Non-Blocking Synchronization and Object-Oriented Operating System Design

C. Scott Ananian
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139
cananian@csail.mit.edu

Abstract

Mutual exclusion is typically employed for multiprocess
synchronization. However, Massalin and Pu [MP91], and
Greenwald and Cheriton [GC96] have implemented com-
plete operating systems using non-blocking synchronization
instead of mutual exclusion. Although most operating sys-
tems are implemented using procedural languages, both of
these systems have significant object-oriented characteris-
tics. We show the interaction of non-blocking synchroniza-
tion and object-oriented language design for operating sys-
tems, and present a proposal for an implementation of the
Java programming language with non-blocking synchroniza-
tion based on functional arrays. We present an experimental
plan to run portions of a Java operating system under our
system and show the benefits.

1 Introduction

Multiprocess synchronization is typically done with mutual
exclusion: only one processor at a time may execute “crit-
ical regions” of the software. This can lead to low paral-
lelism, fault-intolerance, and unexpected dependencies be-
tween tasks. Non-blocking synchronization has been shown
to have competitive performance with mutual exclusion
mechanisms, and prevents the failure, delay, or execution
of one task from interfering with the progress of other par-
allel tasks. This technique is not yet widespread.

Massalin and Pu built the multiprocessor version of their
Synthesis kernel [MP91, MP92] using non-blocking synchro-
nization to avoid perceived performance problems with mu-
tual exclusion locks. They succeeded in demonstrating the
practicality of non-blocking synchronization and achieved
very high performance using a small number of non-blocking
data structures in a constrained manner. Greenwald and
Cheriton used non-blocking synchronization in a slightly
more general manner to implement their Cache Kernel
[CDY4, GCI6].

Object-orientation' is important in both Synthesis and
the Cache Kernel. The Cache Kernel is implemented in
C++ and exports only three basic object types [CD94],
while Synthesis implements “quajects” leveraging only
macro-assembler [PM91].  Synchronization is associated
with separate objects in both systems, informally follow-

!Jonathan Rees, among others, has criticized the increasing vague-
ness of the term “object-oriented”. We will primarily use the term to
describe encapsulation, protection, and a sum-of-product-of-function
pattern (his items 1, 2, and 9 in [Ree01]).

Writer: Reader:
Vit do {
write; temp = v2;
v2++; read;

} while (temp != v1);

Figure 1: Lamport’s single-writer multiple-reader non-
blocking synchronization algoritm [Lam77].

ing the basic principles of monitor synchronization laid out
by the Emerald system [JS91].2 The follow-on project to
Synthesis, Synthetix, made a strong argument that strong
object encapsulation was a necessary requirement for a high-
performance adaptive kernel [BW95]; other recent work on
object-oriented operating systems has explored replacing
more of the basic operating system protection mechanisms
with compiler-enforced software invariants [BSP*95]. Of-
ten significant language co-design issues are involved, as ev-
idenced by the DrScheme [FFKF99] and Lisaac [SC02] sys-
tems.

The Java programming language incorporates monitor
synchronization, which is typically implemented using mu-
tual exclusion. We outline a non-blocking implementation
of Java synchronization based on fast functional arrays, and
show how this can be used in the construction of an object-
oriented operating system. Monitor synchronization with
encapsulated objects lends itself well to non-blocking imple-
mentations, and compiler analyses can be used to reduce the
overhead of synchronization still further. A plan for experi-
ments including benchmarks of portions of a Java operating
system is presented.

The next section describes the history, advantages and
implementations of non-blocking synchronization. Section
3 will discuss the Synthesis and Cache Kernels in detail.
Section 4 will discuss object-oriented operating systems in
general, including language design issues. Section 5 will de-
scribe our proposal for extending Java with non-blocking
monitor synchronization. Section 6 will present our experi-
mental plan. We will close with a summary of the research
and our conclusions.



2 Non-blocking synchronization

Lamport presented the first alternative to synchronization
via mutual exclusion in [Lam77], for a limited situation in-
volving a single writer and multiple readers. Lamport’s
technique, presented in Figure 1, relies on reading guard
elements v; and v2 in an order opposite to that in which
they are written, guaranteeing that a consistent data snap-
shot can be recognized. The writer always completes its part
of the algorithm in a constant number of steps; readers are
guaranteed to complete only in the absence of concurrent
writes.

Herlihy formalized wait-free implementations of concur-
rent data objects in [Her88]. A wait-free implementation
guarantees that any process can complete any operation in
a finite number of steps, regardless of the activities of other
processes. Lamport’s algorithm, for example, is not wait-
free because readers can be delayed indefinitely. Wait-free
algorithms typically involve “recursive helping,” whereby ac-
tive processes can complete operations on behalf of stalled
processes, ensuring that all operations are eventually com-
pleted.

Massalin and Pu introduced the term lock-free to de-
scribe algorithms with weaker progress guarantees. A lock-
free implementation guarantees only that some process will
complete in a finite number of steps [MP91]. Unlike a wait-
free implementation, lock-freedom allows starvation. Since
other simple techniques can be layered to prevent starvation
(for example, exponential backoff), simple lock-free imple-
mentations are usually seen as worthwhile practical alterna-
tives to more complex wait-free implementations.

An even weaker criterion, obstruction-freedom, was in-
troduced by Herlihy, Luchangco, and Moir in [HLMO3].
Obstruction-freedom only guarantees progress for threads
executing in isolation; that is, although other threads may
have partially completed operations, no other thread may
take a step until the isolated thread completes. Obstruction-
freedom not only allows starvation of a particular thread, it
allows contention among threads to halt all progress in all
threads indefinitely. External mechanisms are used to re-
duce contention (thus, achieve progress) including backoff,
queueing, or timestamping.

Revisiting Lamport’s algorithm, we conclude it is neither
lock-free nor obstruction-free, because halting the writer be-
tween the guard increments will prevent readers from ever
getting a consistent snapshot.

We will use the term non-blocking to describe gener-
ally any synchronization mechanism which doesn’t rely on
mutual exclusion or locking, including wait-free, lock-free,
and obstruction-free implementations. We will be concerned
mainly with lock-free algorithms.®

2Note, however, that race-freedom via monitor synchronization is
not sufficient to prevent unexpected concurrent behavior [FQO03], nor
is it mecessary. It is certainly a helpful structuring principle and
reasoning aid.

3Note that some authors use “non-blocking” and “lock-free” as
synonyms, usually meaning what we here call lock-free. Others ex-
change our definitions for “lock-free” and “non-blocking”, using lock-
free as a generic term and non-blocking to describe a specific class of
implementations. As there is variation in the field, we choose to use
the parallel construction wait-free, lock-free, and obstruction-free for
our three specific progress criteria, and the dissimilar non-blocking
for the general class.

2.1 Advantages over mutual exclusion

Non-blocking synchronization offers a number of advantages
over mutual exclusion within critical regions. Foremost for
the concerns of this paper is fault-tolerance: a process which
fails while holding a lock within a critical region can prevent
all other non-failing processes from ever making progress. In
an operating system context, this means that thread termi-
nation must be done very carefully to avoid inadvertently
killing a process within a critical region. If a thread dies
while holding a user-mode lock, all other threads in its ad-
dress space may deadlock; if it dies while holding a kernel
lock, the whole system may crash. Although one can use ex-
ternal means to recognize orphaned locks and release them,
it is in general not possible to restore the locked data struc-
tures to a consistent state after such a failure. Non-blocking
synchronization offers a graceful means out of these trou-
bles, as non-progress or failure of any one thread will not
affect the progress or consistency of other threads or the sys-
tem. These fault-tolerant properties are even more relevant
in distributed systems where entire nodes may fail without
warning.

Non-blocking synchronization offers performance bene-
fits as well. Even in a failure-free system, page faults,
cache misses, context switches, I/O, and other unpredictable
events may result in delays to the entire system when mutual
exclusion is used; non-blocking synchronization allows unde-
layed processes or processors to continue to make progress.
In loosely coupled asynchronous systems such unexpected
delays are the norm, rather than the exception.

