allocation.

As described in Section 4.2, the basic transaction transformation in-

serts a call to ensureReader/ensureWriter once per object prior to a

read/write of a �eld in the object. These methods return a version ob-

ject (the \current version") which is then passed to the readT/writeT

methods. A straightforward improvement would avoid redundant calls to

ensureReader/ensureWriter by passing the \current version" of the vari-

ous parameters when a method is invoked. A strictness analysis should be

performed, to avoid marking �elds as read/written that are not guaranteed

to be read/written by the transaction, and the \current version" added as

an extra argument for the strict parameters of the method. This allows the

caller to combine redundant ensureReader/ensureWriter invocations for

the argument.12

12One could also consider adding \current version" arguments even for non-strict pa-

rameters, with the caveat that the caller pass in NULL if it had not already read/written

the non-strict parameter. All variables used in a method or the method's callees would

then be potentially eligible for version passing, however. Some more sophisticated heuris-
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Escape analysis [97] is a standard technique to reduce unnecessary syn-

chronization in Java programs. In a typical application, monitor locks on

objects that do not escape their thread are eliminated; these lock elimi-

nations can translate to transaction eliminations as well. Further, escape

analysis can identify individual objects that do not escape their method,

thread, or call context, and replace the readT/writeT or readNT/writeNT

protocol with direct access.

Another orthogonal analysis can identify object immutability [103]. Im-

mutable objects can be read directly and their �eld values can be safely

cached across transaction boundaries. Further, the initialization of im-

mutable objects typically can be done with direct writes as well.

Finally, a substantial portion of the cost of small transactions is spent

allocating the version object, especially for the conservative collector used in

the present implementation. Fast allocators could alleviate this bottleneck

[8]. Alternatively, a free list of versions could be hung from objects involved

in many transactions: as soon as a version commits, the previous version

can be added to the free list for the use of the next transaction.

tic would be needed to determine for which objects version passing is worthwhile.
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All you owe the public is a good

performance.

Humphrey Bogart

Chapter 5

ApeX performance

This chapter presents measurements and analysis of the performance of the

ApeX software transaction system. Since ApeX adds read and write checks

to even nontransactional code, we begin by examining a microbenchmark

to discover the performance limits in the absence of transactions. We then

move on to full transactional application benchmarks. We formulate a linear

model to explain ApeX overhead, and describe how a programmer can use

this model to predict and improve the performance of their code running

under ApeX.

Since previous work has adequately demonstrated the scalability bene-

�ts of nonblocking synchronization [6, 40, 43, 64, 73, 80, 81], I concentrate

on single-threaded e�ciency measures. All experiments in this chapter were

performed on a 1GHz MPC7447 (G4) PowerPC processor, with 512kB uni-

�ed L2 cache and 512MB of main memory, running Ubuntu 6.10 on a Linux

2.6.17 kernel. The Flex compiler and runtime system sources were from the

head CVS revision on 2007-05-27. C sources were compiled using gcc-3.4.

Appendix B contains the full Flex command-lines and con�gurations used

to obtain the results in this chapter.
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5.1 Performance limits for nontransactional code

The ApeX software transaction system depends on the insertion of simple

read and write checks in nontransactional code. The performance of read

and write barriers has been well-studied in the garbage collection commu-

nity, but our checks are slightly di�erent: in particular, they are checks on

the contents of a memory cell, rather than on its address. Thus our checks

introduce a more direct dependency which may a�ect performance. Fur-

ther, our write check involves a LL/SC instruction pair, which may behave

di�erently from the standard loads and stores used in barriers.

In this section I use a simple counter microbenchmark to evaluate the

\best worst case" nontransactional performance of ApeX. It is an idealized

\best case" in that I don't benchmark the e�ects of \false 
ags" or other

forays into the transactional code path, nor do I account for double-word

or subword writes, cache e�ects due to code duplication, or other details of

a real implementation. I investigate these e�ects with full benchmarks in

Section 5.2. In this section I also freely hand-optimize down to the assembly

level to better determine the fundamental performance limits.

The tight read/write dependency makes counter increment a \worst

case" benchmark, however. In general, modern compilers are good at sepa-

rating reads from writes in \real" code to mask load latency, but this par-

ticular microbenchmark cannot be reasonably unrolled to accomplish the

separation. My conclusions about the fundamental costs of read and write

costs should thus be tempered by the knowledge that some of these costs

are in practice masked by the same standard compiler techniques used to

mitigate memory-access latencies.

Figure 5.1 presents the basic structure of the counter microbenchmark.

The read() and write() methods have appropriate de�nitions inlined for

each variant of the benchmark. The readerList and field �elds of the

struct oobj are marked volatile to prevent the C compiler from opti-

mizing away the accesses we are interested in benchmarking. Without these
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typedef int32_t field_t;

struct oobj {
struct version *version;
struct readerList * volatile readerList;
volatile field_t field[NUM_FIELDS];

};
void do_bench(struct oobj *obj) {
int i;
for (i=0; i<REPETITIONS; i++) {

field_t v = read(obj, 0);
v++;
write(obj, 0, v);

}
}

Figure 5.1: Counter microbenchmark to evaluate read- and write-check over-

head for nontransactional code.

#if !defined(WITH_READ_CHECKS)

static inline field_t read(struct oobj *obj, int idx) {
field_t val = obj->field[idx];
return val;

}

#else

static inline field_t read(struct oobj *obj, int idx) {
field_t val = obj->field[idx];
if (unlikely(val==FLAG))

return unusualRead(obj,idx);
else return val;

}

#endif

Figure 5.2: C implementation of read checks for counter microbenchmark.
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#if !defined(WITH_WRITE_CHECKS)

static inline void write(struct oobj *obj, int idx, field_t val) {
obj->field[idx] = val;

}

#else

static inline void write(struct oobj *obj, int idx, field_t val) {
if (unlikely(val==FLAG))
unusualWrite(obj,idx,val); // never called

else {
do {
if (unlikely(NULL != LL(&(obj->readerList)))) {
unusualWrite(obj,idx,val); // never called
break;

}
} while (unlikely(!SC(&(obj->field[idx]), val)));

}
}

#endif

Figure 5.3: C implementation of write checks for counter microbenchmark.

declarations, gcc 4.1.2 optimizes away the entire benchmark loop and re-

places it with a direct addition of REPETITIONS.

Figure 5.2 shows the baseline read() implementation, which inlines to

a single lwz instruction on PowerPC, along with the C implementation

of the read check necessary for nontransactional code under our transac-

tion system. We use the unlikely() macro, implemented using the gcc

extension builtin expect(), to apply the appropriate static prediction

bits indicating that FLAG is expected to be an unusual value. In our mi-

crobenchmark, this prediction is always correct. The C compiler must still

save whatever registers are necessary to allow the call to unusualRead(),

although this function is never actually called during the microbenchmark.

The unusualRead function would be expected to perform the remainder of

the readNT algorithm from Figure 3.8, including looking up and copying

back the most recently-committed value for this �eld.

Figure 5.3 shows the equivalent implementation pairs for a nontrans-
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actional write. The basic implementation inlines to a single stw instruc-

tion. The write-check version at the bottom must perform three tests.

First, it must ensure that the value to be written is not FLAG. If it is,

we must use the \false 
ag" mechanism to write it, modeled here by a call

to unusualWrite(). This check can be optimized away when writing a con-

stant,1 but the volatile declarations ensure that our benchmark always

performs the check. Second, we must perform a load-linked of the object's

readerList to check that there are not any current transactional readers

of this object. Last, we perform a store-conditional of the value we wish to

write and check that it was successful. Unlike the other two tests, this check

fails occasionally2 during the benchmark run due to context switches that

may occur between the load-linked and the store-conditional instructions.

Figure 5.4 shows the performance of this benchmark on the PowerPC

hardware fully described in Chapter 5. Read checks, even in this worst

case where the value read is demanded immediately, only add 14% over-

head. Write checks are more costly, due to the load-linked and store-

conditional pair. Speci�cally, they add 200% overhead to the benchmark.

Combining read and write checks yields the expected 214% overhead, as

our microbenchmark was carefully constructed to avoid the opportunities

for instruction-level parallelism one might expect in real-world applications.

The base benchmark performs 109 reads and 109 writes in an elapsed

time of 7.06 seconds. Our read (write) rate is thus 142× 106 reads (writes)

per second. Read checks cost 1.0 ns/read, and write checks cost 14.1

ns/write. We can predict the overhead fraction o for an arbitrary program

with the linear equation:

o = (1.0× 109)r + (14.1× 109)w (5.1)

1Hennessy and Patterson indicate that 35% of integer instructions use an immediate

operand [46, p. 78]. Their methodology does not allow breaking out the percentage of

stores speci�cally.
2Experimentally, about 3,600 times in the 1 billion repetitions of the write during the

counter microbenchmark.
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Figure 5.4: Time overhead of read checks, write checks, and both read and

write checks for nontransactional code, in both a pure C implementation

and optimized assembly.
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where r (w) is the read (write) rate.

Examination of the assembly code generated for this simple benchmark

seems to indicate substantial scope for improvement. The inline assembly

mechanism of gcc/C provides no inherent support for instructions like the

PowerPC's \store-conditional" (stwcx.) that leave their results in a condi-

tion code register. Figure 5.5 shows the assembly emitted for the write-check

version of the microbenchmark, with the cumbersome mechanism required

to move the condition code to a register so that it can then be retested.

We can easily hand-code a better write-check mechanism, shown in the

right-hand column of the �gure.3 The optimized store-conditional test re-

duces write-check overhead to 186% (13.1 ns/write) and combined read- and

write-check overhead to 199%, as shown in Figure 5.4.

Further performance improvement is possible by optimizing the bench-

mark with both read and write checks as a whole. Figure 5.6 shows an

optimized assembly version of our do bench() function. I've primarily

rescheduled the code here to separate dependent instructions as much as

possible, but I've also ensured repeatable instruction cache alignment,4 re-

placed our canonical FLAG value with 0xFFFFCACA, which can be represented

by the PowerPC's 16-bit signed immediate instruction �eld (eliminating the

need for a register), and combined the 
ag checks in the read and write

routines by masking and comparing against 0xFFFFCACB.5 The read-and-

write check overhead is improved to 143% with these optimizations. The

remaining overhead is due mostly to the irreducible dependency between

3This version has a stub where a function call to unusualWrite would usually go;

the correct code here would branch to a small thunk that performs the frame operations

and register saves necessary to adhere to the C calling convention; gcc makes it di�cult

to ensure that this thunk is \near enough" for a direct branch (within a 24-bit signed

displacement) without duplicating it needlessly.
4The MPC7447 (G4) PowerPC has a 32-byte cache line, although fetches occur in

16-byte (4 instruction) chunks.
5Again, the branches to unusualRead() and unusualWrite() are di�cult to express

in this hybrid of C and assembly, but small stubs would be written to save registers and

perform a branch with the appropriate calling conventions.
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do_bench: do_bench:
mflr 0 mflr 0
stwu 1,-16(1) stwu 1,-16(1)
lis 5,0x3b9a addi 10,3,8
li 8,0 addi 11,3,4
ori 5,5,51712 stw 0,20(1)
addi 6,3,4 lis 0,0x3b9a
addi 7,3,8 ori 0,0,51712
stw 0,20(1) mtctr 0
b .L4 b .L4

.L22:
mr 10,6
mr 11,7 .L5:

.L5: 0:

lwarx 0,0,10 lwarx 0,0,11

cmpwi 7,0,0 cmpwi 0,0

bne- 7,.L19 beq+ 1f

stwcx. 9,0,11 b . # stub for unusualWrite branch

li 0,0 1:stwcx. 9,0,10

bne- 0f bne 0b

li 0,1

0: bdz .L14

cmpwi 7,0,0

beq- 7,.L5

addi 8,8,1

cmpw 7,8,5

beq- 7,.L21

.L4: .L4:
lwz 9,8(3) lwz 9,8(3)
cmpwi 7,9,-13623 cmpwi 7,9,-13623
addi 9,9,1 addi 9,9,1
bne+ 7,.L22 bne+ 7,.L5

.L21: .L14:
lwz 0,8(3) lwz 0,8(3)

xoris 9,0,0xc465
cmpw 7,0,8 cmpwi 7,9,-13824
bne- 7,.L23 bne 7,.L15
lwz 0,20(1) lwz 0,20(1)
addi 1,1,16 addi 1,1,16
mtlr 0 mtlr 0
blr blr

Figure 5.5: PowerPC assembly for counter microbenchmark with write

checks. The right-hand column is generated from the C implementation.

The left-hand column has an optimized version of the write check inlined

into the code using the asm keyword. Italicized code is essentially un-

changed. The optimized section is shown in boldface.
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# repetition count is in the count register to start
b 0f
.balign 32 # align to 32-byte cache-line boundary
nop
nop
nop
nop
nop
nop

0: lwarx 5,0,0
lwz 6, 0(9)

1: ori 8, 6, 3
addi 7, 6, 1
cmpwi 1, 5,0
cmpwi 2, 8, 0xFFFFCACB
bne- 1, 0b # stub: unusualWrite
beq- 2, 0b # stub: unusualRead or unusualWrite
stwcx. 7,0,9
lwarx 5,0,0
lwz 6, 0(9)
bne- 0, 1b
bdnz 1b

Figure 5.6: Optimized PowerPC assembly for counter microbenchmark with

both read and write checks.

the load-linked and store-conditional instructions.

Hennessy and Patterson's measurements indicate that load and store in-

structions comprise respectively 26% and 9% of dynamic instruction counts

in SPECint92 on a RISC microarchitecture (DLX) [46, p. 105]. As a

rough estimate, using dynamic instruction count as a proxy for instruc-

tion time, the 14% read overhead and 186% write overhead measured in

this microbenchmark thus translate into 20% net overhead for nontransac-

tional code.6 If we conservatively assume that most of the improvement

in Figure 5.6's optimized checks should be credited to reduced write-check

overhead, giving the same 14% read overhead but only 129% write over-

head, the same metric gives only 15% net overhead, as shown in Figure 5.7.

This �gure should be considered a rough lower bound for the time overhead,

possible with aggressive optimization and scheduling.7

60.65 + (1.14× 0.26) + (2.86× 0.09) = 1.20
7This calculation combines over- and underestimation, making this number only a
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5.2 Full application benchmarks

In this section I evaluate the performance of the ApeX implementation

on full applications. The limitations noted in Section 4.4 counsel that the

numbers I obtain ought to be considered guidelines to potential performance,

not fundamental limits.

I examine the SPECjvm98 benchmark suite, a collection of practical

Java programs including an expert system, a simple database, a Java com-

piler, an audio encoder, and a parser generator. These benchmarks were

previously described and characterized in Section 3.1. Figure 3.1 lists the 7

benchmarks in SPECjvm98. As in the previous section, we use the single-

threaded 205 raytrace benchmark in the place of its multithreaded variant

227 mtrt. We omit the 201 compress benchmark since a poor interac-

tion with the blacklist mechanism of the Boehm-Demers-Weiser conserva-

tive garbage collector causes the large array it allocates to be leaked. Runs

of 201 compress are distorted by the resulting large memory working set.

To clarify the measurements, the baseline for all comparisons will be

a version of the benchmarks compiled with the same method cloning and

desugaring (Section 4.2) that is done for the transaction transformation. In

addition to the full \100%" input for each benchmark, SPECjvm98 de�nes

two smaller inputs, sized to roughly correspond to 1% and 10% of the run-

time of the full benchmark. Unless otherwise speci�ed, all benchmarks were

run on the full \100%" input.

5.2.1 Nontransactional check overhead

In Section 5.1 I examined a simple counter microbenchmark to discover the

lower limits on our nontransactional overhead. These are the fundamental

rough bound. The use of dynamic instruction count, rather than dynamic instruction

time, likely underestimates the contribution of loads and stores to the run time. Schedul-

ing, prefetching, and store bu�ers can pipeline the cost of the loads and stores, however,

which might cause our overhead estimate to exceed the actual cost.
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Figure 5.8: Nontransactional check overhead for SPECjvm98. All bench-

marks are compiled with the transformations in Section 4.2 (method cloning,

desugaring) and all synchronization is removed. The left bar in each group

performs direct �eld access. The middle bar performs all reads with load-

linked, and performs all writes with a load-linked/store-conditional pair.

The right bar has all reads and writes transformed using the readNT and

writeNT protocols. The line graph in the background shows the write rate

(stores performed divided by base runtime) for each benchmark.
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per second.
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Figure 5.10: Actual (solid) versus predicted (striped) nontransactional check

overhead for SPECjvm98. Measurement methodology is identical to Fig-

ure 5.8. Overhead is predicted as 2.4 ns per read, and 63.5 ns per write.

Benchmark reads false 
ags read writes false 
ags written

jess 25,583,878 0 (0%) 703,303 0 (0%)

raytrace 25,439,376 0 (0%) 3,605,463 0 (0%)

db 11,078,177 0 (0%) 912,965 0 (0%)

javac 10,315 0 (0%) 2,312 0 (0%)

mpegaudio 239,928,276 2,056 (<0.001%) 42,164,416 9,132 (.02%)

jack 9,882,846 0 (0%) 4,595,774 0 (0%)

Figure 5.11: Number of false 
ags read/written in SPECjvm98 benchmarks.

To compile this table the applications were run with the 10% input size.
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costs of strong atomicity: the penalty we must pay even if we are not using

transactions at all.8 Figure 5.8 shows equivalent measurements on full Java

applications. Flex has removed all the synchronization in these benchmarks

(safe because they are single-threaded) leaving only the costs of the read and

write checks required by the transaction protocols.

In the �gure, the rightmost bar in each group shows the costs of per-

forming the readNT and writeNT protocols on every read and write in the

application. The earlier microbenchmark hinted that we might obtain non-

transactional overheads as low as 15%-20%. In fact, we see a 19% overhead

on the 209 db benchmark, although the other benchmarks show that an

overhead of 40%{50% is more typical.

The middle bar in the �gure shows the overhead incurred by simply

replacing the loads and stores with load-linked and store-conditional in-

structions, as our protocol must do. The PowerPC G4 is not optimized

for frequent \synchronization" instructions such as load-linked and store-

conditional, and store bu�ers and other architectural features are bypassed

for their execution. For most applications, the performance impact is not

signi�cant. Applications with large write rates, such as mpegaudio, are

a�ected to a greater degree.

The line graph in the background of Figure 5.8 shows the write rate

for each benchmark. Read and write rates for the benchmark are shown in

more detail in Figure 5.9. Write rate is a good predictor for overall check

overhead. The largest measured overhead, 249%, comes from a mpegaudio,

which has a write rate 4 times as large as any other benchmark.