Real-time systems have other problems with mutual ex-
clusion. A low-priority task which acquires a lock and is then
delayed may hold up higher-priority tasks which contain
critical regions protected with the same lock. This situation
is called priority inversion, and is responsible for a number
of high-profile system failures, including whole-system resets
during the Mars Pathfinder mission [Jon97]. Non-blocking
synchronization can guarantee that the high-priority task
makes progress.*

2.2 Efficiency

Herlihy presented the first universal method for wait-free
concurrent implementation of an arbitrary sequential object
[Her88, Her91]. This original method was based on a fetch-
and-cons primitive, which atomically places an item on the
head of a list and returns the list of items following it; all
concurrent primitives capable of solving the n-process con-
sensus problem—universal primitives—were shown powerful
enough to implement fetch-and-cons. In Herlihy’s method,
every sequential operation is translated into two steps. In
the first, fetch-and-cons is used to place the name and ar-
guments of the operation to be performed at the head of a
list, returning the other operations on the list. Since the
state of a deterministic object is completely determined by
the history of operations performed on it, applying the op-
erations returned in order from last to first is sufficient to
locally reconstruct the object state prior to our operation.

4Note that the progress guarantees made are different for wait-
free, lock-free, and obstruction-free algorithms. For example, priority-
inversion can still occur on obstruction-free implementations if a lower
priority thread contends persistently for the resource. On a unipro-
cessor, a valid solution in this case might be to simply not inter-
leave executions of tasks with differing priorities; obstruction-freedom
then guarantees that the high-priority task “in isolation” will make
progress.



We then use the prior state to compute the result of our op-
eration without requiring further synchronization with the
other processes.

This first universal method was not very practical, a
shortcoming which Herlihy soon addressed [Her93]. In ad-
dition, his revised universal method can be made lock-free,
rather than wait-free, resulting in improved performance. In
the lock-free version of this method, objects contain a shared
variable holding a pointer to their current state. Processes
begin by loading the current state pointer and then copying
the referenced state to a local copy. The sequential opera-
tion is performed on the copy, and then if the object’s shared
state pointer is unchanged from its initial load it is atomi-
cally swung to point at the updated state.

Herlihy called this the “small object protocol” because
the object copying overhead is prohibitive unless the object
is small enough to be copied efficiently (in, say, O(1) time).
He also presented a “large object protocol” which requires
the programmer to manually break the object into small
blocks, after which the small object protocol can be em-
ployed. This trouble with large objects is common to many
non-blocking implementations; our solution is presented in
Section 5.

Barnes provided the first universal non-blocking imple-
mentation method which avoids object copying [Bar93]. He
eliminates the need to store “old” object state in case of
operation failure by having all threads cooperate to apply
operations. For example, if the first processor begins an op-
eration and then halts, another processor will complete the
first’s operation before applying its own. Barnes proposes
to accomplish the cooperation by creating a parallel state
machine for each operation, so that each thread can inde-
pendently try to advance the machine from state to state and
thus advance incomplete operations.® Although this avoids
copying state, the lock-step cooperative process is extremely
cumbersome and does not appear to have ever been imple-
mented. Furthermore, it does not protect against errors in
the implementation of the operations, which could cause ev-
ery thread to fail in turn as one by one they attempt to
execute a buggy operation.

Alemany and Felten [AF92] identified two factors hinder-
ing the performance of non-blocking algorithms to date: re-
sources wasted by operations that fail, and the cost of data
copying. Unfortunately, they proceeded to “solve” these
problems by ignoring short delays and failures and using op-
erating system support to handle delays caused by context
switches, page faults, and I/O operations. This works in
some situations, but obviously suffers from a bootstrapping
problem as the means to implement an operation system.

Although lock-free implementations are usually as-
sumed to be more efficient that wait-free implementations,
LaMarca [LaM94] showed experimental evidence that Her-
lihy’s simple wait-free protocol scales very well on paral-
lel machines. When more than about twenty threads are
involved, the wait-free protocol becomes faster than Her-
lihy’s lock-free small-object protocol, three OS-aided proto-
cols of LaMarca and Alemany and Felten, and a test-and-
CompareésSwap spin-lock.

5Tt is interesting to note that Barnes’ cooperative method for non-
blocking situation plays out in a real-time system very similarly to
priority inheritance for locking synchronization.

3 Lock-free operating systems

The Synthesis Kernel V.1 [MP91, MP92] and the Cache
Kernel [CD94, GC96] are complete operating systems im-
plemented using only non-blocking synchronization. Mo-
tivations varied: Synthesis appears to have adopted non-
blocking synchronization in a quest for high performance,
while the motivation in the case of the Cache Kernel seems
to have been the improved system decoupling and modu-
larity achievable without locks. In both cases, the imple-
mentation of non-blocking synchronization interacted with
object-oriented features of the operating system design.

3.1 The Synthesis kernel

The Synthesis Kernel V.0 was built to explore in-kernel code
synthesis for improved performance [PMI88]. The code syn-
thesizer generates specialized code for frequently-executed
kernel functions, using three optimizations:

e Factoring Invariants is a special case of partial evalu-
ation which applies constant folding and constant prop-
agation using constants gleaned from dynamic proper-
ties and data structure traversals. For example, the
Synthesis implementation of the open system call will
invoke the code synthesis engine to generate a special-
ized implementation for read. The read implementa-
tion is less than 100 instructions long and is specialized
for the access mode, file descriptor, thread id, and de-
vice known after the open. Factoring invariants elimi-
nates all access checking and device handler dispatch,
using precompiled templates where possible.

e Collapsing Layers seeks to make abstraction cheap
by eliminating function call overhead between abstrac-
tion boundaries. This is done using procedure inlin-
ing and buffer/move coalescing to avoid unnecessary
copies. UNIX system calls emulated in Synthesis con-
sists of little more than invocations of the appropriate
Synthesis equivalents. Collapsing Layers is used to in-
line the Synthesis functionality into the emulation rou-
tine, avoiding the extra layer of call indirection. Sim-
ilarly, the network protocol stack eliminates unneces-
sary copying by sharing message buffer space allocated
at the top level with all collapsed lower levels.

e Executable Data Structures explicitly code for iter-
ation, eliminating the need to interpret the data struc-
ture. For example, the Synthesis run queue is im-
plemented as a collection of routines each of which
switches to the “next” thread context, hard-coded as
the destination of a jump instruction to eliminate even
address load overhead. The routines are directly in-
stalled as the appropriate preemption signal handlers.

The code synthesis technique was very successful, achiev-
ing as much as 56-fold speed improvement over a conven-
tional SUNOS kernel on the same hardware for small byte
reads of a pipe. Even larger 4-kilobyte reads, which spend
less time crossing abstraction boundaries, showed almost 4-
fold better performance, illustrating the practical utility of
code specialization for these call paths [MP89]. Process con-
text switch times were also very fast due to the executable
data structure implementation of the run queue: between



Kind of User Device
Reference | Thread ByteQueue || ByteQueue Driver Hardware
send-complete
callentry write == Q_put Q_get = interrupt
turn off
callback | suspend <= Q_full Q_empty == send-complete
turn on
callback resume <= Q_full-1 Q_empty-1 - send-complete

Figure 2: Quaject composition for blocking putchar, from [PM91].

7 and 50 microseconds depending on the amount of state
being switched.®

3.1.1 Multiprocessor issues

The original Synthesis kernel ran on a uniprocessor and used
traditional semaphores for synchronization, although lock-
free queues were later adopted in some places [MP89]. When
Synthesis was ported to the dual-processor Sony NeWS
[MP92], lock-free synchronization was used throughout the
kernel to protect every shared data structure.

Massalin and Pu’s primary motivation for adopting lock-
free synchronization for their multiprocessor kernel was per-
formance. In a uniprocessor kernel, disabling interrupts is
the cheapest means to suppress asynchronous execution, and
hence to obtain synchronization among processes and sig-
nal/interrupt handlers. As long as interrupts are not dis-
abled for too long, the adverse effects on the system are
small. However, this technique cannot be used to synchro-
nize multiprocessor systems.