Using the measured benchmark performance, we can compute a mini-

mum norm solution to the linear equation

oNT = krNT
rNT + kwNT

wNT (5.2)

where oNT is the overhead fraction due to nontransactional checks, r and w

8Although, of course, in practice one would turn o� the transaction transformation

completely if static or dynamic analysis indicated a program is single-threaded, for exam-

ple if no Thread objects are every created.
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are (nontransactional) read and write rates, respectively, and krNT
and kwNT

are the unknown coe�cients. The solution yields overhead contributions:

krNT
= 2.4 ns/read

kwNT
= 63.5 ns/write

These values are comparable to the 1.0 ns/read and 13.1 ns/write overheads

of the optimized checks we wrote for the counter microbenchmark of Sec-

tion 5.1. The ApeX check implementation is slower than the hand-tuned

assembly code.

Close inspection of the assembly code emitted by the C compiler for

these benchmarks indicates that, as in the microbenchmark of Section 5.1,

compiler limitations account for some of the di�erence. It is hard to obtain

maximum performance with a C backend (such as used by Flex) due to

expressive limits, and the emitted assembly indicates that the compiler is

not optimally acting on the hints we can give it. In particular, we want

as little extraneous code as possible on the fast path through the common

case, but the compiler adds register spills and moves on the fast path that

are necessary only in unusual cases. Further, because the fundamental load-

linked and store-conditional instructions are inside inline assembly blocks

and thus opaque to the gcc-3.4 backend compiler, many opportunities for

code motion and scheduling are being missed.

Slower checks are also partially the result of subword and multiword ac-

cesses in the full benchmarks, which are not present in our microbenchmark.

The nontransactional versions of the benchmarks must still properly

handle false 
ag values. Figure 5.11 shows that false 
ags are not a signi�-

cant percentage of values read or written, and thus not a major contribution

to overhead.

Figure 5.10 shows the performance predicted by Equation 5.2 overlaid

on actual performance. The jess benchmark has 39% higher overhead than

raytrace, although its write rate is only 9% higher. Similarly, db has a 64%

lower write rate than raytrace but a 76% lower overhead. The read rates
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for these three benchmarks are too similar to explain the di�erence. The

overhead nonlinearity can't be captured by the linear model. Furthermore,

actual performance is a�ected by unmodeled factors such as the programs'

read and write dependencies. The jess benchmark contains tight depen-

dencies which make its overhead more sensitive to a small increase in write

rate, while db has loose dependencies that lower its overhead. Nevertheless,

the model matches actual performance within 14% for all benchmarks.

5.2.2 Transaction overhead

Figure 5.12 presents the performance of the transactional versions of the

SPECjvm98 benchmarks. As in Figure 5.10, the leftmost bar represents the

original performance. The next two bars represent versions of the bench-

marks compiled with only part of the transaction transformation enabled.

These are used to evaluate di�erent components of the overhead. The right-

most solid bar shows the overhead of the full transacti�ed benchmark. The

�nal, striped, bar shows predicted overhead for the application, broken down

by source.

The second bar in Figure 5.12 shows the performance of the transacti-

�ed benchmark after all transactional read and write operations have been

replaced by direct reads and writes. We label this the \no check" variant.

Four changes to the application remain: transaction records are created

at the start of every atomic region, method calls inside transactions are

transformed to pass the transaction record and to check for abort on an

exceptional return, method cloning occurs to separate transactional from

nontransactional code, and a few live variables are passed around inside the

method body, increasing register pressure.

The transaction rate is the largest contributor to overhead for the \no

check" variant. The number of transactional method calls is a secondary

factor. Creation of a transaction record at the start of every atomic region

can be a considerable fraction of the overhead if the number of transactions
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Figure 5.12: Transaction overhead for SPECjvm98. The leftmost \Base" bar

is compiled with method cloning and desugaring, all transactions removed,

and direct reads and writes. The \No checks" bar transforms methods, cre-

ates commit records at the start of each transaction, and checks for abort

after every call, but uses direct loads and stores for all accesses. The \Trans-

actional (nonarray)" bar is fully transactional for object accesses, but uses

direct loads and stores for reads and writes of arrays. The \Transactional"

bar is fully transactional. The striped �nal bar shows predicted performance

for the benchmark, broken down by the modeled source of the overhead.
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is large. The \no check" contribution is modeled as follows:

ot = ktt + kcT
cT (5.3)

where ot is the overhead fraction due to this portion of the transaction

transformation, t is the transaction rate, cT is the number of method calls

which are inside transactions, and kt and kcT
are unknown constants. The

least squares solution is:

kt = 855 ns/transaction

kcT
= 18.2 ns/method call within transaction

The high value for kt represents the high cost of memory allocation under

the Boehm-Demers-Weiser conservative collector. In Figure 5.12 the red

striped component represents ot, computed according to Equation 5.3. The

prediction tracks the actual measured values (red solid bars) within 21% of

the actual overhead (ignoring raytrace and mpegaudio, where ot is within

the measurement noise).

I can use Equation 5.2 from the previous section to compute the overhead

contribution from nontransactional read and write checks. The light green

and light blue striped portions of the predicted overhead in Figure 5.12 rep-

resent oNT , computed using Equation 5.2 from the rate of nontransactional

reads and writes and the previously computed krNT
and kwNT

values.

The �nal component of the overhead is from the transactional read and

write protocols on accesses occurring inside transactions. Modeling this

component is more di�cult, due to the number of factors involved. Trans-

actional read cost depends on whether the object involved was previously

written inside the transaction. Transactional write cost depends on whether

this is the �rst time this particular object has been written inside a transac-

tion, and if so, on the size of the object. Both read and write costs are also

a�ected by the e�ectiveness of check hoisting and coalescing (Section 4.2.2).

The model I use for transactional access costs distinguishes virgin writes

(virgin reads), which are writes (reads) to an object which has not previ-

ously been written to (read from) in the current transaction. These accesses
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involve transaction bookkeeping which is not required for subsequent ac-

cesses. I also accumulate the object sizes involved in a virgin write, to

model the costs of creating a transactional clone. The resulting model is:

oT = kwvwv + kwswvsv + krvrv + krT
rT (5.4)

where oT is the overhead fraction due to transactional accesses, wv is the

(transactional) virgin write rate, sv is the average size of an object targeted

by a virgin write, rv is the (transactional) virgin read rate, rT is the transac-

tional read rate, and kwv , kws, krv , and krT
are unknown constants. Solving

for the constants yields:

kwv = 680 ns/virgin write

kws = 85 ns/byte targeted by a virgin write

krv = 660 ns/virgin read

krT
= 54 ns/transactional read

The kwv (virgin write) and krv (virgin read) costs are comparable to kt, since

the primary component of all of these costs is memory allocation (of a clone

object, a reader list entry, and a transaction commit record, respectively).

When the object touched by the virgin write is large, kws accounts for the

more expensive allocation and initialization. The transactional read cost,

krT
is comparable to kwNT

, the nontransactional write cost. The operations

involved are similar: a read of the head of the reader list, a comparison,

and then typically an access to the �eld location. The light green, green,

light blue, and blue striped bars in Figure 5.12 re
ects these component of

the cost prediction. The overall prediction is within 10% of actual costs for

every application except for raytrace, where the prediction underestimates

actual costs by 38%.

The constants in our model were derived from the transactional perfor-

mance. I can validate the model by deriving predictions for the object and

array components of the overhead separately. The green bar in Figure 5.12

represents variants of the benchmarks which replaced array reads and writes
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Benchmark t cT rNT wNT

jess 408,416 1,006,376 26,700,326 4,054,334

raytrace 301 133,686 26,104,154 3,608,662

db 1,328,518 2,015,319 18,187,254 987,484

javac 55 9,817,721 15,091 7,983

mpegaudio 287 9,618 212,850,162 38,663,921

jack 1,815,263 2,236,720 12,695,066 5,902,722

Figure 5.13: Transaction, call, and nontransactional read and write rates for

SPECjvm98 benchmarks.

with direct accesses. The resulting overhead includes ot, the \no checks"

overhead, as well as both transactional and nontransactional overheads for

nonarray objects. This breakdown was motivated by the observation that

sv, the average size of an object touched by a virgin write, in some cases

varies quite a lot between array and nonarray objects, as Figure 5.14 shows.

The design of the ApeX transaction system necessitates an object copy for

every unique object written to inside a transaction; if the objects are large,

then this cost becomes excessive. Chapter 6 will discuss this problem at

length and propose a solution based on functional array data structures.

The light green and dark green bars in Figure 5.12 show our predictions

for the nonarray variants of the benchmarks, based on the wv, sv, rT , and

rv values for nonarray accesses. These track the solid green bar indicating

actual performance fairly well.

5.3 Performance recommendations

Our predictive model of ApeX performance uses 8 parameters, ordered here

by their contribution to overall overhead:

� rNT , the number of nontransactional reads. Each nontransactional

read adds 2.4 ns overhead.

� cT , the number of method calls within transactions. Each call adds
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nonarray array

Benchmark wv sv rv rT sv sv

jess 5,291 710 1,573,712 3,046,653 30 851

raytrace 10,833 44 1,421 403,442 29 67

db 90,649 263 2,832,970 5,378,123 24 4,247

javac 464,294 37 4,630 29,804,501 32 50

mpegaudio 700 35 2,285 3,236 13 283

jack 412,891 64 3,268,924 8,016,197 32 69

Figure 5.14: Transaction performance model inputs for SPECjvm98 bench-

marks. Each benchmark lists wv, the virgin write rate, sv, the average

object size touched by a virgin write, rv, the virgin read rate, and rT , the

transactional read rate. The nonarray and array values of sv are broken out

in the �nal two columns.

18.2 ns overhead.

� rT , the number of transactional reads. Each transactional read adds

54 ns overhead.

� wNT , the number of nontransactional writes. Each nontransactional

write adds 63.5 ns overhead.

� wvsv, the product of the virgin write rate with the average object size

touched in a virgin write. This contributes 85 ns overhead per byte in

an object touched by a virgin write.

� rv, the number of virgin reads. Each virgin read adds 660 ns overhead.

� wv, the number of virgin writes. Each virgin write adds 680 ns over-

head.

� t, the number of transactions. Each transaction adds 855 ns overhead.

The costs associated with t, wv, and rv might be reduced with the use

of a faster allocator.
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A programmer seeking to improve the performance of their code should

�rst reduce the number of transactions created. ApeX is suited to small

numbers of large transactions. Chapter 7 presents an alternative transaction

system which is better suited for large numbers of small transactions.

The programmer can also reduce the number of virgin reads and writes

by structuring transactions to group �elds involved in a transaction inside

a single object. Combining smaller transactions will also tend to reduce the

number of expensive virgin reads and writes. An alternative to combining

small transactions is to reduce the number of memory accesses covered by

the transaction, since nontransactional reads are twenty times cheaper than

transactional reads.

Decreasing the number of memory operations also directly reduces over-

head. There are well-known compiler optimizations which cache memory

contents in local variables or registers. Traditionally, their widespread use

is avoided because the increase in register pressure makes caching counter-

productive. ApeX's more-expensive memory accesses should encourage use

of these optimizations.

Reducing the size of objects written by a transaction will reduce the

wvsv term and improve performance. In particular, several SPECjvm98

benchmarks allocate a large array and then perform multiple small transac-

tions which modify a single element of the array. This access pattern causes

the large array to be copied multiple times, increasing overhead. Chapter 6

describes a modi�cation to ApeX which avoids this dependence on object

size, removing the wvsv term from the performance model.
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Well, you go in and you ask for some tooth-

paste|the small size|and the man brings

you the large size. You tell him you wanted

the small size but he says the large size is

the small size. I always thought the large

size was the largest size, but he says that the

family size, the economy size and the giant

size are all larger than the large size|that

the large size is the smallest size there is.

Charade (1963)
Chapter 6

Arrays and large objects

This chapter presents a solution to the \large object problem." Cloning ob-

jects to store rollback or transactional state becomes impractical when the

objects are large. My solution involves the functional array datatype,

which I �rst review. I then recast the basic ApeX design of the previ-

ous chapters as a \small-object protocol" using naive functional arrays. I

extend the improved functional array implementations of Baker [10] and

Chuang [21] to obtain a lock-free variant of the data structure. Substituting

this improved implementation for the naive functional arrays in our recast

transaction system creates Large ApeX, which solves the large object prob-

lem. I conclude by evaluating the performance of lock-free functional arrays

on a simple microbenchmark, showing that they become worthwhile when

the object being accessed is larger than 32 words.

The basic ApeX software transaction system clones objects on transac-

tional writes so that the previous state of the object can be restored if the

transaction aborts. Figure 6.1 shows the object size distribution of transac-

tional writes for SPECjvm98, and indicates that over 10% of writes may be

to large objects. As we've seen in Section 5.2, the copying cost can become

excessive.
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Transactional−write distribution for SPECjvm98
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Figure 6.1: Proportion of transactional writes to objects equal to or smaller

than a given size.

6.1 Basic operations on functional arrays

Let us begin by reviewing the basic operations on functional arrays. Func-

tional arrays are persistent ; that is, after an element is updated, both the

new and the old contents of the array are available for use. Since arrays are

simply maps from integers (indexes) to values, any functional-map datatype

(for example, a functional balanced tree) can be used to implement func-

tional arrays. O'Neill and Burton [79] give a fairly inclusive overview of

functional array algorithms.

In contrast, an imperative array|such as those in imperative languages

such as Java|is mutable. Elements of the array are updated \in place",

destroying the old value of the element. Only the updated array is available

for use after an update. The distinguishing characteristic of an imperative

array is its time complexity: O(1) time to access or update any element. Im-

plementing functional arrays with a functional balanced tree yields O(lgn)
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worst-case access or update.1

For concreteness, a functional array de�nes the following three opera-

tions:

� FA-Create(n): Return an array A of size n. The contents of the

array are initialized to 0.

� FA-Update(A, i, v): Return an array A ′ that is functionally identical

to array A except that FA-Read(A ′, i) = v. Array A is not destroyed

and can be accessed further.

� FA-Read(A, i): Return A(i) (that is, the value of the ith element of

array A).

We allow any of these operations to fail. Failed operations can be safely

retried, as all operations are idempotent by de�nition.

For the moment, consider the following naive implementation:

� FA-Create(n): Return an ordinary imperative array of size n.

� FA-Update(A, i, v): Create a new imperative array A ′ and copy the

contents of A to A ′. Set A ′[i] = v. Return A ′.

� FA-Read(A, i): Return A[i].

Since this implementation costs O(1) to read and O(n) to update, it matches

the performance of imperative arrays only when R = O(U·n), where R is the

number of reads and U is the number of updates. In most code, R ≈ 3U [46,

p. 105] and the constant factors hidden by the big-O notation are small,

so the performance equivalence is only valid when n is relatively small.

I therefore call these small-object functional arrays. Operations in this

implementation never fail. Every operation is nonblocking and no synchro-

nization is necessary, since the imperative arrays are never mutated after

they are created. Section 6.4 reviews better functional array implementa-

tions and presents a new lock-free variant.

1I return to a discussion of operational complexity in Section 6.4.
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Figure 6.2: Implementing nonblocking single-object concurrent operations

with functional arrays.

6.2 A single-object protocol

Given a nonblocking implementation of functional arrays, we can construct

a transaction implementation for single objects. In this implementation,

�elds of at most one object may be referenced during the execution of the

transaction.

Consider the following two operations on objects:

� Read(o, f): Read �eld f of o. Assume that there is a constant map-

ping function, which, given a �eld name f, returns an integer index,

f.index. For simplicity and without loss of generality, assume that

all �eld sizes are equal.

� Write(o, f, v): Write value v to �eld f of o.

All other operations on Java objects, such as method dispatch and type in-

terrogation, can be performed using the immutable type �eld in the object.

Because the type �eld never changes after object creation, implementing

nonblocking operations on the type �eld is straightforward.

As Figure 6.2 shows, our single-object transaction implementation rep-

resents objects as a pair, combining type and a reference to a functional

array. When not inside a transaction, object reads and writes are imple-

mented using the corresponding functional array operation, with the array
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reference in the object being updated appropriately:

� Read(o, f): Return FA-Read(o.fields, f.index).

� Write(o, f, v): Replace o.fields with the result of

FA-Update(o.fields, f.index, v).

The interesting cases are reads and writes inside a transaction. At entry

to a transaction that will access (only) object o, the single-object version

of Large ApeX stores o.fields in a local variable u. We create another

local variable u ′ initialized to u. Then, the read and write operations are

implemented as follows:

� ReadT(o, f): Return FA-Read(u ′, f.index).

� WriteT(o, f, v): Update variable u ′ to the result of

FA-Update(u ′, f.index, v).

At the end of the transaction, we use Compare-And-Swap to atomically

set o.fields to u ′ if and only if it contained u. If the CAS fails, the

transaction is aborted (we simply discard u ′) and retried.

With our naive \small object" functional arrays, this implementation

is exactly the \small-object protocol" of Herlihy [48]. Herlihy's protocol is

rightly criticized for an excessive amount of copying. I address this criticism

with a better implementation of functional arrays in Section 6.4. First,

however, I remove the restriction that only one object may be referenced

within a transaction.

6.3 Extension to multiple objects

I extend the implementation to allow the �elds of any number of objects

to be accessed during the transaction. Figure 6.3 shows our new object

representation. Compare this �gure to Figure 3.6; we've successfully re-

cast the basic ApeX design in terms of operations on an array datatype.
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Figure 6.3: Data structures to support nonblocking multiobject concurrent

operations. Objects point to a linked list of versions, which reference trans-

action identi�ers. Versions created within the same execution of a trans-

action share the same transaction identi�er. Version structure also contain

pointers to functional arrays, which record the values for the �elds of the

object. If no modi�cations have been made to the object, multiple versions

in the list may share the same functional array. (Compare this model of a

transaction system to our concrete design in Figure 3.6.)
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Read(o, f):

begin

retry:

u← o.versions

u ′ ← u.next

s← u.owner.status

if (s = DISCARDED) [Delete DISCARDED?]

CAS(u, u ′, &(o.versions))

goto retry

else if (s = COMPLETE)

a← u.fields [u is COMPLETE]

u.next← null [Trim version list]

else

a← u ′.fields [u ′ is COMPLETE]

return FA-Read(a, f.index) [Do the read]

end

ReadT(o, f):

begin

u← o.versions

if (oid = u.owner) [My OID should be �rst]

return FA-Read(u.fields, f.index) [Do the read]

else [Make me �rst!]

u ′ ← u.next

s← u.owner.status

if (s = DISCARDED) [Delete DISCARDED?]