Locking synchronization methods can be classified as
spin-locks or semaphores, although hybrids also exist. Spin-
locks run a processor in a tight loop while waiting to enter
a critical region. This can be almost as cheap as disabling
interrupts when there is no contention, but wastes proces-
sor time which could be spent doing useful work (as long as
the processor has more than one active task). Semaphores
maintain a waiting queue of blocked processes, which allows
the processor to move on to other useful work after adding
to the queue. However, Massalin and Pu judge the over-
head of queue maintenance and semaphore operations to be
prohibitive.

All locking synchronization methods potentially decrease
the available parallelism in the system, by restricting the
serialization of tasks through a critical region. Priority in-
version, as discussed in Section 2.1, is also a concern for the
Synthesis kernel, which includes real-time scheduling fea-
tures for media tasks. Finally, locking synchronization is
seen to require tedious programmer bookkeeping of acquire
and release orders in order to avoid deadlock.

The Synthesis kernel uses optimistic lock-free synchro-
nization to achieve efficiency comparable to spin-locks with-
out the above-mentioned problems. The designers chose not
to use more-expensive wait-free constructs because they felt
the probability of starvation in an OS kernel is low. The
overhead of non-blocking synchronization is slight; after re-
placing the executable run queue implementation of unipro-
cessor Synthesis V.0 with an optimistic lock-free queue in

5These numbers come from [MP92], which corrects erroneous times
cited in earlier work. An undetected assembler bug had caused most
of the floating-point state to be omitted from the context save and
restore operations performed in the earlier benchmarks.

multiprocessor Synthesis V.1, context-switch times rose only
slightly, to 12-56 microseconds from 7-50 [MP92].

3.1.2 Quaject organization

The Synthesis V.1 kernel is organized in an object-oriented
manner around quajects [PM91]. As the entire kernel is
written in macro-assembler there is no language support for
quajects, although there are macros to support quaject def-
inition [MP92].

Quajects provide strong encapsulation: except for their
interfaces no internal state is revealed. This allows sub-
stitution of specialized implementations of a quaject. Al-
though message-passing interfaces were in vogue in the
object-oriented community, quajects use an efficient pro-
cedural interface with a dispatch table similar to C++ or
Java. The synthesis engine uses Collapsing Layers to make
interface dispatch even more efficient at runtime, when tar-
gets are known. There is no notion of inheritance among
quajects, although they may provide and share default im-
plementations of their callback interfaces.

Because the quaject implementation was unconstrained
by any higher-level language, the interface employs a novel
calling convention which allows both asynchronous and syn-
chronous exception return. For example, the Q_put call-
entry interface on a queue quaject returns reporting success
if there was space in the queue for the write. If the queue
is full, a callback named Q_full is invoked instead of re-
turning. The caller-supplied callback can choose to suspend
the thread, creating a blocking synchronous interface, or to
return with an error code (as if from Q_put) creating a non-
blocking interface. A separate Q_full-1 callback is invoked
when the queue later drains. This callback either resumes
the suspended thread and returns from the Q_put, or else
signals the asynchronous producer.

The quaject structure interacts well with synchroniza-
tion and code synthesis. Quaject encapsulation allows ef-
ficient substitution of specialized implementations of qua-
jects. This allows the presence and type of synchronization
in a quaject to exactly match its use. Quajects can be small
and modular because code synchronization guarantees effi-
cient composition, removing procedure call overhead at ab-
straction boundaries at runtime. All references from user
code dispatch via the kernel quaject table, which because
quajects are encapsulated allows efficient protection.

Quajects in Synthesis include threads, memory segments,
symbol tables, and data channels, which abstract I/O, pipes,
and filters. Figure 2 illustrates quaject composition for a
blocking putchar to an I/O device.



CAS(compare, update, mem_addr)

if (mem_addr == compare) {
*mem_addr = update;
return SUCCEED;

} else
return FAIL;

}

DCAS(comparel, compare2, updatel, update2,
mem_addrl, mem_addr2)

if (*mem_addrl == comparel &&
*mem_addr2 == compare2) {
*mem_addrl = updatel;
*mem_addr2 = update2;
return SUCCEED;

} else
return FAIL;

Figure 3: Defintion of Compare-And-Swap (CAS) and
Double-Compare-And-Swap (DCAS) from [MP91, Ap-
pendix A]. Note that each operation is atomic.

3.1.3 Lock-free quajects

Almost all Synthesis synchronization is done with one of
three quajects: a LIFO stack, FIFO queue, or general linked
list. Synthesis targets 680X0 platforms, and the lock-free
implementations use the architecture’s Compare And Swap
(CAS) and Double Compare And Swap (DCAS) instruc-
tions. CAS atomically compares the contents of a memory
location against a value, if they match stores a new value
into the location. DCAS atomically compares the contents
of two locations against two values, and if both values match
stores two new values into the locations. Figure 3 gives
pseudo-code for these atomic instructions.

The LIFO stack implementation in Synthesis is presented
in Figure 4. When pushing an item on the stack we atom-
ically increase the stack pointer and store the new item at
the top of the stack, if and only if the stack pointer has not
changed since we read it last. This guarantees that exactly
one Push succeeds if more than one are simultaneously at-
tempted. Likewise, a Pop which succeeds after the first read
of the stack pointer will prevent the Push from writing to
the wrong location.

However, the Pop implementation presented by Massalin
and Pu contains an error. The intent is that a successful
CAS on the stack pointer guarantees that the element we
previously read from the top of the stack is valid. However,
consider the case where processor one reads elem from the
top of the stack at label x inside Pop. Processor two then
executes a Pop followed by a Push of a different value before
the first processor makes any more progress. The first pro-
cessor will then succeed with its Pop, even though the value
it holds from the top of the stack is stale. This is what is
known as an ABA problem: we can’t tell the second value
of the stack pointer A from the first value A, even though a
different value B intervened.

The solution is to use DCAS in order to ensure that that
the top of the stack has not changed when we write the new
stack pointer. This solution is subject to the ABA problem

Push(elem)
{
retry:
0ld_SP = SP;
new_SP = 0ld_SP - 1;
old_val = *new_SP;
if (DCAS(0ld_SP, old_val, new_SP, elem,
&SP, new_SP) == FAIL)

goto retry;
t
Pop()
{
retry:
0ld_SP = SP;

new_SP = 0ld_SP + 1;
x: elem = *x0ld_SP;
if (CAS(01d_SP, new_SP, &SP) == FAIL)
goto retry;
return elem;

Figure 4: Synthesis implementation of LIFO stack, from
[MP91, Figure 1].

as well, only now the only possible confusion is whether a
pop followed by a push of the same value that was popped
intervened. This doesn’t matter, because the result of our
pop operation is the same in either case.

It is likely that this error in Pop was never observed in
Synthesis because its hardware platform had only two pro-
cessors of equal speeds. Thus it becomes very unlikely that
one processor can squeeze in both a Pop and a Push during
the critical region in Pop. If more processors were involved,
the bug scenario would become increasingly likely.

The FIFO queue implementation in Synthesis has four
variations, depending on the number of producers and con-
sumers for the queue. Figure 5 shows the single-producer
single-consumer (SP-SC) version of the algorithm. It uses
only atomic loads and stores, and like Lamport’s original
non-blocking synchronization algorithm [Lam77], it relies on
dependency ordering between the loads and stores for cor-
rectness. Because the producer updates Q_head last while
the consumer checks Q-head first (before its read of data),
the consumer will never see invalid data at Q_head-1. Sim-
ilarly, because the consumer updates Q_tail last while the
producer checks Q_tail first (before its write to the queue),
the producer will never overwrite data being read by Q_get.

The multiple-producer single-consumer (MP-SC) version
of the queue is the same as the SP-SC implementation, ex-
cept that the last two lines of Q_put are implemented atom-
ically by a DCAS instruction, guaranteeing that no other
producer has advanced Q_head before our store.” The other
two versions of the FIFO queue have not been published,
although [MP89] contains an additional multiple-item vari-
ation of the MP-SC queue.