CAS(u, u ′, &(o.versions))

else if (oid.status = DISCARDED) [Am I alive?]

fail

else if (s = IN-PROGRESS) [Abort IN-PROGRESS?]

CAS(s,DISCARDED, &(u.owner.status))

else [Link new version in:]

u.next← null [Trim version list]

u ′ ← new Version(oid, u, null) [Create new version]

if (CAS(u, u ′, &(o.versions)) 6= FAIL)

u ′.fields← u.fields [Copy old �elds]

goto retry

end

Figure 6.4: Read andReadT implementations for the multiobject protocol.
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Write(o, f, v):

begin

retry:

u← o.versions

u ′ ← u.next

s← u.owner.status

if (s = DISCARDED) [Delete DISCARDED?]

CAS(u, u ′, &(o.versions))

else if (s = IN-PROGRESS) [Abort IN-PROGRESS?]

CAS(s,DISCARDED, &(u.owner.status))

else [u is COMPLETE]

u.next← null [Trim version list]

a← u.fields

a ′ ← FA-Update(a, f.index, v)

if (CAS(a, a ′, &(u.fields)) 6= FAIL) [Do the write]

return [Success!]

goto retry

end

WriteT(o, f, v):

begin

u← o.versions

if (oid = u.owner) [My OID should be �rst]

u.fields← FA-Update(u.fields, f.index, v)[Do write]

else [Make me �rst!]

u ′ ← u.next

s← u.owner.status

if (s = DISCARDED) [Delete DISCARDED?]

CAS(u, u ′, &(o.versions))

else if (oid.status = DISCARDED) [Am I alive?]

fail

else if (s = IN-PROGRESS) [Abort IN-PROGRESS?]

CAS(s,DISCARDED, &(u.owner.status))

else [Link new version in:]

u.next← null [Trim version list]

u ′ ← new Version(oid, u, null) [Create new version]

if (CAS(u, u ′, &(o.versions)) 6= FAIL)

u ′.fields← u.fields [Copy old �elds]

goto retry

end

Figure 6.5: Write and WriteT implementations for the multiobject pro-

tocol.
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Objects consist of two slots, and the �rst represents the immutable type,

as before. The second �eld, versions, points to a linked list of Version

structures. The Version structures contain a pointer fields to a functional

array, and a pointer owner to an transaction identi�er. The transaction

identi�er contains a single �eld, status, which can be set to one of three

values: COMMITTED, IN-PROGRESS, or ABORTED. When the trans-

action identi�er is created, the status �eld is initialized to IN-PROGRESS,

and it will be updated exactly once thereafter to either COMMITTED or

ABORTED. A COMMITTED transaction identi�er never later becomes IN-

PROGRESS or ABORTED, and a ABORTED transaction identi�er never

becomes COMMITTED or IN-PROGRESS.

We create an transaction identi�er when we begin or restart a trans-

action and place it in a local variable tid. At the end of the transaction,

we use CAS to set tid.status to COMMITTED if and only if it was IN-

PROGRESS. If the CAS is successful, the transaction has also executed

successfully; otherwise tid.status = ABORTED (which indicates that our

transaction has been aborted), and we must back o� and retry. All Version

structures created while in the transaction reference tid in their owner �eld.

Semantically, the current �eld values for the object are given by the �rst

version in the versions list whose transaction identi�er is COMMITTED.

These semantics allow us to link IN-PROGRESS versions in at the head of

multiple objects' versions lists and atomically change the values of all these

objects by setting the one common transaction identi�er to COMMITTED.

We only allow one IN-PROGRESS version on the versions list, and it must

be at the head. Thus, before we can link a new version at the head, we must

ensure that every other version on the list is ABORTED or COMMITTED.

Since we never look past the �rst COMMITTED version in the versions

list, we can free all versions past that point. In our presentation of the

algorithm, we do this deallocation by explicitly setting the next �eld of

every COMMITTED version we see to null; overwriting the reference allows

the versions past that point to be garbage collected. An optimization is for
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the garbage collector to do the list trimming for us when it does a collection.

Because we don't want to inadvertently chase the null next pointer of

a COMMITTED version, we always load the next �eld of a version before

we load owner.status. Since the writes occur in the reverse order (COM-

MITTED to owner.status, then null to next), we have ensured that our

next pointer is valid whenever the status is not COMMITTED.2

We begin an atomic method with TransStart and attempt to complete

an atomic method with TransEnd. They are de�ned as follows:

� TransStart: create a new transaction identi�er with its status ini-

tialized to IN-PROGRESS. Assign it to the thread-local variable tid.

� TransEnd: If

CAS(IN-PROGRESS,COMMITTED, &(tid.status))

is successful, the transaction as a whole has completed successfully

and can be linearized at the location of the CAS. Otherwise, the

transaction has been aborted. Back o� and retry from TransStart.

Pseudocode describing Read, Write, ReadT, and WriteT is presented

in Figures 6.4 and 6.5. In the absence of contention, all operations take

constant time plus an invocation of FA-Read or FA-Update.

6.4 Lock-free functional arrays

This section presents a lock-free implementation of functional arrays with

O(1) performance for both read and update in the absence of contention.

The crucial operation is a rotation of a di�erence node with the main body

of the array. Using this implementation of functional arrays in the multiob-

ject transaction protocol of the previous section creates Large ApeX, our

2Memory barriers will be necessary here if the architecture does not support sequential

consistency.
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Figure 6.6: Shallow binding scheme for functional arrays [21, Figure 1]. The

array is of size 2 and is indexed by x and y. The initial array A is unde�ned,

and B is de�ned as an update to A at index x by value 0. Similarly for C

and D. The dark node is the root node which has the cache. White nodes

are di�erential nodes which must �rst be rerooted before being read. Note

that only the root node has the cache.
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reimplementation of nonblocking transactions which solves the large-object

problem.

Let's begin by reviewing the well-known functional array implementa-

tions. As mentioned previously, O'Neill and Burton [79] give an inclusive

overview. Functional array implementations fall generally into one of three

categories: tree-based, fat-elements, or shallow-binding.

Tree-based implementations typically have a logarithmic term in their

complexity. The simplest is the persistent binary tree with O(lnn) look-up

time; Chris Okasaki [78] has implemented a purely functional random-access

list with O(ln i) expected lookup time, where i is the index of the desired

element.

Fat-elements implementations have per-element data structures indexed

by a master array. Cohen [23] hangs a list of versions from each element in

the master array. O'Neill and Burton [79], in a more sophisticated technique,

hang a splay tree o� each element and achieve O(1) operations for single-

threaded use, O(1) amortized cost when accesses to the array are \uniform",

and O(lnn) amortized worst case time.

Shallow binding was introduced by Baker [11] as a method to achieve

fast variable lookup in Lisp environments. Baker clari�ed the relationship

to functional arrays in [10]. Shallow binding is also called version tree

arrays, trailer arrays, or reversible di�erential lists. A typical drawback

of shallow binding is that reads may take O(u) worst-case time, where u

is the number of updates made to the array. Tyng-Ruey Chuang [21] uses

randomized cuts to the version tree to limit the cost of a read to O(n) in

the worst case. Single-threaded accesses are O(1).

Our use of functional arrays is single-threaded in the common case, when

transactions do not abort. Chuang's scheme is attractive because it limits

the worst-case cost of an abort with little added complexity. In this section

I will present a lock-free version of Chuang's randomized algorithm.

In shallow binding, only one version of the functional array (the root)

keeps its contents in an imperative array (the cache). Each of the other
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versions is represented as a path of di�erential nodes, where each node

describes the di�erences between the current array and the previous array.

The di�erence is represented as a pair 〈index, value〉, representing the new

value to be stored at the speci�ed index. All paths lead to the root. An

update to the functional array is simply implemented by adding a di�erential

node pointing to the array it is updating.

The key to constant-time access for single-threaded use is provided by

the read operation. A read to the root simply reads the appropriate value

from the cache. A read to a di�erential node, however, triggers a series

of rotations that swap the direction of di�erential nodes and result in the

current array acquiring the cache and becoming the new root. This sequence

of rotations is called rerooting, and is illustrated in Figure 6.6. Each rotation

exchanges the root nodes for a di�erential node pointing to it, after which the

di�erential node becomes the new root and the root becomes a di�erential

node pointing to the new root. The cost of a read is proportional to its

rerooting length, but after the �rst read accesses to the same version are

O(1) until the array is rerooted again.

Shallow binding performs badly if read operations ping-pong between

two widely separated versions of the array, as we will continually reroot the

array from one version to the other. Chuang's contribution is to provide for

cuts to the chain of di�erential nodes: once in a while we clone the cache

and create a new root instead of performing a rotation. Since this operation

takes O(n) time, we amortize it over n operations by randomly choosing to

perform a cut with probability 1/n.

Figure 6.7 shows the data structures used for the functional array im-

plementation, as well as the series of atomic steps used to implement a

rotation. The Array class, which represents a functional array, consists of a

size for the array and a pointer to a Node. There are two types of nodes: a

CacheNode stores a value for every index in the array, whereas a DiffNode

stores a single change to an array. Array objects that point to CacheNodes

are roots.
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Figure 6.7: Atomic steps in FA-Rotate(B). Time proceeds top-to-bottom

on the left hand side, and then top-to-bottom on the right. Array A is a root

node, and FA-Read(A, x) = z. Array B has the almost the same contents

as A, but FA-Read(B, x) = y.
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FA-Update(A, i, v):

begin

d← new Di�Node(i, v,A)

A ′ ← new Array(A.size, d)

return A ′

end

FA-Read(A, i):

begin

retry:

dC ← A.node

if dC is a cache, then

v← A.node[i]

if (A.node 6= dC)[consistency check]

goto retry

return v

else

FA-Rotate(A)

goto retry

end

Figure 6.8: Implementation of lock-free functional array using shallow bind-

ing and randomized cuts (part 1).
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FA-Rotate(B):

begin

retry:

dB ← B.node [step (1): assign names as per Figure 6.7.]

A← dB.array

x← dB.index

y← dB.value

z← FA-Read(A, x) [rotates A as side e�ect]

dC ← A.node

if dC is not a cache, then

goto retry

if (0 = (random mod A.size)) [random cut]

d ′C ← copy of dC

d ′C[x]← y

s← DCAS(dC, dC, &(A.node), dB, d ′C, &(B.node))

if (s 6= SUCCESS) goto retry

else return

C← new Array(A.size, dC)

dA ← new Di�Node(x, z, C)

s← CAS(dC, dA, &(A.node)) [step (2)]

if (s 6= SUCCESS) goto retry

s← CAS(A, C, &(dB.array)) [step (3)]

if (s 6= SUCCESS) goto retry

s← CAS(C, B, &(dA.array)) [step (4)]

if (s 6= SUCCESS) goto retry

s← DCAS(z, y, &(dC[x]), dC, dC, &(C.node)) [step (5)]

if (s 6= SUCCESS) goto retry

s← DCAS(dB, dC, &(B.node), dC, nil, &(C.node))[step (6)]

if (s 6= SUCCESS) goto retry

end

Figure 6.9: Implementation of lock-free functional array using shallow bind-

ing and randomized cuts (part 2).
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In step 1 of the �gure, we have a root array A and an array B whose

di�erential node dB points to A. The functional arrays A and B di�er in

one element: element x of A is z, while element x of B is y. We are about

to rotate B to give it the cache, while linking a di�erential node to A.

Step 2 shows our �rst atomic action. We have created a new DiffNode

dA and a new Array C and linked them between A and its cache. The

DiffNode dA contains the value for element x contained in the cache, z, so

there is no change in the value of A.

We continue swinging pointers until step 5, when we can �nally set the

element x in the cache to y. We perform this operation with a DCAS oper-

ation that checks that C.node is still pointing to the cache as we expect. A

concurrent rotation would swing C.node in its step 1. In general, therefore,

the location pointing to the cache serves as a reservation on the cache.

Thus, in step 6 we need to again use DCAS to simultaneously swing

C.node away from the cache as we swing B.node to point to the cache.

Figures 6.8 and 6.9 present pseudocode for FA-Rotate, FA-Read, and

FA-Update. Like FA-Rotate, FA-Read procedure also uses the cache

pointer as a reservation, double-checking the cache pointer after it �nishes

its read to ensure that the cache hasn't been stolen from it.

Let us now consider cuts, where FA-Read clones the cache instead of

performing a rotation. Cuts also check the cache pointer to protect against

concurrent rotations. But, what if the cut occurs while a rotation is mutat-

ing the cache in step 5? In this case, because the only array adjacent to the

root is B, the cut must be occurring during an invocation of FA-Rotate(B),

in which case the di�erential node dB will be applied after the cache is

copied, thereby safely overwriting the mutation we were concerned about.

With hardware support for small transactions [49] we could cheaply per-

form the entire rotation atomically, instead of using this six-step approach.
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#define REPETITIONS 100000
typedef int32_t field_t;
typedef int32_t index_t;

void do_bench(struct aarray *obj, index_t len) {
int i, j;

/** Initialize the array */
for (i=0; i<len; i++)
obj = write(obj, i, i);

/** Now reverse the array many times. */
for (j=0; j<(REPETITIONS*2); j++) {

#if defined(SINGLETHREAD) // single-threaded access
for (i=0; i<len/2; i++) {
field_t v1 = read(obj, i);
field_t v2 = read(obj, len-i-1);
obj = write(obj, i, v2);
obj = write(obj, len-i-1, v1);

}
#else // multithreaded access

struct aarray *robj = obj;
for (i=0; i<len; i++)
obj = write(obj, len-i-1, read(robj, i));

#endif
}
/** Check that the array has the expected values */
for (i=0; i<len; i++)
assert(read(obj, i)==i);

}

Figure 6.10: Array reversal microbenchmark to evaluate performance of

functional array implementations.

6.5 Performance of functional array implementa-

tions

This section presents performance measurements for our lock-free func-

tional array implementation using a simple read/update microbenchmark.

We compare our lock-free functional arrays with imperative arrays, naive

functional arrays (Section 6.1), shallow-binding functional arrays [10], and

Chuang's randomized-cut shallow-binding functional arrays [21].

Figure 6.10 shows the basic structure of the microbenchmark. The

read() and write() methods have appropriate de�nitions inlined for each
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variant of the benchmark. This microbenchmark is patterned after that

used in [79, p.507]. With SINGLETHREAD de�ned, accesses are imperative or

\single-threaded"|only the latest version of the array is referenced. The al-

gorithm corresponds to the typical imperative array reversal algorithm. We

swap the leftmost and rightmost element of the array and move inward as we

continue to swap. Without SINGLETHREAD de�ned, the reversal algorithm

always reads from the original array. This pattern of access corresponds to a

scenario where aborts are frequent. In our experiments the single-threaded

and multithreaded variants of the benchmark had almost identical perfor-

mance, contrary to the claims of [79]. Standard shallow-binding will have

poor performance only if reads of the half-reversed array were to occur in

the multithreaded variant. These reads are not necessary for array reversal.

Figure 6.11 shows the performance of various array implementations

using the single-threaded variant of the benchmark. I measured the number

of microseconds required for a read and update pair on the array, as the size

of the array ranged from 8 to 4096 elements. Benchmarks were executed on

the PowerPC hardware described in Section 5.2.3

Standard imperative arrays averaged 5.0 nanoseconds per read-update,

mostly invariant with array size. The naive functional array implementation,

described in Section 6.1, ranged from 475 ns for 8-element arrays up to

47,629 ns for 4096-element arrays. The exponential growth in run time

with increasing array size demonstrates the \large object problem" which

motivated our investigation of lock-free functional arrays in this chapter.

Shallow-binding functional arrays [10] averaged 327 nanoseconds per

read-update. This is over 60 times slower than standard imperative arrays,

but is invariant with array size. Shallow binding shows poor performance

when accesses are not single-threaded|in a transactional application, when

transactions abort often.

Chuang's randomized-cut shallow-binding functional arrays [21], labeled

\random cut" in Figure 6.11, allow good performance even when transac-

3Results on a 1.4GHz Pentium M were similar.
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Figure 6.11: Functional array performance on an array reversal microbench-

mark as the size of the array is varied. Both axes are logarithmic. The y

axis shows the average time, in nanoseconds, required to do an array read

followed by an update. The benchmark initialized the array and then re-

versed its contents 200,000 times. The reversal swapped the �rst and last

elements, then the second and second-to-last elements, etc.
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tions abort often. My implementation averaged 400 ns per read-update.

The root-cloning which allows multithreaded access imposes an additional

22% overhead when compared to the standard shallow binding functional

array implementation.

Finally, my lock-free version of Chuang's functional arrays, labeled \lock-

free" in the �gure, averages 894 ns per read-update. The penalty for per-

forming the lock-free algorithm is 124%, resulting in read-updates which

are over 175 times slower than imperative array read-updates. Figure 6.11

shows that the lock free algorithm is still faster than copying objects on

update when the objects are larger than 32 words long.

In a hybrid transaction system which used small hardware transaction

support for the functional array implementation, one could expect perfor-

mance similar to the standard randomized-cut shallow-binding implemen-

tation. One would simply make the rotation operations atomic using the

hardware transaction system.
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People who are really serious

about software should make

their own hardware.

Remember, it's all software, it

just depends on when you

crystallize it.

Alan Kay
Chapter 7

Transactions in hardware:

Unbounded Transactional

Memory

With hardware support, we can construct transaction systems that are more

e�cient than ApeX for certain types of transactions. This chapter presents

UTM, an implementation of unbounded transactional memory [6, 7] which

fully virtualizes transactions. I also present LTM, a much simpler design

which can be pin-compatible with today's processors. Although LTM sup-

ports more limited transactions, I show how LTM can be combined with the

software ApeX transaction system to yield HyApeX, a hybrid system with

a great deal of power and 
exibility.1

7.1 The UTM architecture

UTM, a system that implements unbounded transactional memory in hard-

ware, allows transactions to grow (nearly) as large as virtual memory. It

also supports a semantics for nested transactions, where interior transac-

1Portions of this chapter are adapted from [6, 7], co-written with Krste Asanovi�c,

Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie.
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tions are subsumed into the atomic region represented by the outer trans-

action. Unlike previous schemes that tie a thread's transactional state to

a particular processor and/or cache, UTM maintains bookkeeping informa-

tion for a transaction in a memory-resident data structure, the transaction

log . This log enables transactions to survive timeslice interrupts and pro-

cess migration from one processor to another. We �rst present the software

interface to UTM and then describe the implementation details.