Synthesis also contains a lock-free linked list implemen-

"It is unclear from [MP89] whether Synthesis uses DCAS or CAS
to implement the MP-SC FIFO queue; the text states, “a single
compare-and-swap instruction at the end.” If CAS is used instead
of DCAS, then this implementation is also faulty, as the store to
Q-buf [h] just before a failing CAS may overwrite data written by a
successful concurrent Q_put.



next(x) {
return (x+1) % Q_size;
}

Q_get O {
t = Q_tail;
if (t == Q_head)
wait;

data = Q_buf[t];
Q_tail = next(t);
return data;

}

Q_put(data) {

h = Q_head;
if (next(h) == Q_tail)
wait;

Q_buf [h] = data;
Q_head = next(h);

Figure 5: Synthesis implementation of single-producer
single-consumer FIFO queue, from [MP89, Figure 1].

tation. Deletion from arbitrary locations in the list poses
special problems for non-blocking implementations; Figure 6
illustrates two hard cases. Massalin and Pu solve the dele-
tion problem by setting a flag to DELETED on nodes with-
out actually removing them from the list. Nodes marked
DELETED are removed later, when it is “safe”. There is a
traversal of the Synthesis run queue in which one thread at
a time visits each node; deletion occurs at those points of
isolation.®

Massalin and Pu compared the execution times of their
optimistic lock-free quaject implementations to implemen-
tations without any synchronization at all. In the absence
of retries, the optimistic implementations were between 1.5
and 4.4 times slower than the unsynchronized implementa-
tions [MP91]. This is not bad, considering the speed of the
unsynchronized implementations; in absolute terms every
lock-free operation completed in less than 3 microseconds
without retries, or less than 6 microseconds in case of a sin-
gle retry.

3.1.4 Beyond Synthesis V.1

In evaluating Synthesis [PW93], Pu and Massalin conclude
that strong object encapsulation within the kernel is an im-
portant enabler for dynamic code generation. Procedural
interfaces are a vital part of encapsulation: allowing clients
to see and mutate kernel data structures eliminates the abil-
ity to specialize and change the underlying data represen-
tation. The “objectification” of the Synthesis kernel allows
code specialization and increases the scope for performance
optimisation.

However, Synthesis does not provide any language sup-
port to aid this “objectification”. The authors point to lack
of code generation support in high-level languages as the
reason they have stuck with macroassembler. The lack of

8The Cache Kernel contains a more general lock-free linked list
implemenation using DCAS, and Valois more recently published an
equally general non-blocking implementation using only compare-
and-swap [Val95].

dl, p2 sl 2
Concurrent deletion of B and €; second is undone.

Figure 6: Problematic cases among simultaneous updates to
a linked list, from [Val95].

language support is not uncommon. In fact, many modern
operating systems are both “object-oriented” and lacking in
language support for their object system. The Linux kernel,
for example, employs an object-oriented organization of de-
vice and file I/O, including virtual dispatch, but the kernel’s
implementation language is C.

From the start of the Synthesis project a language with
quaject and dynamic code generation support was planned.
The language was to be called “Lambda-C” [PMI88]; in
[PW93] Pu and Walpole propose that the high-level lan-
guage support “modularity, strong typing, and well-defined
semantics” for code specialization and generation, and that
it allow dynamic composition of quajects via code genera-
tion. Burden would be shifted off the programmer by includ-
ing a mechanism to track expected invariants among special-
ized implementations, and to generate guard statements to
detect when invariants no longer hold and generated code
must be invalidated. For example, Synthesis V.1 takes great
care to ensure that relevant parts of the instruction cache are
flushed after code generation, but this attention is expressed
as a great deal of hand-optimized template code. The invari-
ants to be satisfied remain completely implicit, which makes
it very likely that they will be violated or optimizations will
be lost as the code evolves or is ported.

Code generation in Synthesis’ successor was to integrate
a more general model of specialization, incremental partial
evaluation. As details about the dynamic state of the pro-
gram became known, implementations would become more
and more specialized. Ultimately there would exist a hier-
archical organization of increasingly specialized implemen-
tations, all of which conform to a quaject’s desired abstract
type.

Finally, Pu and Walpole note the non-portability of
their non-blocking synchronization implementations based
on CAS and DCAS, and propose to abstract away the ar-
chitecture dependence by building their next system on top
of transactional memory [HM93].
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Figure 7: Overall System Architecture for the V4++ Cache
Kernel, from [CD94].

3.2 The Cache Kernel

The V++ Cache Kernel [CD94, GC96] builds a minimal
micro-kernel from only three basic object types: address
spaces, threads, and application kernels. Signals are the only
kernel-supported form of notification. The result is a highly
modular object-oriented operating system whose structure
and decoupling depends crucially on the use of non-blocking
synchronization.

The overall architecture of the V4++ operating system,
based on the Cache Kernel, is shown in Figure 7. Applica-
tions execute on top of an application kernel, either in the
same address space as the application kernel or in a sepa-
rate address space. The Cache Kernel caches active operat-
ing system objects: address spaces, threads, and application
kernels. The interaction of active and inactive objects—such
as scheduling in the case of threads, or virtual memory sup-
port for address spaces—is the responsibility of the appli-
cation kernel, which receives signals from the Cache Kernel
and loads and unloads system objects.

3.2.1 Basic object types

Address space objects store a collection of per-page virtual-
to-physical address memory mappings. Each mapping de-
scribes a mapped page and contains a virtual address, cor-
responding physical address, and access flags.

Address spaces are created with no mappings. A “load
mapping” request to the Cache Kernel adds a mapping with
the given access flags associating a particular virtual and
physical address. The Cache Kernel verifies that the physi-
cal address specified is among those reserved for the appli-
cation kernel making the request. Page faults bounce from
the Cache Kernel to the application kernel’s fault handler,
which may initialize a physical page, load a mapping associ-
ating it with the referenced virtual page, and then resume.
This exception handling is similar for protection faults, priv-
ilege violations, and consistency faults involving distributed
shared memory: the application kernel is always responsi-
ble for fault resolution, leaving the Cache Kernel free of the
mechanisms of memory allocation, deallocation, and paging.

The Cache Kernel may unload mappings and address
spaces to make room for more active objects. The Cache
Kernel’s unload mechanism invokes the application kernel
with the object data for writeback (either into application
kernel state or onto stable storage) before the object is de-
stroyed. Address spaces can be associated with threads; if

so, unloading an address space also unloads the affiliated
threads.

Thread objects loaded in the Cache Kernel are always
runnable. A thread is descheduled by unloading it from
the Cache Kernel. Each thread object is associated with
an address space object whose creation must precede the
thread’s. Threads can execute in the application kernel’s
address space or in their own. When executing in a private
address space, a thread makes “system calls” to its applica-
tion kernel using the processor trap instruction. This traps
to the Cache Kernel and the trap is forwarded to the appli-
cation kernel. Threads executing in the application kernel’s
address space can make direct procedure calls to the ap-
plication kernel; processor traps in this case invoke Cache
Kernel interfaces.

The Cache Kernel can contain a number of application
kernel objects, corresponding to active application kernels.
Application kernels can include UNIX emulators as well as
specialized kernels for specific applications. Each applica-
tion kernel object designates the application kernel’s address
space, its trap and exception handlers, and its resources, in-
cluding the physical memory pages allocated to it. Other
kernel resources include a CPU time slice and a limited num-
ber of “locked” Cache Kernel objects which it can protect
from unloading. Application kernel objects can themselves
be loaded and unloaded, which allows swapping out large
jobs running on their own application kernels.

3.2.2 Interprocess communication and
synchronization

All kernel notification in the Cache Kernel is via signals. In-
terprocess and device communication piggy-backs on the sig-
nal mechanism using memory-based messaging. The sender
and receiver both share a mapped memory region, and the
sender sends address-valued signals to the receiver pointing
at messages it has written in the region. The ParaDiGM
machine on which the Cache Kernel runs provides hardware
support for automatic signal-on-write to dispatch and de-
liver an address-valued-signal to the appropriate processor
upon a write to a certain location.

Given these features, asynchronous signals are ubiqui-
tous in the Cache Kernel. The developers adopted non-
blocking synchronization so that their system and libraries
would not have to continually disable and enable signals
and suffer restrictions on code in signal handlers. The non-
blocking implementation allows asynchronous signal han-
dlers to update data structures without the risk of deadlock
with synchronous code which might itself have already be-
gun to edit the data structure. In particular, non-blocking
synchronization protects page fault and other exception han-
dlers from deadlock when they are triggered from within
code accessing protected kernel data structures.

Non-blocking synchronization also protects the applica-
tion kernel from terminated threads, which might have been
executing inside an application kernel interace when termi-
nated. It thus allows user threads to execute on behalf of the
kernel without the need to protect them from termination
or other faults.

Decoupling scheduling and synchronization allows other
threads to make progress even when we are in a lengthy
handler, and prevents priority inversion when low-priority
threads access shared structures.



Delete(elt):
do {
retry:
backoffIfNeeded () ;
version = list->version;

for (p = list->head;
(p—>next != elt);
p = p—>next) {
if (p==NULL) { /* Not found */
if (version != list->version)
{ goto retry; } /* Changed */
return NULL; /* Really not found */

} while (!DCAS(&(list->version), &(p->next),
version, elt,
version+1, elt->next));

Figure 8: Lock-free deletion from a linked list, from [GC96].

3.2.3 Lock-free data structure implementations

The Cache Kernel includes lock-free implementations of col-
lections, queues, and search structures. The Cache Kernel
runs on 680X0 processors, and so uses the same CAS and
DCAS primitives as does the Synthesis kernel.

Cache Kernel data structure implementations rely heav-
ily on version numbers to track changes. DCAS is usually
used with the version number as one argument, guarantee-
ing on success that the data structure has not changed while
we were looking at it. An example of the technique is pre-
sented in Figure 8, the Cache Kernel algorithm to remove
a node from a linked list. The pointer swap occurs atomi-
cally with a test-and-increment of the version number; if a
change to the list structure occurs while we are locating the
nodes before and after the target node, the version number
will be incremented and our operation will fail and retry.
The version number effectively protects all data in the list.
To increase concurrency, some data structures are split (by
hashing into buckets, for example) into multiple smaller data
structures, each with their own version number, to reduce
false conflicts during concurrent updates.

Version numbers with DCAS allow only one location
to be updated atomically, although that update can read-
depend on the entire contents of the data structure. To
make multiple writes atomic, a variant of Herlihy’s [Her93]
universal scheme is used, where an element is atomically re-
placed by an updated copy. DCAS with the version number
is also used here, to prevent lost updates when the original
is modified after the copy and before its replacement.

To avoid copying overhead, the Cache Kernel occassion-
ally removes an element from a list in order to modify it,
re-adding it when the modification is complete. This pre-
vents concurrent modification and guarantees exclusive ac-
cess to the element (because only one thread’s deletion of
the element can succeed), but creates windows during which
some resources may be missing from lists describing them.
For example, the lists of threads handling a given signal is
incomplete, because threads may be removed from the list
while the handler is modified. The Cache Kernel accepts
this incompleteness in its the low levels, and works around
so-called “best-effort signal delivery” with higher-level time-
out and retry mechanisms.

Temporarily removing elements for mutation must be
applied with care, as it is easy to create mutual exclusion
between threads by naively retrying searches for elements
“temporarily missing” from their resource lists. The search
loop might forever prevent the completion of the mutation
responsible for removing the element.

Consistency properties which require a resource to be
on multiple lists simultaneously also pose a problem for the
techniques used in the Cache Kernel, as do data structures
significantly more complex than lists or queues. The design-
ers took care such that “best-effort” consistency and appro-
priate recovery mechanisms were sufficient. They mention
the use of a special “synchronization server” which performs
operations serially from a queue as a more general solution
to the problem. Massalin and Pu [MP91] mention that this
technique was used during the development of the Synthesis
kernel, although kernel maturation eliminated the need for
it. Similarly, the completed Cache Kernel appears to use a
separate synchronization process only for I/0.

3.2.4 Type-Stable Memory Management

Greenwald and Cheriton mention a number of enabling tech-
niques which allowed the parts of the Cache Kernel to work
well with each other. First among them is Type-Stable
Memory Management (TSM). Memory reclamation is al-
ways an issue with non-blocking data structures because it
is hard to guarantee that there isn’t a stalled thread some-
where sitting in the piece of memory you want to reclaim.

The Cache Kernel solution is to ensure that memory is
type-stable; that is, if there was once a thread descriptor,
say, sitting in a piece of memory, than that memory will
always represent a valid thread descriptor. Code which stalls
looking at that piece of memory may see a different valid
thread descriptor but will never see an invalid descriptor,
and will never be exposed to wild pointers. If you can bound
the maximum amount of time a thread may get “stuck”,
then you can also bound how long you are required to keep
a piece of memory type-stable.

Type-stable storage greatly simplifies the amount of de-
fensive coding required for implementation of non-blocking
synchronization, because it guarantees that your data will
always “make sense”. Greenwald and Cheriton also argue
that there are performance benefits to type-specific alloca-
tors, and that the locality of allocated type-specific storage
aids debugging and auditing. Type-stable allocators also
take care to align objects with the cache, which reduces
physical memory contention.

4 Object-orientation

Both Synthesis and the Cache Kernel benefit from object-
oriented design. The specialization techniques used in Syn-
thesis would not be possible if not for the tight encapsu-
lation provided by its quajects. The Type-Stable Memory
Manager and the Object-Oriented RPC system built on top
of the Cache Kernel [GC96, ZC96] leveraged objects to al-
low efficiency through specialization as well. The authors of
Synthetix, offspring of Synthesis, argued that, “truely signif-
icant performance gains come from choosing the right imple-
mentation. . . The encapsulation provided by object-oriented
systems should allow us to replug implementations, allowing
them to better match their environment” [BW95].

By encapsulating synchronization in objects—lists,
stacks, queues—the operating system designers were able



const myDirectory == object oneEntryDirectory
export Store, Lookup
monitor
var name : String
var AnObject : Any

operation Store [ n : String, o : Any ]
name < n
AnObject — o
end Store
function Lookup [n : String ] — [0 : Any |
if n = name
then o — AnObject
else 0 < nil
end if
end Lookup

initially
name < nil
AnObject — nil
end initially

end monitor
end oneEntryDirectory

Figure 9: A directory object in Emerald, from [BHJL86],
illustrating the use of monitor synchronization.

to separate out the “non-blocking synchronization” aspect
from the rest of their design. Blocking synchronization is not
isolated so easily. Synthesis shows that another benefit of
this separated structure is that you can mix-and-match im-
plementations of your data types to get exactly the amount
of synchronization you require.

However, contemporary research on object-oriented op-
erating systems has concentrated on orthogonal issues:
in particular, in the relationship between language safety
properties and operating system protection mechanisms
[HCCT98, SC02, FFKF99]. The two currents of special-
ization and protection meet in the design of “extensible op-
erating systems,” where the user is expected to collaborate
in providing specialized implementations of kernel services.
However, the system would still like to impose safety guar-
antees on the user’s code to limit effects on the rest of the
tasks and users in the system. “Extensible kernels based on
software protection logically converge to single address space
operating systems, like most Java-based operating systems,
where all protection mechanisms are in software” [DPMO02].

5 A proposal for a non-blocking Java OS

Language-based operating systems promise to allow even
further reduction in micro-kernel design by removing even
address spaces from the kernel. Further, by providing cor-
rect and universal synchronization in the language, we hope
to eliminate the difficulty of writing specific correct lock-free
data structures, illustrated by Massalin and Pu’s errors in
Section 3.1.3.