7.1.1 New instructions

UTM adds two new instructions to a processor's instruction set architecture:

XBEGIN pc: Begin a new transaction. The pc argument to XBEGIN speci�es

the address of an abort handler (e.g., using a PC-relative o�set).

If at any time during the execution of a transaction the hardware

determines that the transaction must fail, it immediately rolls back

the processor and memory state to what it was when XBEGIN was

executed, then jumps to pc to execute the abort handler.

XEND: End the current transaction. If XEND completes, then the transaction

is committed, and all of its operations appear to be atomic with respect

to any other transaction.

Semantically, we can think of an XBEGIN instruction as a conditional

branch to the abort handler. The XBEGIN for a transaction that fails has

the behavior of a mispredicted branch. Initially, the processor executes

the XBEGIN as a not-taken branch, falling through into the body of the

transaction. Eventually the processor realizes that the transaction cannot

commit, at which point it reverts all processor and memory state back to

the point of misprediction and branches to the abort handler.

In the same manner as theApeX software implementation (Section 4.2.1),

UTM supports the nesting of transactions by subsuming the inner transac-

tion. For example, within an outer transaction, a subroutine that contains
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an inner transaction may be called. UTM simply treats the inner transac-

tion as part of the atomic region de�ned by the outer one. This strategy is

correct, because it maintains the property that the inner transaction exe-

cutes atomically. Subsumed nested transactions are implemented by using a

counter to keep track of nesting depth. If the nesting depth is positive, then

XBEGIN and XEND simply increment and decrement the counter, respectively,

and perform no other transactional bookkeeping.

7.1.2 Rolling back processor state

The branch mispredict mechanism in conventional superscalar processors

can roll back register state only for the small window of recent instructions

that have not graduated from the reorder bu�er. To circumvent the window-

size restriction and allow arbitrary rollback for unbounded transactions, the

processor must be modi�ed to retain an additional snapshot of the archi-

tectural register state. A UTM processor saves the state of its architectural

registers when it graduates an XBEGIN. The snapshot is retained either un-

til the transaction aborts, at which point the snapshot is restored into the

architectural registers, or until the matching XEND graduates indicating that

the transaction has committed.

UTM's modi�cations to the processor core are illustrated in Figure 7.1.

We assume a machine with a uni�ed physical register �le, and so rather than

saving the architectural registers themselves, UTM saves a snapshot of the

register-renaming table and ensures the corresponding physical registers are

not reused until the transaction commits. The rename stage maintains an

additional \saved" bit for each physical register to indicate which registers

are part of the working architectural state, and it takes a snapshot as each

branch or XBEGIN is decoded and renamed. When an XBEGIN instruction

graduates, activating the transaction, the associated \S bit" snapshot has

bits set on exactly those registers holding the graduated architectural state.

Physical registers are normally freed on graduation of a later instruction

that overwrites the same architectural register. If the S bit on the snapshot
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for the active transaction is set, the physical register is added to a FIFO

called a Register Reserved List instead of the normal Register Free

List , thereby preventing physical registers containing saved data from being

overwritten during a transaction. When the transaction's XEND commits,

the active snapshot's S bits are cleared and the Register Reserved List is

drained into the regular Register Free List. In the event that the transaction

aborts, the saved register-renaming table is restored and the reorder bu�er

is rolled back, as in an exception. After restoring the architectural register

state, the branch is taken to the abort handler. Even though the processor

can internally speculatively execute ahead through multiple transactions,

transactions only a�ect the global memory system as instructions graduate,

and hence UTM requires only a single snapshot of the architectural register

state.

The current transaction abort handler address, nesting depth, and reg-

ister snapshot are part of the transactional state. They are made visible

to the operating system (as additional processor control registers) to allow

them to be saved and restored on context switches.

7.1.3 Memory state

Previous HTM systems [49, 63] represent a transaction partly in the proces-

sor and partly in the cache, taking advantage of the coincidence between the

cache-consistency protocol and the underlying consistency requirements of

transactional memory. Unlike those systems, UTM transactions are repre-

sented by a single xstate data structure held in the memory of the system.

The cache in UTM is used to gain performance, but the correctness of UTM

does not depend on having a cache. In the following paragraphs, we �rst

describe the xstate and how the system uses it assuming there is no caching.

Then, we describe how caching accelerates xstate operations.

The xstate is illustrated in Figure 7.2. The xstate contains a transaction

log for each active transaction in the system. A transaction log is allocated

by the operating system for each thread, and two processor control registers
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hold the base and bounds of the currently active thread's log. Each log

consists of a commit record and a vector of log entries. The commit

record maintains the transaction's status: PENDING, COMMITTED, or ABORTED.

Each log entry corresponds to a block of memory that has been read or

written by the transaction. The entry provides a pointer to the block and

the old (backup) value for the block so that memory can be restored in case

the transaction aborts. Each log entry also contains a pointer to the commit

record and pointers that form a linked list of all entries in all transaction

logs that refer to the same block.

The �nal part of the xstate consists of a log pointer and one RW bit

for each block in memory (and on disk, when paging). If the RW bit is R,

any transactions that have accessed the block did so with a load; otherwise,

if it is W, the block may have been the target of a transaction's store. When

a processor running a transaction reads or writes a block, the block's log

pointer is made to point to a transaction log entry for that block. Further, if

the access is a write, the RW bit for the block is set to W. Whenever another

processor references a block that is already part of a pending transaction,

the system consults the RW bit and log pointer to determine the correct

action, for example, to use the old value, to use the new value, or to abort

the transaction.

When a processor makes an update as part of a transaction, the new

value is stored in memory and the old value is stored in an entry in the

transaction log. In principle, there is one log entry for every load or store

performed by the transaction. If the memory allocated to the log is not large

enough, the transaction aborts and the operating system allocates a larger

transaction log and retries the transaction. When operating on the same

block more than once in a transaction, the system can avoid writing multiple

entries into the transaction log by checking the log pointer to see whether

a log entry for the block already exists as part of the running transaction.

By following the log pointer to the log entry and then following the log

entry pointer to the commit record, one can determine the transaction status
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(pending, committed, or aborted) of each block. To commit a transaction,

the system simply changes the commit record from PENDING to COMMITTED.

At this point, a reference to the block produces the new value stored in

memory, albeit after some delay in chasing pointers to discover that the

transaction has been committed. To avoid this delay, as well as to free the

transaction log for reuse, the system must clean up after committing. It

does so by iterating through the log entries, clearing the log pointer for

each block mentioned, thereby �nalizing the contents of the block. Future

references to that block will continue to produce the new value stored in

memory, but without the delay of chasing pointers. To abort a transaction,

the system changes the commit record from PENDING to ABORTED. To clean

up, it iterates through the entries, storing the old value back to memory and

then clearing the log pointer. We chose to store the old value of a block in

the transaction log and the new value in memory, rather than the reverse, to

optimize the case when a transaction commits. No data copying is needed

to clean up after a commit, only after an abort.

When two or more pending transactions have accessed a block and at

least one of the accesses is a store, the transactions con
ict. Con
icts are

detected during operations on memory. When a transaction performs a

load, the system checks that either the log pointer refers to an entry in the

current transaction log, or else that the RW bit is R (additionally creating

an entry in the current log for the block if needed). When a transaction

performs a store, the system checks that no other transaction is referenced

by the log pointer (i.e., that the log pointer is cleared or that the linked list

of log entries corresponding to this block are all contained in the current

transaction log). If the con
ict check fails, then some of the con
icting

transactions are aborted. To guarantee forward progress, UTM writes a

timestamp into the transaction log the �rst time a transaction is attempted.

Then, when choosing which transactions to abort, older transactions take

priority. As an alternative, a backo� scheme [74] could also be used.

When a writing transaction wins a con
ict, there may be multiple read-
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ing transactions that must be aborted. These transactions are found e�-

ciently by following the block's log pointer to an entry and traversing the

linked list found there, which enumerates all entries for that block in all

transaction logs.

7.1.4 Caching

Although UTM can support transactions of unbounded size using the xs-

tate data structure, multiple memory accesses for each operation may be

required. Caching is needed to achieve acceptable performance. In the

common case of a transaction that �ts in cache, UTM, like the earlier pro-

posed HTM systems [49, 63], monitors the cache-coherence tra�c for the

transaction's cache lines to determine if another processor is performing a

con
icting operation. For example, when a transaction writes to a memory

location, the cache protocol obtains exclusive ownership on the whole cache

block. New values can be stored in cache with old values left in memory.

As long as nothing revokes the ownership of any block, the transaction can

succeed. Since the contents of the transaction log are unde�ned after the

transaction commits or aborts, in many cases the system does not even need

to write back a transaction log. Thus, for a small transaction that commits

without intervention from another transaction, no additional interprocessor

communication is required beyond the coherence tra�c for the nontransac-

tional case. When the transaction is too big to �t in cache or interactions

with other transactions are indicated by the cache protocol, the xstate for

the transaction over
ows into the ordinary memory hierarchy. Thus, the

UTM system does not actually need to create a log entry or update the log

pointer for a cached block unless it is evicted. After a transaction commits

or aborts, the log entries of unspilled cached blocks can be discarded and

the log pointer of each such block can be marked clean to avoid write-back

tra�c for the log pointer, which is no longer needed. Most of the overhead

is borne in the uncommon case, allowing the common case to run fast.

The in-cache representation of transactional state and the xstate data
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structure stored in memory need not match. The system can optimize the

on-processor representation as long as, at the cache interface, the view of

the xstate is properly maintained. For convenience, the transaction block

size can match the cache line size.

7.1.5 System issues

The goal of UTM is to support transactions that can run for an inde�-

nite length of time (surviving time slice interrupts), can migrate from one

processor to another along with the rest of a process's state, and can have

footprints bigger than the physical memory. Several system issues must be

solved for UTM to achieve that goal. The \big idea" of UTM is to treat the

xstate as a system-wide data structure that uses global virtual addresses.

Treating the xstate as data structure directly solves part of the problem.

For a transaction to run for an inde�nite length of time, it must be able to

survive a time-slice interrupt. By adding the log pointer to the processor

state and storing everything else in a data structure, it is easy to suspend

a transaction and run another thread with its own transaction. Similarly,

transactions can be migrated from one processor to another. The log pointer

is simply part of the thread or process state provided by the operating

system.

UTM can support transactions that are even larger than physical mem-

ory. The only limitation is how much virtual memory is available to store

both old and new values. To page the xstate out of main memory, the

UTM data structures might employ global virtual addresses for their point-

ers. Global virtual addresses are system-wide unique addresses that remain

valid even if the referenced pages are paged out to disk and reloaded in an-

other location. Typically, systems that provide global virtual addresses pro-

vide an additional level of address translation, compared to ordinary virtual

memory systems. Hardware �rst translates a process's virtual address into

a global virtual address. The global virtual address is then translated into a

physical address. Multics [15] provided user-level global virtual addressing
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using segment-o�set pairs as the addresses. The HP Precision Architecture

[66] supports global virtual addresses in a 64-bit RISC processor.

The log pointer and state bits for each user memory block, while typically

not visible to a user-level programmer, are themselves stored in addressable

physical memory to allow the operating system to page this information to

disk. The location of the memory holding the log pointer information for a

given user data page is kept in the page table and cached in the TLB.

During execution of a single load or store instruction, the processor

can potentially touch a large number of disparate memory locations in the

xstate, any of which may be paged out to disk. To ensure forward progress,

either the system must allow load or store instructions to be restarted in the

middle of the xstate traversal, or, if only precise interrupts are allowed, the

operating system must ensure that all pages required by an xstate traversal

can be resident simultaneously to allow the load or store to complete without

page faults.

UTM assumes that each transaction is a serial instruction stream be-

ginning with an XBEGIN instruction, ending with a XEND instruction, and

containing only register, memory, and branch instructions in between. A

fault occurs if an I/O instruction is executed during a transaction.

7.2 The LTM architecture

UTM is an idealized design for HTM which requires signi�cant changes to

both the processor and the memory subsystem of a contemporary com-

puter architecture. By scaling back on the degree of \unboundedness,"

however, a compromise between programmability and practicality can be

achieved. This section presents such an architectural compromise, called

LTM, for which we have implemented a detailed cycle-level simulation us-

ing UVSIM [102]. The limited transactions supported by LTM are still

powerful enough to serve as the basis for a hybrid system, as we will show

in Section 7.4.
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LTM's design is easier to implement than UTM, because it does not

support transactions of virtual-memory size. Instead, LTM avoids the in-

tricacies of virtual memory by limiting the footprint of a transaction to

(nearly) the size of physical memory. In addition, the duration of a transac-

tion must be less than a time slice, and transactions cannot migrate between

processors. With these restrictions, LTM can be implemented by only mod-

ifying the cache and processor core and without making changes to the main

memory, the cache-coherence protocols, or even the contents of the cache-

coherence messages. Unlike a UTM processor, an LTM processor can be

pin-compatible with a conventional processor. The design presented here is

based on the SGI Origin 3000 shared-memory multiprocessor, with mem-

ory distributed among the processor nodes and cache coherency maintained

using a directory-based write-invalidate protocol.

The UTM and LTM schemes share many ideas. Like UTM, LTM main-

tains data about pending transactions in the cache and detects con
icts

using the cache-coherency protocol in much the same way as previous HTM

proposals [55, 63]. LTM also employs an architectural state-save mechanism

in hardware. Unlike UTM, LTM does not treat the transaction as a data

structure. Instead, it binds a transaction to a particular cache. Transac-

tional data over
ows from the cache into a hash table in main memory,

which allows LTM to handle transactions too big to �t in the cache without

the full implementation complexity of the xstate data structure.

LTM has similar semantics to UTM, and the format and behavior of the

XBEGIN and XEND instructions are the same. The information that UTM

keeps in the transaction log is kept partly in the processor, partly in the

cache, and partly in an area of physical memory allocated by the operating

system.

LTM requires only a few small modi�cations to the cache, as shown in

Figure 7.3. For small transactions, the cache is used to store the speculative

transactional state. For large transactions, transactional state is spilled into

an over
ow data structure in main memory. An additional bit (T) is added
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Figure 7.3: LTM cache modi�cations. The T bit indicates if the line is

transactional. The O bit indicates if the set has over
owed. Over
owed

data is stored in a data structure in uncached DRAM.

per cache line to indicate if the data has been accessed as part of a pending

transaction. When a transactional-memory request hits a cache line, the T

bit is set. An additional bit (O) is added per cache set to indicate if it has

over
owed. When a transactional cache line is evicted from the cache for

capacity reasons, the O bit is set.

In LTM, the main memory always contains the original state of any

data being modi�ed transactionally, and all speculative transactional state

is stored in the cache and over
ow hash table. A transaction is committed by

simply clearing all the T bits in cache and writing all over
owed data back to

memory. Con
icts are detected using the cache-coherency protocol. When

an incoming cache intervention hits a transactional cache line, the running

transaction is aborted by simply clearing all the T bits and invalidating all

modi�ed transactional cache lines.

The over
ow hash table in uncached main memory is maintained by

hardware, but its location and size are set up by the operating system. If a
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request from the processor or a cache intervention misses on the resident tags

of an over
owed set, the over
ow hash table is searched for the requested

line. If the requested cache line is found, it is swapped with a line in the

cache set and handled like a hit. If the line is not found, it is handled like a

miss. While handling over
ows, all incoming cache interventions are stalled

using a NACK-based network protocol.

The LTM over
ow data structure uses the low-order bits of the address

as the hash index and uses linear probing to resolve con
icts. When the

over
ow data structure is full, the hardware signals an exception so that

the operating system can increase the size of the hash table and retry the

transaction.

LTM was designed to be a �rst step towards a truly unbounded trans-

actional memory system such as UTM. LTM has most of the advantages

of UTM while being much easier to implement. LTM's more practical im-

plementation of quasi-unbounded transactional memory su�ces for many

real-world concerns. Moreover, as Section 7.4 shows, LTM can be symbi-

otically paired with the more 
exible ApeX software transaction system to

achieve truly unbounded transactions at minimal hardware cost.

7.3 Evaluation

This section evaluates the UTM and LTM designs, demonstrating low over-

head and scalability. We examine over
ow behavior, providing motivation

for the hybrid system proposed in Section 7.4.

7.3.1 Scalability

We used a parallel microbenchmark to examine program behavior for small

transactions with high contention. Our results show that the extremely

low overhead of small hardware transactions enable them to almost always

complete even when contention is high.
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Figure 7.4: Counter performance on UVSIM.

The Counter microbenchmark has one shared variable that each proces-

sor atomically increments repeatedly with no backo� policy; the basic idea

is identical to the microbenchmark we used in Section 5.1. Each transac-

tion is only a few instructions long and every processor attempts to write

to the same location repeatedly. Both a locking and a transactional version

of Counter were run on UVSIM with LTM, and the results are shown in

Figure 7.4. In the locking version, there is a global spin-lock that each pro-

cessor obtains using a load-linked/store-conditional (LLSC) sequence from

the SGI synchronization libraries.

The locking version scales poorly, because the LLSC causes many cache

interventions even when the lock cannot be obtained. On the other hand,

the transactional version scales much better, despite having no backo� pol-

icy. When a transaction obtains a cache line, it is likely to be able to

execute a few more instructions before receiving an intervention since the

network latency is high. Therefore, small transactions can start and com-

plete (and perhaps even start and complete the next transaction) before the

cache line is taken away. Similar behavior is expected from UTM, and other

transactional-memory systems that use the cache and cache-coherency pro-

tocol to store transactional state, since small transactions e�ectively use the

cache the same way.
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7.3.2 Overhead

A main goal of LTM and UTM is to run the common case fast. As shown

in Section 3.1, the common case is when transactions are small and �t in

the cache. Therefore, by using the cache and cache coherency mechanism to

handle small transactions, LTM is able to execute with almost no overhead

over serial code in the common case. In this section, we discuss qualitatively

how the LTM implementation is optimized for the common case and how

similar techniques are used in UTM. The discussion is broken into the

following three cases: starting, running, committing a transaction.

Starting a transaction in LTM requires virtually no overhead in the com-

mon case since the hardware only needs to record the abort handler address.

No communication with the cache or other external hardware is necessary.