To that end, we propose some slight modifications to the
Java language to better support its use for writing oper-
ating systems. We concentrate on synchronization in the
language, eliding as orthogonal issues related to direct ac-
cess to hardware. We expect that slight extensions similar
to those in Lisaac [SC02] and JEPES [SBCKO03] will be suf-

class Account {
int balance = 0;

atomic int deposit(int amt) {
int t = this.balance;
t =t + amt;
this.balance = t;
return t;

}

atomic int readBalance() {
return this.balance;

}

atomic int withdraw(int amt) {
int t = this.balance;
t =t - amt;
this.balance = t;
return t;

}

Figure 10: A simple bank account object, adapted from
[FQO3], illustrating the use of the atomic modifier.

ficient to support interrupt handlers and memory-mapped
I/0. We then present an efficient implementation technique
for the synchronization primitives in the language, showing
first how to synchronize single encapsulated objects, then
operations on multiple objects, and finally present the lock-
free functional array implementation which allows efficient
large object synchronization.

Our implementation will use the same DCAS primitive
used in the Cache Kernel and in Synthesis. This primitive
can be emulated using architecture extensions to the popular
LL/SC operations, or in software with OS support using
Bershad’s technique [GC96, Ber93].

5.1 Synchronization in the language

The Emerald system [BHJL86, JS91] introduced monitored
objects for synchronization. Emerald code to implement a
simple directory object is shown in Figure 9. Each object
is associated with Hoare-style monitor, which provides mu-
tual exclusion and process signalling. Each Emerald object
is divided into a monitored part and a non-monitored part.
Variables declared in the monitored part are shared, and
access to them from methods in the non-monitored part
is prohibited—although non-monitored methods may call
monitored methods to effect the access. Methods in the
monitored part acquire the monitor lock associated with the
receiver object before entry and release it on exit, providing
for mutual exclusion and safe update of the shared variables.
Monitored objects naturally integrate synchronization into
the object model.

Unlike Emerald monitored objects, where methods can
only acquire the monitor of their receiver and where re-
stricted access to shared variables is enforced by the com-
piler, Java implements a loose variant where any monitor
may be explicitly acquired and no shared variable protection
exists. As a default, however, Java methods declared with



the synchronized keyword behave like Emerald monitored
methods, ensuring that the monitor lock of their receiver is
held during execution.

Java’s synchronization primitives arguably allow for
more efficient concurrent code than Emerald’s—for example,
Java objects can use multiple locks to protect disjoint sets
of fields, and coarse-grain locks can be used which protect
multiple objects—but Java is also more prone to program-
mer error. However, even Emerald’s restrictive monitored
objects are not sufficient to prevent data races. As a simple
example, imagine that an object provided two monitored
methods read and write which accessed a shared variable.
Non-monitored code can call read, increment the value re-
turned, and then call write, creating a classic race condition
scenario. The atomicity of the parts is not sufficient to guar-
antee atomicity of the whole [FQO03].

This suggests that a better model for synchronization
in object-oriented systems is atomicity. Figure 10 shows
Java extended with an atomic keyword to implement an
object representing a bank account. Rather than explicitly
synchronizing on locks, we simply require that the meth-
ods marked atomic execute atomically with respect to other
threads in the system; that is, that every execution of the
program computes the same result as some execution where
all atomic methods were run in isolation at a certain point
in time between their invocation and return. This point is
called the linearization point. Note that atomic methods
invoked directly or indirectly from an atomic method are
subsumed by it: if the outermost method appears atomic,
then by definition all inner method invocations will also ap-
pear atomic. Flanagan and Qadeer provide a more formal
semantics in [FQO03]. Atomic methods can be analyzed using
sequential reasoning techniques, which significantly simpli-
fies reasoning about program correctness.

Atomic methods can be implemented using locks. A sim-
ple if deadlock-prone implementation would simply acquire
a single global lock during the execution of every atomic
method. Flanagan and Qadeer [FQO3] present a more so-
phisticated technique which proves that a given implemen-
tation using standard Java monitors correctly guarantees
method atomicity. We will use non-blocking synchroniza-
tion to implement atomic methods.

5.2 A simple implementation of functional arrays

Our atomic method implementation will use functional ar-
rays as a building block. Functional arrays are persistent;
that is, after an element is updated both the new and the
old contents of the array are available for use. Since ar-
rays are simply maps from integers (indexes) to values; any
functional map datatype (for example, a functional balanced
tree) can be used to implement functional arrays.

However, the distinguishing characteristic of an impera-
tive array is its theoretical complexity: O(1) access or up-
date of any element. Implementing functional arrays with a
functional balanced tree yields O(lgn) worst-case access or
update.

For concreteness, functional arrays have the following
three operations defined:

e FA-CREATE(n): Return an array of size n. The con-
tents of the array are initialized to zero.

o FA-UPDATE(Aj,4,v): Return an array Aj;; which is
functionally identical to array A; except that A; (i) =
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Figure 11: Implementing non-blocking single-object concur-
rent operations with functional arrays.

v. Array A; is not destroyed and can be accessed fur-
ther.

e FA-READ(A;,7): Return A, (7).

We allow any of these operations to fail. Failed operations
can be safely retried, as all operations are idempotent by
definition.

For the moment, consider the following naive implemen-
tation:

e FA-CREATE(n): Return an ordinary imperative array
of size n.

e FA-UPDATE(A;,4,v): Create a new imperative array
Aj» and copy the contents of A; to Aj/. Return Aj.

e FA-READ(A;,7): Return A;[].

This implementation has O(1) read and O(n) update, so
it matches the performance of imperative arrays only when
n = O(1). We will therefore call these small object func-
tional arrays. Operations in this implementation never fail.
Every operation is non-blocking and no synchronization is
necessary, since the imperative arrays are never mutated af-
ter they are created.

5.3 A single-object protocol

Given a non-blocking implementation of functional arrays,
we can construct an implementation of atomic for single
objects. In this implementation, fields of at most one ob-
ject may be referenced during the execution of the atomic
method.

We will consider the following two operations on objects:

e READ(o, f): Read field f of 0. We will assume that
there is a constant mapping function which given a field
name returns an integer index. We will write the result
of mapping f as f.index. For simplicity, and without
loss of generality, we will assume all fields are of equal
size.

e WRITE(o, f,v): Write value v to field f of o.

All other operations on Java objects, such as method dis-
patch and type interrogation, can be performed using the
immutable type field in the object. Because the type field
is never changed after object creation, non-blocking imple-
mentations of operations on the type field are trivial.

As Figure 11 shows, our single-object implementation of
atomic represents objects as a pair, combining type and a



reference to a functional array. When not inside an atomic
method, object reads and writes are implemented using the
corresponding functional array operation, with the array ref-
erence in the object being updated appropriately:

e READ(0, f): Return FA-READ(0.fields, f.index).

e WRITE(o, f,v): Replace o.fields with the result of
FA-UpPDATE(0.fields, f.index, v).

The interesting cases are reads and writes inside an
atomic method. At entry to our atomic method which will
access (only) object o, we store o.fields in a local variable
u. We create another local variable v’ which we initialize to
u. Then our read and write operations are implemented as:

e READATOMIC(0, f): Return FA-READ(v/, f.index).

e WRITEATOMIC(0, f,v): Update variable u’ to the re-
sult of FA-UPDATE(u/, f.index, v).

At the end of the atomic method, we use Compare-And-
Swap to atomically set o.fields to u’ iff it contained u. If
the CAS fails, we back-off and retry.

With our naive “small object” functional arrays, this im-
plementation is exactly the “small object protocol” of Her-
lihy [Her93]. Herlihy’s protocol is rightly criticized for an
excessive amount of copying. We will address this with a
better implementation of functional arrays in Section 5.5.
However, the restriction that only one object may be refer-
enced within an atomic method is overly limiting.