There is the added overhead of decoding the XBEGIN however that overhead

is generally insigni�cant compared to the cost of the transaction. Further,

instruction decode overhead is much lower in LTM than with locks. Even

schemes where the lock is not actually held such as SLE [80] have higher

decode overhead since they have more instructions. LTM's low transaction

startup overhead is a good indicator of the corresponding overhead in UTM,

since transaction start up in UTM is virtually the same.

Running a transaction in LTM requires no more overhead than running

the corresponding non-synchronized code in the common case. In LTM, the

T bit is simply set on each transactional cache access. LTM's low overhead

in this case unfortunately does not translate directly to UTM since UTM

modi�es the transaction record on each memory request. In the common

case, however, the transaction record entry is also in the cache. Thus, all

operations are local and no external communication is needed. Also, in some

cases, the cache can respond to the memory request once the requested data

is found. If the request requires data from the transaction record before it

can be serviced, however, an additional cache lookup is necessary, but the

lookup is local and can be done relatively quickly. Therefore, the common

case overhead of running a transaction can be minimal even in UTM.
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Committing a transaction in LTM has virtually no overhead in the com-

mon case, since it can be done in one clock cycle. LTM transaction commits

only requires a simple 
ash clear of all the transaction bits in the cache. Sim-

ilarly, UTM transaction commits only require a single change of the cached

transaction record to \committed." Although UTM transaction commit also

writes the updated values from the transaction record back to memory, this

write-back can be done lazily in the background. Therefore, since transac-

tion commit requires only a single change in the cache for both LTM and

UTM, the overhead is minimal in both cases.

7.3.3 Overflows

Although over
ows occur only in the uncommon case, our studies show

that it is important to have a scalable data structure even though it is used

infrequently.

For evaluation, we compiled three versions of the SPECjvm98 bench-

mark suite to run under UVSIM using Flex. We compiled a Base ver-

sion which uses no synchronization, a Locks version which uses spin-locks

for synchronization, and a Trans version which uses LTM transactions

for synchronization. To measure overheads, we ran these versions of the

SPECjvm98 benchmark suite on one processor of UVSIM.

As described in Section 4.2, our transactional version uses method cloning

to 
atten transactions. We performed the same cloning on the other com-

piled versions so that performance improvements due to the specialization

would not be improperly attributed to transactioni�cation. The three di�er-

ent benchmark versions were built from a common code-base using method

inlining in gcc2 to remove or replace all invocations of lock and transac-

tion entry and exit code with appropriate implementations. No garbage

collection was performed during these benchmark runs.

2We compiled the �les generated by the \Precise C" backend (Section 4.1) of Flex

with -O9 for a -mips4 target using the n64 API to generate fully static binaries executable

by UVSIM.
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Our initial results from Section 3.1 suggested that over
ows ought to be

infrequent, implying that the e�ciency of the over
ow data structure would

have a negligible e�ect on overall performance. Consequently, our �rst LTM

implementation used an unsorted array which required a linear search on

each miss to an over
owed set. The unsorted array was e�ective for most

of our test cases, as they had less overhead than locks. Using LTM with

the unsorted array, however, the transactional version of 213 javac was

14 times slower than the base version. Virtually all of the overhead came

from handling over
ows, which is not surprising, since the entire application

is enclosed in one large transaction. The large transaction touches 13K

cache lines with 9K lines over
owed. So, even though only 0.5% of the

transactional memory operations miss in the cache, each one incurs a huge

search cost. This unexpected slowdown indicated that a naive unsorted

array is insu�cient as an over
ow data structure. Therefore, LTM was

redesigned to use a hash table to store over
ows.

Since the entire application was enclosed in a transaction, the 213 javac

application was clearly not written to be a parallel application. It is impor-

tant, however, that an unbounded transactional memory system be able to

support even such applications with reasonable performance. Therefore, we

redesigned LTM to use hash table as described in Section 7.2.

Using LTM with the hash table, the SPECjvm98 application overheads

were much more reasonable as shown in Figure 7.5. The hash table data

structure decreased the overhead from a 14x slowdown to under 15% in

213 javac. Using the hash table, LTM transactional overhead is less than

locking overhead in all cases.

7.4 A hybrid transaction implementation

We've seen that UTM and LTM can operate with little overhead, but hard-

ware schemes encounter di�culties when scaling to large or long-lived trans-

actions. We have overcome some of the di�culties with an over
ow cache
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Benchmark Base Locks Trans Time in Time in

application time time time trans over
ow

(cycles) (% of Base time) (% of Trans time)

200 check 8.1M 124.0% 101.0% 32.5% 0.0085%

202 jess 75.0M 140.9% 108.0% 59.4% 0.0072%

209 db 11.8M 142.4% 105.2% 54.0% 0%

213 javac 30.7M 169.9% 114.2% 84.2% 10%

222 mpegaudio 99.0M 100.3% 99.6% 0.8% 0%

228 jack 261.4M 175.3% 104.3% 32.1% 0.0056%

Figure 7.5: SPECjvm98 performance on a 1-processor UVSIM simulation.

The Time in trans and Time in over
ow are the times spent actually

running a transaction and handling over
ows respectively. The input size

is 1. The over
ow hash table is 128MB.
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Figure 7.6: Performance (in cycles per node push on a simple queue bench-

mark) of LTM [6] (HTM), the object-based system presented in this paper

(STM) and a hybrid scheme (HSTM).
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(LTM), or by virtualizing transactions and dumping their state to a data

structure (UTM). It is worth considering, however, whether this extra com-

plexity is worthwhile: why not combine the strengths of our object-based

software transaction system (explicit transaction state, unlimited transac-

tion size, 
exibility) with the fast small transactions at which a hardware

system naturally excels?

Figure 7.6 presents the results of such a combination. In the �gure,

combining the systems is done in the most simple-minded way: all trans-

actions are begun in LTM, and after any abort the transaction is restarted

in the object-based software system. The �eld 
ag mechanism described in

Section 3.2.5 ensures that software transactions properly abort con
icting

hardware transactions: when the software scribbles FLAG over the original

�eld, the hardware detects the con
ict. Hardware transactions must perform

the ReadNT and WriteNT algorithms to ensure they interact properly with

concurrent software transactions, although these checks need not be part of

the hardware transaction mechanism. In the �gure, the checks were done in

software, with an implementation similar to that described in Section 5.1.

The �gure shows the performance of a simple queue benchmark as the

transaction size increases. The hardware transaction mechanism is fastest,

as one would expect, but its performance falters and then fails at a transac-

tion size of around 2500 nodes pushed. At this transaction size, the hardware

scheme ran out of cache; in a more realistic system it might also have run

out of its timeslice, aborting (LTM) or spilling (UTM) the transaction at

the context switch.

Above HTM in the �gure is the performance of the software transaction

system: about 4x slower, which is a pessimistic �gure. No special e�ort

was made to tune code or otherwise minimize slowdown, and the proces-

sor simulated had limited ability to exploit ILP (2 ALUs and 4-instruction

issue width). The software scheme, however, is una�ected by increasing

transaction size.

The hybrid scheme successfully combines the best features of both. It
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is only about 20% slower than the basic hardware scheme, due to the read

and write barriers it must implement, but at the point where the hardware

stops working well, it smoothly crosses over to track the performance of the

software transaction system.

There are many fortuitous synergies in such an approach. Hardware sup-

port for small transactions may be used to implement the software trans-

action implementation's Load Linked/Store Conditional sequences, which

may not otherwise be available on a target processor. The small transaction

support can also facilitate a functional-array solution to the large-object

problem, as we saw in Section 6.4. We might further improve performance

by adding a bit of hardware support for the readNT/writeNT barriers [22].

I believe this hybrid approach is the most promising direction for trans-

action implementations in the near future. It preserves the 
exibility to

investigate novel solutions to the outstanding challenges of transactional

models, which we review in Chapter 8, and it solves an important chicken-

and-egg problem preventing the development of transactional software and

the deployment of transactional hardware. Since the speed of the hardware

mechanism is tempered by the cooperation protocol of the software trans-

action system, high-e�ciency software transaction mechanisms, such as the

one presented in this thesis, are the key enabler for hybrid systems.
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The thing is to remember that

the future comes one day at a

time.

Dean Acheson

Chapter 8

Challenges

This chapter reviews objections that have been raised to straightforward or

naive transaction implementations. Although some of these objections do

not apply to our implementation, discussing them may further illuminate

our design choices. Other objections apply to certain situations, and should

be kept in mind when creating applications. Some of the problems raised

remain unsolved and are the subject of future work. For these problems we

attempt to sketch research directions.

8.1 Performance isolation

Zilles and Flint [104] identi�ed performance isolation as a potential issue

for transaction implementations. In a system with performance isolation,

the execution of one task (process, thread, transaction) should complete in

an amount of time which is independent of the execution of other tasks

(processes, threads, transactions) in the system. For a system with N pro-

cessors, it is ideal if a task is guaranteed to complete at least as quickly as

it would running alone on 1 processor.

Most common systems do not provide any guarantee of performance

isolation. On a typical multiuser system, the execution of a given task can
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be made arbitrarily slow by the concurrent execution of competing tasks.1

A nontransactional system can nevertheless be constructed with a good deal

of performance isolation by appropriately restricting the processes that can

be run and the resources they consume.

Zilles and Flint object that many transactional systems are constructed

such that a single large transaction may monopolize the atomicity resources

such that no other transactions may commit. By opening a transaction,

touching a large number of memory locations, and then never closing the

transaction, a malicious application may deny service to all concurrent ap-

plications in a transaction system.

For this reason, it is important that there are no global resources required

to complete a transaction. ApeX and the UTM hardware implementation

achieve this end, but the LTM design uses a per-processor over
ow table.

If an LTM design is implemented with a snoopy bus for coherence tra�c,

over
ows on one processor can impact the performance of all other proces-

sors on the bus. A directory-based coherence protocol (as we have described

in this thesis) eliminates this problem. Hybrid schemes based on LTM also

eliminate the problem, because an over
owing transaction can be aborted

and retried in software, which requires no global resources.

Concerns about performance isolation are not limited to transaction sys-

tems. Transaction systems provide a solution not available to systems with

lock-based concurrency, however: the o�ending transaction can be safely

aborted at any point to allow the other transactions to progress.

8.2 Progress guarantees

Aborting troublesome transactions raises another potential pitfall: how do

we guarantee that our system makes forward progress? Zilles and Flint [104]

note that transaction systems are subject to an \all-or-nothing" problem:

it's �ne to abort a troublesome large transaction to allow other work to

1Grunwald and Ghiasi [42] call this a \microarchitectural denial of service" attack.

152



8.3. THE SEMANTIC GAP

complete, but then we throw away any progress in that transaction. The

operating system is forced either to allocate for a large transaction all the

resources it requires, or to refuse to make any progress on the transaction.

There is no middle ground.

This criticism applies to the LTM hardware scheme and other unvirtual-

ized transaction implementation. In an LTM system, it is the programmer's

responsibility to structure transactions such that the application is likely

to complete. The operating system can deny progress when necessary to

prevent priority inversion.

The UTM, hybrid, and software-only implementations do not su�er the

same problem. UTM and software-only implementations can virtualize the

transaction, as all transaction state resides in memory, thereby allowing

the resources required to be paged in incrementally as needed. The hybrid

scheme, even when built on an unvirtualized mechanism such as LTM, can

abort and fail-over to a virtualized software system if su�cient resources are

not available.

8.3 The semantic gap

In a vein of optimism, transactions are often casually said to be \compati-

ble" with locks: transform your lock acquisition and release statements to

begin-transaction and end-transaction, respectively, and your application

is transformed. Some even claim that your application will suddenly be

faster/more parallel and that some lingering locking bugs and race condi-

tions will be cured by the change as well.

It is the latter part of the claim that draws �rst scrutiny. If you've \�xed"

my race conditions, haven't you altered the semantics of my program? What

other behaviors might have changed?

Blundell, Lewis, and Martin [17] describe the \semantic gap" opened

between the locking and naively transacti�ed code. They point out that

programs with data races|even \benign" ones|may deadlock when con-
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verted to use transactions, since the data race will never occur.2 One may

even wrap every access with a location-speci�c lock to \remove" the race

(for some de�nitions) without altering the behavior of the locking code or

the deadlock for the transactional version.

This concern is valid, and claims of automatic transacti�cation should

not be taken too lightly. Nevertheless, most \best-practices" concurrent

code will behave as expected, and (unlike timing-dependent code with races)

deadlocks make it obvious where things go wrong. Further, type systems

are capable of detecting the deadlocks in transacti�ed code and alerting the

programmer of the problem.

Blundell, Lewis, and Martin also point out that some transaction im-

plementations ignore \nontransactional" accesses|even if they access loca-

tions that are currently involved in a transaction. This oversight leads to

additional alterations in the semantics of the code. In the implementations

described in this thesis, we are careful to ensure that \nontransactional"

code still executes as if each statement is its own individual transaction,

what Blundell, Lewis, and Martin term strong atomicity .

8.4 I/O mechanisms

To be useful, computing systems must be e�ectively connected to the out-

side world. \Reality" creates a discontinuity in the transactional model:

real-world events cannot be rolled back in the same way as can changes

to program state. This section presents four mechanisms to accommodate

I/O in a transactional model. We can forbid I/O inside a transaction, via

runtime check or type system. If we must have I/O, we can either create

uninterruptible transactions to perform the I/O, or move the I/O to the

2For example, one thread can acquire lock L1 and then loop waiting for 
ag F1 to be

set. Another thread can acquire lock L2, set 
ag F1 and loop waiting for F2. The �rst

thread sees the update to F1, sets F2, and then releases L1. The second thread sees the

update to F2 and releases L2. Neither thread will be able to complete if these locks are

turned into atomic regions.
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start or end of the transaction. The most general mechanism is to inte-

grate programmer-speci�ed compensating actions to achieve \rollback" of

irrevocable actions within transactions.

8.4.1 Forbidding I/O

The most straightforward means to accommodate I/O in the transactional

framework is to forbid it: I/O may only happen outside of a transaction. A

runtime check or simple type system can be used to enforce this restriction.

A useful programmer technique in this model is to create a separate

concurrent thread for I/O. A transaction can interact with a queue to

request I/O, and the I/O thread dequeues requests and enqueues responses.

This strategy works well for unidirectional communication. Since round-trip

communication with the I/O thread cannot be accomplished within a single

transaction,3 transactions still must be broken between a request and reply.

Thus, some forms of interaction cannot be accomplished atomically.

8.4.2 Mutual exclusion

Another alternative is to integrate mutual exclusion into the transaction

model. Once we start an I/O activity within a transaction, the transaction

becomes uninterruptible : it may no longer be aborted and must be suc-

cessfully executed through commit. Only a single uninterruptible transac-

tion may execute at a given time (although other interruptible transactions

may be concurrent). E�ectively there is a single global mutual exclusion

lock for I/O activity. Transactions attempting I/O while the lock is already

held are either delayed or aborted.

This scheme is reasonable as long as I/O is infrequent in transactions. A

single debugging print-statement, however, is su�cient to serialize a trans-

3Deadlock would result, since I can't send a message and then wait for a reply

atomically|my communication partner won't see the sent message and know to reply

until the transaction is committed.
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action, and e�orts to make the single global I/O lock more �ne-grained

may ultimately dissipate the gains in simplicity and concurrency a�orded

by transactions in the �rst place.

8.4.3 Postponing I/O

A hybrid approach attempts to anticipate or postpone I/O operations so

that they run only at transaction start or end. Only the I/O operations

then need to be run serially, and the remainder of the transaction may still

execute concurrently. Input must be moved to the start of a transaction, and

once the input has been consumed, the transaction must run uninterrupted.

It may be aborted only if a push-back bu�er can be constructed for the

input, which is not always reasonable. Output is moved to the end of the

transaction, but only the actual I/O must be performed uninterrupted: the

transaction can still be aborted at any time prior to commit.

If output and input need to be interleaved, or the input occurs after an

output and thus cannot be moved to the start of the transaction, uninter-

ruptible transactions are still required. This approach thus works around

the disadvantages of mutual exclusion in some cases, but a single misplaced

debugging statement can still force serialization.

It is worth noting that modern interface hardware is often designed such

that it works well with this approach. For example, a GPU or network card

takes commands from or delivers input to a bu�er. A single operation is

su�cient to hand over a bu�er to the card to commence I/O. This single

I/O action may be made atomic with the transaction commit.

8.4.4 Integrating do/undo

The most sophisticated integration of I/O with transactions allows the pro-

grammer to specify \undo" code for I/O which cannot otherwise be rolled

back. In the database community, undo code is referred to as a compen-

sating transaction .
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Again, I/O is forbidden within \pure" transactions, but do/undo blocks

may be nested within transactions. A do block executes uninterruptibly. If

a transaction aborts before it reaches a do block, rollback occurs conven-

tionally. If it aborts after it has executed a do block, then the undo block is

executed uninterruptibly as part of transactional rollback. Mutual exclusion

must still be used in portions of the transaction processing, but ideally the

critical regions are short and infrequently invoked.

The do/undo behavior allows sophisticated exception processing: an

undo block may emit a backspace to the terminal after do emits a character,

or it may send an apology email after an email is sent irrevocably in a do

block. The do/undo is invisible to clients outside the transaction. Sophis-

ticated libraries can be built up using this mechanism. For example, disk

I/O can be made transactional using �le versioning and journalling.

The undo blocks may be di�cult to program. The most straightforward

implementation prevents the undo from accessing any transactional state,

and the programmer must take special care if she is to maintain a consis-

tent view of program state. A friendlier implementation presents a view of

program state such that it appears that the undo block executes immedi-

ately after the do block in the same lexical environment (regardless of what

ultimately aborted transactional code has executed in the interim). The

programmer is then able to naturally write code such as the following:

String from = ..., to = ..., subject = ...;
do {
sendEmail(from, to, subject);

} undo {
sendApology(from, to, "Re: "+subject);

}
/* code here can modify from, to, subject */
/* before transaction commit */

Presenting a time-warped view to the undo block can be di�cult or

impossible, depending on the history mechanism involved. In particular, if

the undo reads a new location previously untouched by the transaction, the

value of this location at the (previous) time immediately following the do
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might be unavailable. Presenting an inconsistent view of memory may be

undesirable.

8.5 OS interactions

While transaction-style synchronization has been successfully used to struc-

ture interactions within an operating system [73], transactions crossing the

boundary between operating system and application present additional chal-

lenges. Some operating system requests are either I/O operations or can be

handled with the same mechanism used to handle I/O within transactions,

as discussed in the previous section. Using memory allocation as an ex-

ample of an OS request, transactions can be forbidden to allocate memory,

required to take a lock, forced to preallocate all required memory,4 or use a

compensation mechanism to deallocate requested memory in case of abort.

Since the role of an operating system is to administer shared resources,

special care must be taken that transactions involving operating system

requests do not \contaminate" other processes. In particular, if data in

kernel space is to be included in a transaction, the following challenges

arise:

� If mutual exclusion may used to implement any part of the transac-

tion semantics (as in the various I/O schemes above), then it may be

possible to tie up the entire system (including unrelated processes)

until a transaction touching kernel structures commits.

� If transaction state if to be tracked in the cache, the kernel address

space must be reserved from the application memory map on archi-

tectures with virtually addressed caches.

� It may be desirable to include some loophole mechanism so that ker-

nel data structures can be released from the transaction. Similarly, if

4A retry mechanism can be used to incrementally increase the preallocation until the

transaction can successfully complete.
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the operating system wishes to use transactions within itself, it may

be desirable for these transactions to be independent from the ap-

plication's invoking transaction. Motivating examples include fault

handlers and the paging mechanism, which ought to be transparent

to the application's transaction.

It is possible to handle these challenges simply, for example by forbid-

ding OS calls within a transaction and aborting transactions if necessary on

context switches or faults. Such an approach raises hurdles for the applica-

tion programmer but simpli�es the operating system's task considerably. In

unvirtualized transaction implementations such as LTM, this approach also

limits the maximum duration of a transaction to a single time slice, although

the OS may be able to stretch a processes time slice when necessary.

A more sophisticated approach with explicit OS management of trans-

actions may be able to provide better transparency of OS/transaction in-

teractions for the application programmer and improved performance.

8.6 Recommendations for future work

Based on the discussion in this section, a virtualizable transaction mecha-

nism is recommended: if LTM is implemented in hardware, a hybrid scheme

like HyApeX should back it up in order to provide performance isolation

and progress guarantees. The ApeX and UTM systems are already virtual-

izable.

A do/undo mechanism for transactions allows better management of crit-

ical regions where mutual exclusion must be integrated with the transaction

mechanism to support I/O and certain OS interactions. All OS interactions

can then be performed in do block so that mutual exclusion need not be

extended across the OS boundary. The complexity of do/undo probably

argues for ApeX or HyApeX instead of a pure hardware scheme.
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Everything in the universe

relates to [transactions], one way

or another, given enough

ingenuity on the part of the

interpreter.

Principia Discordia (amended)Chapter 9

Related work

Many researchers have been investigating transactional memory systems.

This chapter discusses their related work and distinguishes the work of this

thesis. In particular, this thesis is unique in presenting a hybrid hard-

ware/software model-checked nonblocking object-oriented system that al-

lows co-existence of nontransactional and transactional accesses to a dy-

namic set of object �elds.

9.1 Nonblocking synchronization

Lamport [65] presented the �rst alternative to synchronization via mutual

exclusion for a limited situation involving a single writer and multiple read-

ers. Lamport's technique relies on reading guard elements in an order op-

posite to that in which they are written, guaranteeing that a consistent

data snapshot can be recognized. The writer always completes its part of

the algorithm in a constant number of steps, but readers are guaranteed to

complete only in the absence of concurrent writes.

Herlihy [54] formalized wait-free implementations of concurrent data

objects. A wait-free implementation guarantees that any process can com-

plete any operation in a �nite number of steps regardless of the activities of

other processes. Lamport's algorithm is not wait-free, because readers can
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be delayed inde�nitely.

Massalin and Pu [73] introduced the term lock-free to describe algo-

rithms with weaker progress guarantees. A lock-free implementation guar-

antees only that some process completes in a �nite number of steps. Unlike

a wait-free implementation, lock-freedom allows starvation. Since other sim-

ple techniques can be layered to prevent starvation (for example, exponential

backo�), simple lock-free implementations are usually seen as worthwhile

practical alternatives to more complex wait-free implementations.

An even weaker criterion, obstruction-freedom, was introduced by Her-

lihy, Luchangco, and Moir [56]. Obstruction-freedom only guarantees progress

for threads executing in isolation; that is, although other threads may have

partially completed operations, no other thread may take a step until the iso-

lated thread completes. Obstruction-freedom not only allows starvation of a

particular thread, it allows contention among threads to halt all progress in

all threads inde�nitely. External mechanisms are used to reduce contention

(thus, achieve progress) including backo�, queueing, or timestamping.

I use the term nonblocking to describe generally any synchronization

mechanism that doesn't rely on mutual exclusion or locking, including wait-

free, lock-free, and obstruction-free implementations. I consider mainly lock-

free algorithms.1

9.2 Efficiency

Herlihy [47, 54] presented the �rst universal method for wait-free concur-

rent implementation of an arbitrary sequential object. This original method

was based on a fetch-and-cons primitive, which atomically places an item

1Some authors use \nonblocking" and \lock-free" as synonyms, usually meaning what

we here call lock-free. Others exchange our de�nitions for \lock-free" and \nonblocking",

using lock-free as a generic term and nonblocking to describe a speci�c class of imple-

mentations. As there is variation in the �eld, we choose to use the parallel construction

wait-free, lock-free, and obstruction-free for our three speci�c progress criteria, and the

dissimilar nonblocking for the general class.

162



9.2. EFFICIENCY

on the head of a list and returns the list of items following it. Herlihy

showed that all concurrent primitives capable of solving the n-process con-

sensus problem|universal primitives|are powerful enough to implement

fetch-and-cons. In Herlihy's method, every sequential operation is trans-

lated into two steps. In the �rst, fetch-and-cons is used to place the name

and arguments of the operation to be performed at the head of a list, re-

turning the other operations on the list. Since the state of a deterministic

object is completely determined by the history of operations performed on

it, applying the operations returned in order from last to �rst is su�cient to

locally reconstruct the object state prior to the operation. The prior state

can now be used to compute the result of the operation without requiring

further synchronization with the other processes.

This �rst universal method was not very practical, a shortcoming which

Herlihy soon addressed [48]. In addition, his revised universal method can

be made lock-free, rather than wait-free, resulting in improved performance.

In the lock-free version of this method, objects contain a shared variable

holding a pointer to their current state. Processes begin by loading the

current state pointer and then copying the referenced state to a local copy.

The sequential operation is performed on the copy, and then if the object's

shared state pointer is unchanged from its initial load, it is atomically swung

to point at the updated state.

Herlihy called this the \small object protocol" because the object copy-

ing overhead is prohibitive unless the object is small enough to be copied

e�ciently (in, say, O(1) time). He also presented a \large object protocol"

which requires the programmer to manually break the object into small

blocks, after which the small object protocol can be employed. (This trou-

ble with large objects is common to many nonblocking implementations; a

solution is presented in Chapter 6.)

Barnes [12] provided the �rst universal nonblocking implementation method

that avoids object copying. He eliminates the need to store \old" object

state in case of operation failure by having all threads cooperate to ap-
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ply operations. For example, if the �rst processor begins an operation and

then halts, another processor will complete the operation of the �rst before

applying its own. Barnes proposes to accomplish the cooperation by cre-

ating a parallel state machine for each operation so that each thread can

independently try to advance the machine from state to state and thus ad-

vance incomplete operations.2 Although this strategy avoids copying state,

the lock-step cooperative process is extremely cumbersome and does not

appear to have ever been implemented. Furthermore, it does not protect

against errors in the implementation of the operations, which could cause

every thread to fail in turn as one by one they attempt to execute a buggy

operation.

Alemany and Felten [1] identi�ed two factors hindering the performance

of nonblocking algorithms to date: resources wasted by operations that fail,

and the cost of data copying. Unfortunately, they proceeded to \solve" these

problems by ignoring short delays and failures and using operating system

support to handle delays caused by context switches, page faults, and I/O

operations. This strategy works in some situations, but it obviously su�ers

from a bootstrapping problem as the means to implement an operating

system.

Although lock-free implementations are usually assumed to be more ef-

�cient that wait-free implementations, LaMarca [64] showed experimental

evidence that Herlihy's simple wait-free protocol scales well on parallel ma-

chines. When more than about twenty threads are involved, the wait-free

protocol becomes faster than Herlihy's lock-free small-object protocol [48],

three OS-aided protocols of LaMarca [64] and Alemany and Felten [1], and

a test-and-Compare&Swap spin-lock.

2It is interesting that Barnes' cooperative method for nonblocking situation plays out

in a real-time system very similarly to priority inheritance for locking synchronization.
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9.3 Transactional memory systems

Transactions are described in the database context by Gray [38], and Gray

and Reuter [39] contains a thorough treatment of database issues. Hardware

Transactional Memory (HTM) was �rst proposed by Knight [63], and Her-

lihy and Moss coined the term \transactional memory" and proposed HTM

in the context of lock-free data structures [49, 55]. The BBN Pluribus [88,

Ch. 23] provided transactions with an architectural limit on the size of a

transaction. Experience with Pluribus showed that the headaches of pro-

gramming correctly with such limits can be at least as challenging as using

locks. The Oklahoma Update [89] is another variation on transactional

operations with an architectural limit on the number of values in a transac-

tion.

Transactional memory is sometimes described as an extension of Load-

Linked/Store-Conditional [59] and other atomic instruction sequences. In

fact, some CISC machines, such as the VAX [27], had complex atomic in-

structions such as enqueue and dequeue.

Of particular relevance are Speculative Lock Elision (SLE) [80] and

Transactional Lock Removal (TLR) [81], which speculatively identify

locks and use the cache to give the appearance of atomicity. SLE and TLR

handle mutual exclusion through a standard programmer interface (locks),

dynamically translating locks into transactional regions. My research thrust

di�ers from theirs in that I hope to free programmers from the protocol

complexities of locking, not just optimize existing practice. The quantita-

tive results presented in Figure 7.5 of this thesis con�rm their �nding that

transactional hardware can be more e�cient than locks.

Martinez and Torrellas proposed Speculative Synchronization [72],

which allows some threads to execute atomic regions of code speculatively,

using locks, while guaranteeing forward progress by maintaining a nonspec-

ulative thread. These techniques gain many of the performance advantages

of transactional memory, but they still require new code to obey a locking
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protocol to avoid deadlock.

The recent work on Transactional memory Coherence and Con-

sistency (TCC) [43] is also relevant to our work. TCC uses a broadcast

bus to implement the transaction protocols, performing all the writes of

a particular transaction in one atomic bus operation. This strategy limits

scalability, whereas both the UTM and LTM proposals in Chapter 7 can em-

ploy scalable cache-consistency protocols to implement transactions. TCC

a�rms the conclusion we draw from our own Figure 3.3: most transactions

are small, but some are very large. TCC supports large transactions by

locking the broadcast bus and stalling all other processors when any pro-

cessor bu�er over
ows, whereas UTM and LTM allow overlapped execution

of multiple large transactions with local over
ow bu�ers. TCC is similar to

LTM in that transactions are bound to processor state and cannot extend

across page faults, timer interrupts, or thread migrations.

Several software transaction systems have been proposed [44, 50, 84, 87].

Some constrain the programmer and make transactions di�cult to use. All

have relatively high overheads, which make transactions unattractive for

uniprocessor and small SMP systems. (Once the number of processors is

large enough, the increased parallelism that can be provided by optimistic

transactions may cancel out the performance penalty of their use.)

Software transactional memory was �rst proposed by Shavit and Touitou

[87]. Their system requires that all input and output locations touched by a

transaction be known in advance, which limits its application. It performs

at least 10 fetches and 4 stores per location accessed (not counting the

loads and stores directly required by the computation). The benchmarks

presented were run on between 10 and 64 processors.

Rudys and Wallach [84] proposed a copying-based transaction system

to allow rollback of hostile codelets. They show an order of magnitude

slowdown for �eld and array accesses, and 6x to 23x slowdown on their

benchmarks.

Herlihy, Luchangco, Moss, and Scherer [50] present a scheme that allows
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transactions to touch a dynamic set of memory locations. The user still

must explicitly open every object touched, however, before it can be used

in a transaction. This implementation is based on object copying, and so

it has poor performance for large objects and arrays. Not including work

necessary to copy objects involved in writes, they require O(R(R + W))

work to open R objects for reading and W objects for writing, which may

be quadratic in the number of objects involved in the transaction. A list

insertion benchmark that they present shows 9x slowdown over a locking

scheme, although they beat the locking implementation when more than

5-10 processors are active. They present benchmark data with up to 576

threads on 72 processors.

Harris and Fraser [44] built a software transaction system on a 
at word-

oriented transactional memory abstraction, roughly similar to simulating

Herlihy's original hardware transactional memory proposal in software. The


at memory abstraction avoids problems with large objects. Performing m

memory operations touching l distinct locations costs at least m + l extra

reads and l+1 CAS operations, in addition to the reads and writes required

by the computation. They appear to execute about twice as slowly as a

locking implementation on some microbenchmarks. They benchmark on a

4-processor as well as a 106-processor machine. Their crossover point (at

which the blocking overhead of locks matches the software transaction over-

head) is around 4 processors. Harris and Fraser do not address the problem

of concurrent nontransactional operations on locations involved in a trans-

action, however. Java synchronization allows such concurrent operations,

with semantics given by the Java memory model [68{70]. The mechanisms

presented in Chapter 3 support these operations safely.

Herlihy and Moss [49] suggested that small transactions might be han-

dled in cache with over
ows handled by software. These software over
ows

must interact with the transactional hardware in the same way that the

hardware interacts with itself, however. Section 7.4 presented just such a

system.
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9.4 Language-level approaches to synchronization

Our work on integrating transactions into the Java programming language

is related to prior work on integrating synchronization mechanisms for mul-

tiprogramming, and in particular, to prior work on synchronization in an

object-oriented framework.

The Emerald system [16, 61] introduced monitored objects for synchro-

nization. Emerald code to implement a simple directory object is shown

in Figure 9.1. Each object is associated with a Hoare-style monitor, which

provides mutual exclusion and process signaling. Each Emerald object is

divided into a monitored part and a non-monitored part. Variables declared

in the monitored part are shared, and access to them from methods in the

non-monitored part is prohibited|although non-monitored methods may

call monitored methods to e�ect the access. Methods in the monitored part

acquire the monitor lock associated with the receiver object before entry

and release it on exit, providing for mutual exclusion and safe update of

the shared variables. Monitored objects naturally integrate synchronization

into the object model.

Unlike Emerald monitored objects, where methods can only acquire the

monitor of their receiver and where restricted access to shared variables is

enforced by the compiler, Java implements a loose variant where any monitor

may be explicitly acquired and no shared variable protection exists. As a

default, however, Java methods declared with the synchronized keyword

behave like Emerald monitored methods, ensuring that the monitor lock of

their receiver is held during execution.

Java's synchronization primitives arguably allow for more e�cient con-

current code than Emerald's|for example, Java objects can use multiple

locks to protect disjoint sets of �elds, and coarse-grain locks can be used

which protect multiple objects|but Java is also more prone to programmer

error. Even Emerald's restrictive monitored objects, however, are not suf-

�cient to prevent data races. As a simple example, imagine that an object
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const myDirectory == object oneEntryDirectory

export Store, Lookup

monitor
var name : String

var AnObject : Any

operation Store [ n : String, o : Any ]

name ← n

AnObject ← o

end Store

function Lookup [ n : String ] → [ o : Any ]

if n = name

then o ← AnObject

else o ← nil
end if

end Lookup

initially
name ← nil
AnObject ← nil

end initially

end monitor
end oneEntryDirectory

Figure 9.1: A directory object in Emerald [16], illustrating the use of monitor

synchronization.
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class Account {

int balance = 0;

atomic int deposit(int amt) {
int t = this.balance;

t = t + amt;

this.balance = t;

return t;

}

atomic int readBalance() {
return this.balance;

}

atomic int withdraw(int amt) {
int t = this.balance;

t = t - amt;

this.balance = t;

return t;

}

}

Figure 9.2: A simple bank account object, adapted from [29], illustrating

the use of the atomic modi�er.
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provides two monitored methods read and write which access a shared vari-

able. Non-monitored code can call read, increment the value returned, and

then call write, creating a classic race-condition scenario. The atomicity of

the parts is not su�cient to guarantee atomicity of the whole [29].

This example suggests that a better model for synchronization in object-

oriented systems is atomicity . Figure 9.2 shows Java extended with an

atomic keyword to implement an object representing a bank account. Rather

than explicitly synchronizing on locks, I simply require that the methods

marked atomic execute atomically with respect to other threads in the sys-

tem. To execute atomically, every execution of the program must compute

the same result as some execution where all atomic methods were run in

isolation at a certain point in time3 between their invocation and return.

Atomic methods invoked directly or indirectly from an atomic method are

subsumed by it: if the outermost method appears atomic, then by de�ni-

tion all inner method invocations also appear atomic. Flanagan and Qadeer

[29] provide a more formal semantics. Atomic methods can be analyzed us-

ing sequential reasoning techniques, which signi�cantly simpli�es reasoning

about program correctness.

Atomic methods can be implemented using locks. A simple if ine�cient

implementation would simply acquire a single global lock during the exe-

cution of every atomic method. Flanagan and Qadeer [29] present a more

sophisticated technique to prove that a given implementation using standard

Java monitors correctly guarantees method atomicity.

The transaction implementations presented in this thesis all use non-

blocking synchronization to implement atomic methods.

3The linearization point .
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\Begin at the beginning," the

King said, very gravely, \and go

on till you come to the end:

then stop."

Lewis Carroll, Alice's

Adventures in WonderlandChapter 10

Conclusion

There is no escape: parallel systems are in our future. Programming them

does not have to be as fraught as it is presently, however. I believe that trans-

actions provide a programmer-friendly model of concurrency which elimi-

nates many potential pitfalls of our current locking-based methodologies.

In this thesis I have demonstrated that it is possible to implement an

e�cient strongly atomic software transaction system, ApeX. I have shown

that nonblocking transactions can be used in applications beyond synchro-

nization, including fault tolerance and backtracking search. I have presented

implementation details to address the practical problems of building such a

system.

I have argued the transactions should not be subject to limits on size

or duration. I have presented both software and hardware implementations

free of such restrictions.

Since the low overhead of the ApeX software system allows it to be

pro�tably combined with a hardware transaction system, I have shown how

to build a hybrid, HyApeX, which yields fast execution of short and small

transactions while allowing fallback to software for large or complicated

transactions.

This thesis presents several designs for e�cient transaction systems that

enable the transactional programming model. The ApeX software-only sys-
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tem runs on current hardware, and LTM and UTM indicate possible direc-

tions for future hardware. There are challenges and design decisions remain-

ing, however. How should I/O be handled? What are the proper semantics

for nested transactions? What loophole mechanisms are necessary to allow

information about a transaction's progress to escape?