5.4 Extension to multiple objects

We now extend the implementation to allow the fields of
any number of objects to be accessed during the atomic
method. Figure 12 shows our new object representation.
Objects consist of two slots, and the first represents the
immutable type, as before. The second field, versions,
points to a linked list of Version structures. The Version
structures contain a pointer fields to a functional array,
and a pointer owner to an operation identifier. The opera-
tion identifier contains a single field, status, which can be
set to one of three values: COMPLETE, IN-PROGRESS,
or DISCARDED. When the operation identifier is created,
the status field is initialized to IN-PROGRESS, and it will
be updated exactly once thereafter, to either COMPLETE
or DISCARDED. A COMPLETE operation identifier never
later becomes IN-PROGRESS or DISCARDED, and a DIS-
CARDED operation identifier never becomes COMPLETE
or IN-PROGRESS.

We create an operation identifier when we begin or
restart an atomic method and place it in a local variable
oid. At the end of the atomic method, we use CAS to set
oid.status to COMPLETE iff it was IN-PROGRESS. If
the CAS is successful, the atomic method has also executed
successfully; otherwise oid.status = DISCARDED and we
must back-off and retry the atomic method. All Version
structures created while in the atomic method will reference
0id in in their owner field.

Semantically, the current field values for the object will
be given by the first version in the versions list whose op-
eration identifier is COMPLETE. This allows us to link
IN-PROGRESS versions in at the head of multiple objects’
versions lists and atomically change the values of all these
objects by setting the one common operation identifier to
COMPLETE. We only allow one IN-PROGRESS version
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Figure 12: Data structures to support non-blocking multi-
object concurrent operations. Objects point to a linked list
of versions, which reference operation identifiers. Versions
created within the same execution of an atomic method
share the same operation identifier. Version structure also
contain pointers to functional arrays, which record the val-
ues for the fields of the object. If no modifications have been
made to the object, multiple versions in the list may share
the same functional array.

on the versions list, and it must be at the head, so There-
fore, before we can link a new version at the head, we must
ensure that every other version on the list is DISCARDED
or COMPLETE.

Since we will never look past the first COMPLETE ver-
sion in the versions list, we can free all versions past that
point. In our presentation of the algorithm, we do this by
explicitly setting the next field of every COMPLETE ver-
sion we see to null; this allows the versions past that point
to be garbage collected. An optimization would be to have
the garbage collector do the list trimming for us when it
does a collection.

We don’t want to inadvertently chase the null next
pointer of a COMPLETE version, so we always load the
next field of a version before we load owner.status. Since
the writes occur in the reverse order (COMPLETE to
owner.status, then null to next) we have ensured that
our next pointer is valid whenever the status is not COM-
PLETE.

We begin an atomic method with ATOMICENTRY and
attempt to complete an atomic method with ATOMICEXIT.
They are defined as follows:

e ATOMICENTRY: create a new operation identifier, with



READ(o, f):
begin
retry:
U <— o0.versions
u «— u.next
S «— u.owner.status
if (s = DISCARDED)
CAS(u, v, &(o.versions))
goto retry
else if (s = COMPLETE)
a «— u.fields
u.next < null
else
a«— u' .fields
return FA-READ(q, f.index)
end

[Delete DISCARDED?)

[u is COMPLETE]
[Trim version list)

[u' is COMPLETE]
[Do the read]

READATOMIC(0, f):
begin
U < o.versions
if (0id = u.owner)
return FA-READ(u.fields, f.index)
else
u' « u.next
s < u.owner.status
if (s = DISCARDED)
CAS(u, v, &(o.versions))
else if (oid.status = DISCARDED)
fail
else if (s = IN-PROGRESS) [Abort IN-PROGRESS?]
CAS(s, DISCARDED, &(u.owner.status))
else [Link new version in:|
u.next «— null [Trim version list)
u’ « new Version(oid, u, null) [Create new version]
if (CAS(u,u’,&(o.versions)) # FAIL)
u'.fields « u.fields [Copy old fields]
goto retry
end

[My OID should be first]

[Do the read|
[Make me first!]
[Delete DISCARDED?]

[Am I alive?)

Figure 13: READ and READATOMIC implementations for the
multi-object protocol.
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WRITE(o, f,v):
begin
retry:
u «— o.versions
u' « u.next
S «— u.owner.status
if (s = DISCARDED)
CAS(u, v, &(0.versions))
else if (s = IN-PROGRESS) [Abort IN-PROGRESS?]
CAS(s, DISCARDED, &(u.owner.status))
else [u is COMPLETE]
u.next < null [Trim version list]
a < u.fields
a' «— FA-UPDATE(a, f .index, v)
if (CAS(a,a’,&(u.fields)) # FAIL)
return
goto retry
end

[Delete DISCARDED?]

[Do the write]
[Success!|

WRITEATOMIC(0, f,v):
begin
U < o.versions
if (oid = u.owner) [My OID should be first]
u.fields « FA-UPDATE(u.fields, f.index,v)[Do write]
else [Make me first!]
u’ + u.next
$ < u.owner.status
if (s = DISCARDED)
CAS(u,u’,&(0.versions))
else if (oid.status = DISCARDED)
fail
else if (s = IN-PROGRESS) [Abort IN-PROGRESS?]
CAS(s, DISCARDED, &(u.ouner.status))
else [Link new version in:]
u.next < null [Trim version list)
u’ < new Version(oid, u, null) [Create new version]
if (CAS(u,u’,&(o.versions)) # FAIL)
u'.fields « u.fields
goto retry
end

[Delete DISCARDED?]

[Am I alive?]

[Copy old fields]

Figure 14: WRITE and WRITEATOMIC implementations for
the multi-object protocol.



its status initialized to IN-PROGRESS. Assign it to
the thread-local variable oid.

o AtoMmIcExiT: If
CAS(IN-PROGRESS, COMPLETE, &(oid. status))

is successful, the atomic method as a whole has com-
pleted successfully, and can be linearized at the location
of the CAS. Otherwise, the method has failed. Back-off
and retry from ATOMICENTRY.

Pseudo-code describing READ, WRITE, ATOMICREAD, and
ATOMICWRITE is presented in Figures 13 and 14. In the
absence of contention, all operations take constant time plus
an invocation of FA-READ or FA-UPDATE.

5.5 Lock-free functional arrays

In this section we will present a lock-free implementation of
functional arrays with O(1) performance in the absence of
contention. This will complete our implementation of non-
blocking atomic methods for Java.

There have been a number of proposed implementations
of functional arrays, starting from the “classical” functional
binary tree implementation. O’Neill and Burton [OB97] give
a fairly inclusive overview. Functional array implementa-
tions fall generally into one of three categories: tree-based,
fat-elements, or shallow-binding.

Tree-based implementations typically have a logarithmic
term in their complexity. The simplest is the persistent bi-
nary tree with O(Inn) look-up time; Chris Okasaki [Oka95]
has implemented a purely-functional random-access list with
O(In 7) expected lookup time, where 7 is the index of the de-
sired element.

Fat-elements implementations have per-element data
structures indexed by a master array. Cohen [Coh84] hangs
a list of versions from each element in the master ar-
ray. O’Neill and Burton [OB97], in a more sophisticated
technique, hang a splay tree off each element and achieve
O(1) operations for single-threaded use, O(1) amortized cost
when accesses to the array are “uniform”, and O(Inn) amor-
tized worst case time.

Shallow binding was introduced by Baker [Bak78] as
a method to achieve fast variable lookup in Lisp environ-
ments. Baker clarified the relationship to functional arrays
in [Bak91]. Shallow binding is also called version tree ar-
rays, trailer arrays, or reversible differential lists. A typical
drawback of shallow binding is that reads may take O(u)
worst-case time, where u is the number of updates made
to the array. Tyng-Ruey Chuang [Chu94] uses randomized
cuts to the version tree to limit the cost of a read to O(n)
in the worst case. Single-threaded accesses are O(1).

Our use of functional arrays is single-threaded in the
common case, when transactions do not abort. Chuang’s
scheme is attractive because it limits the worst-case cost of
an abort, with very little added complexity. In this section
we will present a lock-free version of Chuang’s randomized
algorithm.

In shallow binding, only one version of the functional ar-
ray (the root) keeps its contents in an imperative array (the
cache). Each of the other versions is represented as a path of
differential nodes, where each node describes the differences
between the current array and the previous array. The dif-
ference is represented as a pair (indez, value), representing
the new value to be stored at the specified index. All paths
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lead to the root. An update to the functional array is simply
implemented by adding a differential node pointing to the
array it is updating.