I believe hybrid systems such as HyApeX o�er the best answer to these

challenges. They combine the inherent speed of hardware systems with

the 
exibility of software, allowing novel solutions to be attempted without

requiring that design decisions be cast in silicon. The 
ag-based ApeX

software transaction system described in this thesis imposes low overhead,

allowing transactional programming to get o� the ground without hardware

support in the near term, while later supporting the development of new

transactional models and methodologies as part of a hybrid system.

Designing correct transaction systems is not easy, however. In the ap-

pendix you will �nd a Promela model of my software transaction system.

Automated veri�cation was essential when designing and debugging the sys-

tem, uncovering via exhaustive enumeration race conditions much too subtle

for me to discover by other means. I believe any credible transaction system

must be buttressed by formal veri�cation.
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Essentially, all models are

wrong, but some are useful.

George E. P. Box, Empirical

Model-Building and Response

SurfacesAppendix A

Model-checking the software

implementation

My work on both software and hardware transaction systems has reiterated

the di�culty of creating correct implementations of concurrent and fault-

tolerant constructs. Automatic model checking is a prerequisite to achieving

con�dence in the design and implementation. Versions of the software trans-

action system have been modeled in Promela using Spin 4.1.0 and veri�ed

on an SGI 64-processor MIPS machine with 16G of main memory.

Sequences of transactional and nontransactional load and store opera-

tions were checked using two concurrent processes, and all possible interleav-

ings were found to produce results consistent with the semantic atomicity of

the transactions. Several test scripts were run against the model using sep-

arate processors of the veri�cation machine (Spin cannot otherwise exploit

SMP). Some representative costs include:

� testing two concurrent writeT operations (including \false 
ag" con-

ditions) against a single object required 3.8 × 106 states and 170M

memory;

� testing sequences of transactional and nontransactional reads and writes

against two objects (checking that all views of the two objects were
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consistent) required 4.6× 106 states and 207M memory; and

� testing a pair of concurrent increments at values bracketing the FLAG

value to 99.8% coverage of the state space required 7.6 × 107 states

and 4.3G memory. Simultaneously model-checking a range of values

caused the state space explosion in this case.

Spin's unreachable code reporting was used to ensure that my test cases

exercised every code path, although exercising all code paths does not guar-

antee that every interesting interaction was checked.

In the process one bug in Spin was discovered,1 and several subtle race

conditions in the model were discovered and corrected. These race con-

ditions included several modeling artifacts. In particular, I was extremely

aggressive about reference-counting and deallocating objects in order to con-

trol the size of the state space, which proved di�cult to do correctly. I also

discovered some subtle-but-legitimate race conditions in the transactions

algorithm. For example:

� A race allowed con
icting readers to be created while a writer was

inside ensureWriter creating a new version object.

� Allowing already-committed version objects to be mutated when writeT

or writeNT was asked to store a \false 
ag" produced races between

ensureWriter and copyBackField. The code that was expected to

manage these races had unexpected corner cases.

� Using a bitmask to provide per-�eld granularity to the list of read-

ers proved unmanageable as there were three-way races among the

bitmask, the readers list, and the version tree.

In addition, the model-in-progress proved a valuable design tool, as portions

of the algorithm could readily be mechanically checked to validate (or dis-

credit) the designer's reasoning about the concurrent system. Humans do

1Breadth-�rst search of atomic regions was performed incorrectly in Spin 4.0.7; after I

reported this bug, a �x was incorporated in Spin 4.1.0.
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not excel at exhaustive state-space exploration. In fact, after discovering

the these (and other) bugs and �xing them in the model, I replaced my

original ad-hoc implementation of ApeX with new code which more closely

followed the model.

Spin is not particularly suited to checking models with dynamic alloca-

tion and deallocation. In particular, it considers the location of objects as

part of the state space, and allocating object A before object B produces a

di�erent state than if object B were allocated �rst. This behavior arti�cially

enlarges the state space. A great deal of e�ort was expended tweaking the

model to approach a canonical allocation ordering. The #ifdef REFCOUNT

bracketed portions of the model are evidence of this; they can be safely ig-

nored when studying the semantics of the model, but are necessary for me-

chanical veri�cation. A better solution to this problem would allow larger

model instances to be checked.

A.1 Promela primer

A concise Promela reference is available at http://spinroot.com/spin/

Man/Quick.html. Here, I attempt to summarize just enough of the language

to allow the model I've presented in this thesis to be understood.

Promela syntax is C-like, with the same lexical and commenting con-

ventions. Statements are separated by either a semicolon, or, equivalently,

an arrow. The arrow is typically used to separate a guard expression from

the statements it is guarding.

The program counter moves past a statement only if the statement is

enabled. Most statements, including assignments, are always enabled. A

statement consisting only of an expression is enabled if and only if the ex-

pression is true (non-zero). Our model uses three basic Promela statements:

selection, repetition, and atomic.
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The selection statement

if
:: guard -> statements
...
:: guard -> statements
fi

selects one among its options and executes it. An option can be selected

if and only if its �rst statement (the guard) is enabled. The special guard

else is enabled if and only if all other guards are not.

The repetition statement

do
:: statements
...
:: statements
od

is similar: one among its enabled statements is selected and executed, and

then the process is repeated (with a di�erent statement possibly being se-

lected each time) until control is explicitly transferred out of the loop with

a break or goto.

Finally,

atomic { statements }

executes the given statements in one indivisible step. For the purposes of

this model, a d step block

d_step { statements }

is functionally identical. Outside atomic or d step blocks, Promela allows

interleaving before and after every statement, but statements are indivisible.

Functions as speci�ed in this model are similar to C macros: every

parameter is potentially both an input and an output. Calls to functions

with names starting with move are simple assignments, but I've turned them

into macros so that reference counting can be performed.
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A.2 Spin model for software transaction system

The complete Spin 4.1.0 model for the Flex software transaction system is

presented here. It may also be downloaded from http://flex-compiler.

csail.mit.edu/Harpoon/swx.pml.

/************************************************************************
* Detailed model of software transaction code.
* Checking for safety and correctness properties. Not too worried about
* liveness.
*
* (C) 2006 C. Scott Ananian <cananian@alumni.princeton.edu>
************************************************************************/

/* CURRENT ISSUES:
* none known.
*/
/* MINOR ISSUES:
* 1) use smaller values for FLAG and NIL to save state space?
*/

/* Should use Spin 4.1.0, for correct nested-atomic behavior. */

#define REFCOUNT

#define NUM_OBJS 2
#define NUM_VERSIONS 6 /* each obj: committed and waiting version, plus nonce

* plus addition nonce for NT copyback in test3 */
#define NUM_READERS 4 /* both ’read’ trans reading both objs */
#define NUM_TRANS 5 /* two ’real’ TIDs, plus 2 outstanding TIDs for

* writeNT(FLAG) [test3], plus perma-aborted TID. */
#define NUM_FIELDS 2

#define NIL 255 /* special value to represent ’alloc impossible’, etc. */
#define FLAG 202 /* special value to represent ’not here’ */

typedef Object {
byte version;
byte readerList; /* we do LL and CAS operations on this field */
pid fieldLock[NUM_FIELDS]; /* we do LL operations on fields */
byte field[NUM_FIELDS];

};
typedef Versi0n { /* ’Version’ misspelled because spin #define’s it. */
byte owner;
byte next;
byte field[NUM_FIELDS];

#ifdef REFCOUNT
byte ref; /* reference count */

#endif /* REFCOUNT */
};
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typedef ReaderList {
byte transid;
byte next;

#ifdef REFCOUNT
byte ref; /* reference count */

#endif /* REFCOUNT */
};
mtype = { waiting, committed, aborted };
typedef TransID {
mtype status;

#ifdef REFCOUNT
byte ref; /* reference count */

#endif /* REFCOUNT */
};
Object object[NUM_OBJS];
Versi0n version[NUM_VERSIONS];
ReaderList readerlist[NUM_READERS];
TransID transid[NUM_TRANS];
byte aborted_tid; /* global variable; ’perma-aborted’ */

/* --------------------------- alloc.pml ----------------------- */
mtype = { request, return };

inline manager(NUM_ITEMS, allocchan) {
chan pool = [NUM_ITEMS] of { byte };
chan client;
byte nodenum;
/* fill up the pool with node identifiers */
d_step {
i=0;
do
:: i<NUM_ITEMS -> pool!!i; i++
:: else -> break
od;

}
end:
do
:: allocchan?request(client,_) ->

if
:: empty(pool) -> assert(0); client!NIL /* deny */
:: nempty(pool) ->

pool?nodenum;
client!nodenum;
nodenum=0

fi
:: allocchan?return(client,nodenum) ->

pool!!nodenum; /* sorted, to reduce state space */
nodenum=0

od
}

chan allocObjectChan = [0] of { mtype, chan, byte };
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active proctype ObjectManager() {
atomic {

byte i;
manager(NUM_OBJS, allocObjectChan)

}
}
chan allocVersionChan = [0] of { mtype, chan, byte };
active proctype VersionManager() {
atomic {

byte i=0;
d_step {
do
:: i<NUM_VERSIONS ->

version[i].owner=NIL; version[i].next=NIL;
version[i].field[0]=FLAG; version[i].field[1]=FLAG;
assert(NUM_FIELDS==2);
i++

:: else -> break
od;

}
manager(NUM_VERSIONS, allocVersionChan)

}
}
chan allocReaderListChan = [0] of { mtype, chan, byte };
active proctype ReaderListManager() {
atomic {

byte i=0;
d_step {
do
:: i<NUM_READERS ->

readerlist[i].transid=NIL; readerlist[i].next=NIL;
i++

:: else -> break
od;

}
manager(NUM_READERS, allocReaderListChan)

}
}
chan allocTransIDChan = [0] of { mtype, chan, byte };
active proctype TransIDManager() {
atomic {

byte i=0;
d_step {
do
:: i<NUM_TRANS -> transid[i].status=waiting; i++
:: else -> break
od;

}
manager(NUM_TRANS, allocTransIDChan)

}
}
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inline alloc(allocchan, retval, result) {
result = NIL;
do
:: result != NIL -> break
:: else -> allocchan!request(retval,0) ; retval ? result
od;
skip /* target of break. */

}
inline free(allocchan, retval, result) {
allocchan!return(retval,result)

}
inline allocObject(retval, result) {
atomic {
alloc(allocObjectChan, retval, result);
d_step {
object[result].version = NIL;
object[result].readerList = NIL;
object[result].field[0] = 0;
object[result].field[1] = 0;
object[result].fieldLock[0] = _thread_id;
object[result].fieldLock[1] = _thread_id;
assert(NUM_FIELDS==2); /* else ought to initialize more fields */

}
}

}
inline allocTransID(retval, result) {
atomic {
alloc(allocTransIDChan, retval, result);
d_step {
transid[result].status = waiting;

#ifdef REFCOUNT
transid[result].ref = 1;

#endif /* REFCOUNT */
}

}
}
inline moveTransID(dst, src) {
atomic {

#ifdef REFCOUNT
_free = NIL;
if
:: (src!=NIL) ->

transid[src].ref++
:: else
fi;
if
:: (dst!=NIL) ->

transid[dst].ref--;
if
:: (transid[dst].ref==0) -> _free=dst
:: else
fi
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:: else
fi;

#endif /* REFCOUNT */
dst = src;

#ifdef REFCOUNT
/* receive must be last, as it breaks atomicity. */
if
:: (_free!=NIL) -> run freeTransID(_free, _retval); _free=NIL; _retval?_
:: else
fi

#endif /* REFCOUNT */
}

}
proctype freeTransID(byte result; chan retval) {
chan _retval = [0] of { byte };
atomic {

#ifdef REFCOUNT
assert(transid[result].ref==0);

#endif /* REFCOUNT */
transid[result].status = waiting;
free(allocTransIDChan, _retval, result)
retval!0; /* done */

}
}
inline allocVersion(retval, result, a_transid, tail) {
atomic {

alloc(allocVersionChan, retval, result);
d_step {

#ifdef REFCOUNT
if
:: (a_transid!=NIL) -> transid[a_transid].ref++;
:: else
fi;
if
:: (tail!=NIL) -> version[tail].ref++;
:: else
fi;
version[result].ref = 1;

#endif /* REFCOUNT */
version[result].owner = a_transid;
version[result].next = tail;
version[result].field[0] = FLAG;
version[result].field[1] = FLAG;
assert(NUM_FIELDS==2); /* else ought to initialize more fields */

}
}

}
inline moveVersion(dst, src) {
atomic {

#ifdef REFCOUNT
_free = NIL;
if
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:: (src!=NIL) ->
version[src].ref++

:: else
fi;
if
:: (dst!=NIL) ->

version[dst].ref--;
if
:: (version[dst].ref==0) -> _free=dst
:: else
fi

:: else
fi;

#endif /* REFCOUNT */
dst = src;

#ifdef REFCOUNT
/* receive must be last, as it breaks atomicity. */
if
:: (_free!=NIL) -> run freeVersion(_free, _retval); _free=NIL; _retval?_
:: else
fi

#endif /* REFCOUNT */
}

}
proctype freeVersion(byte result; chan retval) {
chan _retval = [0] of { byte };
byte _free;
atomic { /* zero out version structure */

#ifdef REFCOUNT
assert(version[result].ref==0);

#endif /* REFCOUNT */
moveTransID(version[result].owner, NIL);
moveVersion(version[result].next, NIL);
version[result].field[0] = FLAG;
version[result].field[1] = FLAG;
assert(NUM_FIELDS==2);
free(allocVersionChan, _retval, result)
retval!0; /* done */

}
}

inline allocReaderList(retval, result, head, tail) {
atomic {
assert(head!=NIL);
alloc(allocReaderListChan, retval, result);
d_step {

#ifdef REFCOUNT
readerlist[result].ref = 1;
transid[head].ref++;
if
:: (tail!=NIL) -> readerlist[tail].ref++
:: else
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fi;
#endif /* REFCOUNT */

readerlist[result].transid = head;
readerlist[result].next = tail;

}
}

}
inline moveReaderList(dst, src) {
atomic {

#ifdef REFCOUNT
_free = NIL;
if
:: (src!=NIL) ->

readerlist[src].ref++
:: else
fi;
if
:: (dst!=NIL) ->

readerlist[dst].ref--;
if
:: (readerlist[dst].ref==0) -> _free=dst
:: else
fi

:: else
fi;

#endif /* REFCOUNT */
dst = src;

#ifdef REFCOUNT
/* receive must be last, as it breaks atomicity. */
if
:: (_free!=NIL) -> run freeReaderList(_free, _retval); _free=NIL; _retval?_
:: else
fi

#endif
}

}
proctype freeReaderList(byte result; chan retval) {
chan _retval = [0] of { byte };
byte _free;
atomic {

#ifdef REFCOUNT
assert(readerlist[result].ref==0);

#endif /* REFCOUNT */
moveTransID(readerlist[result].transid, NIL);
moveReaderList(readerlist[result].next, NIL);
free(allocReaderListChan, _retval, result)
retval!0; /* done */

}
}

/* --------------------------- atomic.pml ----------------------- */
inline DCAS(loc1, oval1, nval1, loc2, oval2, nval2, st) {
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d_step {
if
:: (loc1==oval1) && (loc2==oval2) ->

loc1=nval1;
loc2=nval2;
st=true

:: else ->
st=false

fi
}

}
inline CAS(loc1, oval1, nval1, st) {
d_step {
if
:: (loc1==oval1) ->

loc1=nval1;
st=true

:: else ->
st=false

fi
}

}
inline CAS_Version(loc1, oval1, nval1, st) {
atomic {
_free = NIL;
if
:: (loc1==oval1) ->

#ifdef REFCOUNT
if
:: (nval1!=NIL) -> version[nval1].ref++;
:: else
fi;
if
:: (oval1!=NIL) -> version[oval1].ref--;

if
:: (version[oval1].ref==0) -> _free = oval1
:: else
fi

:: else
fi;

#endif /* REFCOUNT */
loc1=nval1;
st=true

:: else ->
st=false

fi;
#ifdef REFCOUNT

/* receive must be last, as it breaks atomicity. */
if
:: (_free!=NIL) -> run freeVersion(_free, _retval); _free=NIL; _retval?_
:: else
fi
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#endif /* REFCOUNT */
}

}
inline CAS_Reader(loc1, oval1, nval1, st) {
atomic {

/* save oval1, as it could change as soon as we leave the d_step */
_free = NIL;
if
:: (loc1==oval1) ->

#ifdef REFCOUNT
if
:: (nval1!=NIL) -> readerlist[nval1].ref++;
:: else
fi;
if
:: (oval1!=NIL) -> readerlist[oval1].ref--;

if
:: (readerlist[oval1].ref==0) -> _free = oval1
:: else
fi

:: else
fi;

#endif /* REFCOUNT */
loc1=nval1;
st=true

:: else ->
st=false

fi;
#ifdef REFCOUNT

/* receive must be last, as it breaks atomicity. */
if
:: (_free!=NIL) -> run freeReaderList(_free, _retval); _free=NIL; _retval?_
:: else
fi

#endif /* REFCOUNT */
}

}

/* ---------------- end atomic.pml ------------------ */

mtype = { kill_writers, kill_all };
mtype = { success, saw_race, saw_race_cleanup, false_flag };

inline tryToAbort(t) {
assert(t!=NIL);
CAS(transid[t].status, waiting, aborted, _);
assert(transid[t].status==aborted || transid[t].status==committed)

}
inline tryToCommit(t) {
assert(t!=NIL);
CAS(transid[t].status, waiting, committed, _);
assert(transid[t].status==aborted || transid[t].status==committed)
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}
inline copyBackField(o, f, mode, st) {
_nonceV=NIL; _ver = NIL; _r = NIL; st = success;
/* try to abort each version. when abort fails, we’ve got a
* committed version. */
do
:: moveVersion(_ver, object[o].version);

if
:: (_ver==NIL) ->

st = saw_race; break /* someone’s done the copyback for us */
:: else
fi;
/* move owner to local var to avoid races (owner set to NIL behind
* our back) */

_tmp_tid=NIL;
moveTransID(_tmp_tid, version[_ver].owner);
if
:: (_tmp_tid==NIL) ->

break; /* found a committed version */
:: else
fi;
tryToAbort(_tmp_tid);
if
:: (transid[_tmp_tid].status==committed) ->

moveTransID(_tmp_tid, NIL);
moveTransID(version[_ver].owner, NIL); /* opportunistic free */
moveVersion(version[_ver].next, NIL); /* opportunistic free */
break /* found a committed version */