The key to constant-time access for single-threaded use
is provided by the read operation. A read to the root simply
reads the appropriate value from the cache. However, a read
to a differential node triggers a series of rotations which
swap the direction of differential nodes and result in the
current array acquiring the cache and becoming the new
root. This sequence of rotations is called re-rooting, and is
illustrated in Figure 15. Each rotation exchanges the root
nodes for a differential node pointing to it, after which the
differential node becomes the new root and the root becomes
a differential node pointing to the new root. The cost of a
read is proportional to its re-rooting length, but after the
first read accesses to the same version are O(1) until the
array is re-rooted again.

Shallow binding performs badly if read operations ping-
pong between two widely separated versions of the array,
as we will continually re-root the array from one version
to the other. Chuang’s contribution is to provide for cuts
to the chain of differential nodes: once in a while we clone
the cache and create a new root instead of performing a
rotation. This operation takes O(n) time, so we amortize
it over n operations by randomly choosing to perform a cut
with probability 1/n.

Figure 16 shows the data structures used for the func-
tional array implementation, and the series of atomic steps
used to implement a rotation. The Array class represents
a functional array; it consists of a size for the array and
a pointer to a Node. There are two types of nodes: a
CacheNode stores a value for every index in the array, and a
DiffNode stores a single change to an array. Array objects
which point to CacheNodes are roots.

In step 1 of the figure, we have a root array A and an
array B whose differential node dg points to A. The func-
tional arrays A and B differ in one element: element x of A
is z, while element = of B is y. We are about to rotate B to
give it the cache, while linking a differential node to A.

Step 2 shows our first atomic action. We have created
a new DiffNode d4 and a new Array C' and linked them
between A and its cache. The DiffNode d4 contains the
value for element x contained in the cache, z, so there is no
change in the value of A.

We continue swinging pointers until step 5, when can
finally set the element x in the cache to y. We perform
this operation with a DCAS operation which checks that
C'.node is still pointing to the cache as we expect. Note
that a concurrent rotation would swing C'.node in its step
1. In general, therefore, the location pointing to the cache
serves as a reservation on the cache.

Thus in step 6 we need to again use DCAS to simul-
taneously swing C'.node away from the cache as we swing
B .node to point to the cache.

Figure 17 presents pseudocode for FA-ROTATE,
FA-READ, and FA-UPDATE. Note that FA-READ also uses
the cache pointer as a reservation, double-checking the
cache pointer after it finishes its read to ensure that the
cache hasn’t been stolen from it.

Let us now consider cuts, where FA-READ clones the
cache instead of performing a rotation. Cuts also check the
cache pointer to protect against concurrent rotations. But
what if the cut occurs while a rotation is mutating the cache
in step 5?7 In this case the only array adjacent to the root
is B, so the cut must be occurring during an invocation of



X =undefined

X =undefined

A Y =undefined C

X | undefined x |0 x |2
y undefined y undefined y 1
Initial . After After
configuration. rerooting B. rerooting D.

NoTE. The array is of size 2 and is indexed by z and y. The initial array A is undefined, and B is defined as an update
to A at index z by value 0. Similarly for C and . The dark node is the root node which has the cache. White nodes

are differential nodes which must first be rerooted before be read. Note that only the root node has the cache.

Figure 15: Shallow binding scheme for functional arrays, from [Chu94, Figure 1].

FA-ROTATE(B). But then the differential node dp will be
applied after the cache is copied, which will safely overwrite
the mutation we were concerned about.

Note that with hardware support for small transactions
[HM93] we could cheaply perform the entire rotation atom-
ically, instead of using this six-step approach.

6 Experimental plan

To a first approximation, one can implement the standard
Java synchronized keyword with atomic, ignoring the mon-
itor object specified by the programmer as the argument
to synchronized. This only works for “correct” programs,
where you can define “correct” as “uses the specified moni-
tor operations to guarantee atomic operation”—but a large
number of existing applications are “correct” under this in-
terpretation. Some which aren’t have race conditions which
can be fixed by substituting atomic for the synchronized
keyword.®

This similarity allows us to run most Java applications
unchanged under our modified system, replacing standard
Java synchronization by non-blocking atomic regions. We
plan to conduct experiments with the Java operating sys-
tem TOS [NBO0O] to compare the scalability of standard
synchronization and non-blocking atomic regions. TOS is
a portable Java application, so some traditional operating
system functions have been omitted; in particular, TOS pro-
vides neither scheduling nor memory management services.
Instead, it uses standard Java threads and Java’s garbage-
collected heap.

However, TOS does provide disk servers and pipe servers.
I hope to get these running under the non-blocking synchro-
nization system described here to obtain some quantitative
performance metrics.

9See Flanagan and Qadeer [FQO03] for more discussion, includ-
ing an example of “incorrect” synchronization in the Java library
StringBuffer class which would be corrected by using atomic.
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7 Conclusions

We examined how non-blocking synchronization is inte-
grated into two object-oriented operating systems: Syn-
thesis and the Cache Kernel. We briefly discussed object-
oriented operating systems and the trend toward moving
protection features out of the operating system and into
language and software systems. We then proposed an ex-
tension to Java which would allow the use of non-blocking
synchronization to implement atomic regions, and explored
the use of this system to gather quantitative performance
data from Java operating systems.

The intersection of language and operating system design
appears to be rich in innovative possibilities. Massalin and
Pu left their code synthesis language on the table, and fur-
ther exploration of synchronization as a language mechanism
beckons as well. Operating system designers are accustomed
to using low-level implementation languages, but it seems
likely that higher-level languages can provide compelling
safety and protection properties and allow even smaller un-
derlying microkernels.

At this point, non-blocking synchronization is still a
black art. Efficient compiler analyses can be designed to
determine safety properties of code with mutual exclusion
locks, but no such techniques exist to determine the cor-
rectness of a proposed implementation of non-blocking syn-
chronization. To underscore the point, two race conditions
were found in the non-blocking data structures used by the
Synthesis kernel. Universal techniques provide a possible
solution, but existing methods are too heavy-weight to re-
place hand-coded (and possibly-correct) implementations of
primitive data structures. We hope to address this lack by
using functional data structures to obtain an efficient uni-
versal implementation of non-blocking synchronization for
object-oriented languages.
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FA-UPDATE(A, i, v):

begin
d <+ new DiffNode(i, v, A)
A’ «— new Array(A.size,d)
return A’

end

FA-READ(A,1):
begin
retry:
dc +— A.node
if dc is a cache, then
v < A.nodeli
if (A.node # d¢) [consistency check]
goto retry
return v
else
FA-ROTATE(A)
goto retry
end

FA-ROTATE(B):
begin
retry:
dp < B.node [step (1): assign names as per Figure 16.]
A «— dp.array
r < dp.index
y < dp.value
z — FA-READ(A, z) [rotates A as side effect]

dc < A.node
if d¢ is not a cache, then
goto retry

if (0 = (random mod A.size)) [random cut]
dg — copy of dc
defz] —y
s + DCAS(d¢,dc, &(A .node), dg, de, &(B .node))
if (s # SUCCESS) goto retry
else return

C «— new Array(A.size,d¢)
da < new DiffNode(z, z, C')

s« CAS(dc,da,&(A.node)) [step (2)]
if (s # SUCCESS) goto retry

s« CAS(A, C,&(dp .array)) [step (3)]
if (s # SUCCESS) goto retry

s «— CAS(C, B,&(da .array)) [step (4)]
if (s # SUCCESS) goto retry

s « DCAS(z,y, &(dc[z]),dc, dc, &(C .node)) [step (5)]
if (s # SUCCESS) goto retry

s «— DCAS(dB, dc, &(B.node), dc, nil, &(C .node))[step (6)]
if (s # SUCCESS) goto retry

end

Figure 17: Implementation of lock-free functional array using shallow binding and randomized cuts.
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