:: else
fi;
/* link out an aborted version */
assert(transid[_tmp_tid].status==aborted);
CAS_Version(object[o].version, _ver, version[_ver].next, _);
moveTransID(_tmp_tid, NIL);

od;
/* okay, link in our nonce. this will prevent others from doing the
* copyback. */
if
:: (st==success) ->

assert (_ver!=NIL);
allocVersion(_retval, _nonceV, aborted_tid, _ver);
CAS_Version(object[o].version, _ver, _nonceV, _cas_stat);
if
:: (!_cas_stat) ->

st = saw_race_cleanup
:: else
fi

:: else
fi;
/* check that no one’s beaten us to the copy back */
if
:: (st==success) ->
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if
:: (object[o].field[f]==FLAG) ->

_val = version[_ver].field[f];
if
:: (_val==FLAG) -> /* false flag... */

st = false_flag /* ...no copy back needed */
:: else -> /* not a false flag */

d_step { /* could be DCAS */
if
:: (object[o].version == _nonceV) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = _val;

:: else /* hmm, fail. Must retry. */
st = saw_race_cleanup /* need to clean up nonce */

fi
}

fi
:: else /* may arrive here because of readT, which doesn’t set _val=FLAG*/

st = saw_race_cleanup /* need to clean up nonce */
fi

:: else /* !success */
fi;

/* always kill readers, whether successful or not. This ensures that we
* make progress if called from writeNT after a readNT sets readerList
* non-null without changing FLAG to _val (see immediately above; st will
* equal saw_race_cleanup in this scenario). */

if
:: (mode == kill_all) ->

do /* kill all readers */
:: moveReaderList(_r, object[o].readerList);

if
:: (_r==NIL) -> break
:: else
fi;
tryToAbort(readerlist[_r].transid);
/* link out this reader */
CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _);

od;
:: else /* no more killing needed. */
fi;

/* finally, clean up our mess. */
moveVersion(_ver, NIL);
if
:: (st == saw_race_cleanup || st == success || st == false_flag) ->

CAS_Version(object[o].version, _nonceV, version[_nonceV].next, _);
moveVersion(_nonceV, NIL);
if
:: (st==saw_race_cleanup) -> st=saw_race
:: else
fi
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:: else
fi;
/* done */
assert(_nonceV==NIL);

}

inline readNT(o, f, v) {
do
:: v = object[o].field[f];

if
:: (v!=FLAG) -> break /* done! */
:: else
fi;
copyBackField(o, f, kill_writers, _st);
if
:: (_st==false_flag) ->

v = FLAG;
break

:: else
fi

od
}
inline writeNT(o, f, nval) {
if
:: (nval != FLAG) ->

do
::

atomic {
if /* this is a LL(readerList)/SC(field) */
:: (object[o].readerList == NIL) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = nval;
break /* success! */

:: else
fi

}
/* unsuccessful SC */
copyBackField(o, f, kill_all, _st)
/* ignore return status */

od
:: else -> /* create false flag */

/* implement this as a short *transactional* write. this may be slow,
* but it greatly reduces the race conditions we have to think about. */
do
:: allocTransID(_retval, _writeTID);

ensureWriter(_writeTID, o, _tmp_ver);
checkWriteField(o, f);
writeT(_tmp_ver, f, nval);
tryToCommit(_writeTID);
moveVersion(_tmp_ver, NIL);
if
:: (transid[_writeTID].status==committed) ->
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moveTransID(_writeTID, NIL);
break /* success! */

:: else ->/* try again */
moveTransID(_writeTID, NIL)

fi
od

fi;
}
inline readT(tid, o, f, ver, result) {
do
::

/* we should always either be on the readerlist or aborted here */
atomic { /* complicated assertion; evaluate atomically */

if
:: (transid[tid].status == aborted) -> skip /* okay then */
:: else ->

assert (transid[tid].status == waiting);
_r = object[o].readerList;
do
:: (_r==NIL || readerlist[_r].transid==tid) -> break
:: else -> _r = readerlist[_r].next
od;
assert (_r!=NIL); /* we’re on the list */
_r = NIL /* back to normal */

fi
}
/* okay, sanity checking done -- now let’s get to work! */
result = object[o].field[f];
if
:: (result==FLAG) ->

if
:: (ver!=NIL) ->

result = version[ver].field[f];
break /* done! */

:: else ->
findVersion(tid, o, ver);
if
:: (ver==NIL) -> /* use value from committed version */

assert (_r!=NIL);
result = version[_r].field[f]; /* false flag? */
moveVersion(_r, NIL);
break /* done */

:: else /* try, try, again */
fi

fi
:: else -> break /* done! */
fi

od
}
inline writeT(ver, f, nval) {
/* easy enough: */
version[ver].field[f] = nval;
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}

/* make sure ’tid’ is on reader list. */
inline ensureReaderList(tid, o) {
/* add yourself to readers list. */
_rr = NIL; _r = NIL;
do
:: moveReaderList(_rr, object[o].readerList); /* first_reader */

moveReaderList(_r, _rr);
do
:: (_r==NIL) ->

break /* not on the list */
:: (_r!=NIL && readerlist[_r].transid==tid) ->

break /* on the list */
:: else ->

/* opportunistic free? */
if
:: (_r==_rr && transid[readerlist[_r].transid].status != waiting) ->

CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _)
if
:: (_cas_stat) -> moveReaderList(_rr, readerlist[_r].next)
:: else
fi

:: else
fi;
/* keep looking */
moveReaderList(_r, readerlist[_r].next)

od;
if
:: (_r!=NIL) ->

break /* on the list; we’re done! */
:: else ->

/* try to put ourselves on the list. */
assert(tid!=NIL && _r==NIL);
allocReaderList(_retval, _r, tid, _rr);
CAS_Reader(object[o].readerList, _rr, _r, _cas_stat);
if
:: (_cas_stat) ->

break /* we’re on the list */
:: else
fi
/* failed to put ourselves on the list, retry. */

fi
od;
moveReaderList(_rr, NIL);
moveReaderList(_r, NIL);
/* done. */

}

/* look for a version read/writable by ’tid’. Returns:
* ver!=NIL -- ver is the ’waiting’ version for ’tid’. _r == NIL.
* ver==NIL, _r != NIL -- _r is the first committed version in the chain.
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* ver==NIL, _r == NIL -- there are no commited versions for this object
* (i.e. object[o].version==NIL)
*/
inline findVersion(tid, o, ver) {
assert(tid!=NIL);
_r = NIL; ver = NIL; _tmp_tid=NIL;
do
:: moveVersion(_r, object[o].version);

if
:: (_r==NIL) -> break /* no versions. */
:: else
fi;
moveTransID(_tmp_tid, version[_r].owner);/*use local copy to avoid races*/
if
:: (_tmp_tid==tid) ->

ver = _r; /* found a version: ourself! */
_r = NIL; /* transfer owner of the reference to ver, without ++/-- */
break

:: (_tmp_tid==NIL) ->
/* perma-committed version. Return in _r. */
moveVersion(version[_r].next, NIL); /* opportunistic free */
break

:: else -> /* strange version. try to kill it. */
/* ! could double-check that our own transid is not aborted here. */
tryToAbort(_tmp_tid);
if
:: (transid[_tmp_tid].status==committed) ->

/* committed version. Return this in _r. */
moveTransID(version[_r].owner, NIL); /* opportunistic free */
moveVersion(version[_r].next, NIL); /* opportunistic free */
break /* no need to look further. */

:: else ->
assert (transid[_tmp_tid].status==aborted);
/* unlink this useless version */
CAS_Version(object[o].version, _r, version[_r].next, _)
/* repeat */

fi
fi

od;
moveTransID(_tmp_tid, NIL); /* free tmp transid copy */
assert (ver!=NIL -> _r == NIL : 1)

}

inline ensureReader(tid, o, ver) {
assert(tid!=NIL);
/* make sure we’re on the readerlist */
ensureReaderList(tid, o)
/* now kill any transactions associated with uncommitted versions, unless
* the transaction is ourself! */

findVersion(tid, o, ver);
/* don’t care about which committed version to use, at the moment. */
moveVersion(_r, NIL);
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}

/* per-object, before write. */
/* returns NIL in ver to indicate suicide. */
inline ensureWriter(tid, o, ver) {
assert(tid!=NIL);
/* Same beginning as ensureReader */
ver = NIL; _r = NIL; _rr = NIL;
do
:: assert (ver==NIL);

findVersion(tid, o, ver);
if
:: (ver!=NIL) -> break /* found a writable version for us */
:: (ver==NIL && _r==NIL) ->

/* create and link a fully-committed root version, then
* use this as our base. */

allocVersion(_retval, _r, NIL, NIL);
CAS_Version(object[o].version, NIL, _r, _cas_stat)

:: else ->
_cas_stat = true

fi;
if
:: (_cas_stat) ->

/* so far, so good. */
assert (_r!=NIL);
assert (version[_r].owner==NIL ||

transid[version[_r].owner].status==committed);
/* okay, make new version for this transaction. */
assert (ver==NIL);
allocVersion(_retval, ver, tid, _r);
/* want copy of committed version _r. Race here because _r can be
* written to under peculiar circumstances, namely: _r has
* non-flag value, non-flag value is copied back to parent,
* flag_value is written to parent -- this forces flag_value to
* be written to committed version. */

/* IF WRITES ARE ALLOWED TO COMMITTED VERSIONS, THERE IS A RACE HERE.
* But our implementation of false_flag writes at the moment does
* not permit *any* writes to committed versions. */

version[ver].field[0] = version[_r].field[0];
version[ver].field[1] = version[_r].field[1];
assert(NUM_FIELDS==2); /* else ought to initialize more fields */
CAS_Version(object[o].version, _r, ver, _cas_stat);
moveVersion(_r, NIL); /* free _r */
if
:: (_cas_stat) ->

/* kill all readers (except ourself) */
/* note that all changes have to be made from the front of the
* list, so we unlink ourself and then re-add us. */

do
:: moveReaderList(_r, object[o].readerList);

if
:: (_r==NIL) -> break
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:: (_r!=NIL && readerlist[_r].transid!=tid)->
tryToAbort(readerlist[_r].transid)

:: else
fi;
/* link out this reader */
CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _)

od;
/* okay, all pre-existing readers dead & gone. */
assert(_r==NIL);
/* link us back in. */
ensureReaderList(tid, o);
break

:: else
fi;
/* try again */

:: else
fi;
/* try again from the top */
moveVersion(ver, NIL)

od;
/* done! */
assert (_r==NIL);

}
/* per-field, before read. */
inline checkReadField(o, f) {
/* do nothing: no per-field read stats are kept. */
skip

}
/* per-field, before write. */
inline checkWriteField(o, f) {
_r = NIL; _rr = NIL;
do
::

/* set write flag, if not already set */
_val = object[o].field[f];
if
:: (_val==FLAG) ->

break; /* done! */
:: else
fi;
/* okay, need to set write flag. */
moveVersion(_rr, object[o].version);
moveVersion(_r, _rr);
assert (_r!=NIL);
do
:: (_r==NIL) -> break /* done */
:: else ->

object[o].fieldLock[f] = _thread_id;
if
/* this next check ensures that concurrent copythroughs don’t stomp
* on each other’s versions, because the field will become FLAG
* before any other version will be written. */
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:: (object[o].field[f]==_val) ->
if
:: (object[o].version==_rr) ->

atomic {
if
:: (object[o].fieldLock[f]==_thread_id) ->

version[_r].field[f] = _val;
:: else -> break /* abort */
fi

}
:: else -> break /* abort */
fi

:: else -> break /* abort */
fi;
moveVersion(_r, version[_r].next) /* on to next */

od;
if
:: (_r==NIL) ->

/* field has been successfully copied to all versions */
atomic {
if
:: (object[o].version==_rr) ->

assert(object[o].field[f]==_val ||
/* we can race with another copythrough and that’s okay;
* the locking strategy above ensures that we’re all
* writing the same values to all the versions and not
* overwriting anything. */
object[o].field[f]==FLAG);

object[o].fieldLock[f]=_thread_id;
object[o].field[f] = FLAG;
break; /* success! done! */

:: else
fi

}
:: else
fi
/* retry */

od;
/* clean up */
moveVersion(_r, NIL);
moveVersion(_rr, NIL);

}
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This con�guration of Fleetwood
Mac's been together 10 years,
and it's taken us entire years to
make a single record.

Christine McVie

Appendix B

Compiler and runtime

system configurations

This section contains details on the compiler and runtime system con�gu-

rations used to obtain the results in Section 5.2.

Four variants of the spec benchmarks were compiled, labeled T, TNOA,
NT, and TUNIQ.

T: Basic transaction transformation
$ SPECSUFFIX=T \
CLASSPATH_HOME=.../classpath-0.08-install \
bin/build-spec-precisec -T 1 10

TNOA: "No array" transformation
$ SPECSUFFIX=TNOA \
CLASSPATH_HOME=.../classpath-0.08-install \
bin/build-spec-precisec -Dharpoon.synctrans.noarraymods=true -T 1 10

NT: Strip all transactions so we can discover non-transactional overhead.
$ SPECSUFFIX=NT \
CLASSPATH_HOME=.../classpath-0.08-install \
bin/build-spec-precisec -Dharpoon.synctrans.removetrans=true -T 1 10

TUNIQ: Count methods called within a transaction and unique objects
touched during a transaction.

$ FLEXSTACK=64m OPT_FLEX_SUPPORT_FILES=Support/jutil.jar \
SPECSUFFIX=TUNIQ \
CLASSPATH_HOME=.../classpath-0.08-install \
bin/build-spec-precisec -Dharpoon.synctrans.uniquerwcounters=true \

-Dharpoon.counters.enabled.synctrans.virgin_{read,write}_array=true \
-Dharpoon.counters.enabled.synctrans.virgin_{read,write}_array_size=true \
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-Dharpoon.counters.enabled.synctrans.virgin_{read,write}_object=true \
-Dharpoon.counters.enabled.synctrans.virgin_{read,write}_object_size=true\
-Dharpoon.counters.enabled.synctrans.{read,write}_t_{array,object}=true \
-Dharpoon.counters.enabled.synctrans.{read,write}_nt_{array,object}=true \
-Dharpoon.counters.enabled.synctrans.trans_call=true \
-T 6 7

These source files were then built and linked against a number of
different configurations of the runtime. The following script was used.

-----------------------------------------------------------------------
#!/bin/bash
BENCHMARKS="200CHECK 201COMPRESS 202JESS 205RAYTRACE 209DB 213JAVAC"
BENCHMARKS="$BENCHMARKS 222MPEGAUDIO 227MTRT 228JACK"

function buildone() {
pushd $RT
( ./configure "${CONFIG[@]}" && make clean && make ) || return
popd
mkdir -p $DST || return
tar -C src -xzf src/$SRC.tgz || return
for f in $BENCHMARKS ; do
make -C src/$SRC/as${f}sa$SUF -j2 CC="$CFLAGS" && \
mv src/$SRC/as${f}sa$SUF/Java.a ${RT}/${f}sa${SUF}-Java.a && \
make -C src/$SRC/as${f}sa$SUF clean && \
make -C ${RT} run${f}sa$SUF && \
mv ${RT}/${f}sa${SUF}-Java.a ${RT}/run${f}sa$SUF $DST && \
gzip -9 -f $DST/run${f}sa$SUF

done
/bin/rm -rf src/$SRC/
}

# non-transactional runtime
RT=/home/cananian/Harpoon/Runtime
CFLAGS="gcc-3.4 -I${RT}/include -g -O9"
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install)

# 0-NO is nontransactional
SRC=NO
DST=0-NO
SUF=
buildone

# transactional runtime
RT=/home/cananian/Harpoon/TRANS/Runtime
CFLAGS="gcc-3.4 -I${RT}/include -g -O9"
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=8)
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# 1-T is pure transactional
SRC=T
DST=1-T
SUF=T
buildone

# 2-NOA only transforms non-array references
SRC=TNOA
DST=2-NOA
SUF=TNOA
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=8 \
--with-extra-cflags=-DTRANS_NO_ARRAY)

buildone

# 8-NT strips all the transactions, so we can see non-transactional overhead
SRC=NT
DST=8-NT
SUF=NT
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=8 \
--with-extra-cflags=-DTRANS_NT)

buildone

# 9-NONT strips all the transactions, so we can see non-transactional overhead
# also substitutes plain reads & writes.
SRC=NT
DST=9-NONT
SUF=NT
CFLAGS="gcc-3.4 -I${RT}/include -g -O9 -DDONT_REALLY_DO_TRANSACTIONS"
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=8 \
--with-extra-cflags="-DDONT_REALLY_DO_TRANSACTIONS -DTRANS_NT")

buildone

# B-NONTSC is similar, but it replaces the stores with LL/SC to see how large
# that effect is.
DST=B-NONTSC
CFLAGS="gcc-3.4 -I${RT}/include -g -O9 -DDONT_REALLY_DO_TRANSACTIONS "
CFLAGS="$CFLAGS -DSTUB_LLSC"
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=8 \

--with-extra-cflags="-DDONT_REALLY_DO_TRANSACTIONS -DTRANS_NT -DSTUB_LLSC")
buildone
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# 6-NOT is transactional code, but with plain reads & writes substituted
SRC=T
DST=6-NOT
SUF=T
CFLAGS="gcc-3.4 -I${RT}/include -g -O9 -DDONT_REALLY_DO_TRANSACTIONS"
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=8 \
--with-extra-cflags=-DDONT_REALLY_DO_TRANSACTIONS)

buildone

# E-TUNIQ has code to count unique objects
SRC=TUNIQ
DST=E-TUNIQ
SUF=TUNIQ
CFLAGS="gcc-3.4 -I${RT}/include -g -DDONT_REALLY_DO_TRANSACTIONS"
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=16 \
--with-extra-cflags=-DDONT_REALLY_DO_TRANSACTIONS)

buildone

# 7-TS is the transactional code w/ some statistics gathering stuff
RT=/home/cananian/Harpoon/TRANS/Runtime
CFLAGS="gcc-3.4 -I${RT}/include -g -O9"
CONFIG=(--with-precise-c --with-gc=conservative --with-thread-model=heavy \

--with-classpath=/home/cananian/Harpoon/classpath-0.08-install \
--with-transactions --with-object-padding=8 --with-statistics)

SRC=T
DST=7-TS
SUF=T
buildone

# done!
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