Non-Blocking Synchronization
and Object-Oriented Operating
System Design

C. Scott Ananian

cananian@csail.mit.edu

Computer Science and Artifical Intelligence Laboratory
Massachusetts Institute of Technology

Ananian, Lock-free O-O OS - p.

http://cscott.net

Our Goal

The design of a

Object-Oriented

Non-Blocking

Operating System

Ananian, Lock-free O-O OS - p.

Our Goal

The design of a language to support

Object-Oriented

Non-Blocking

Operating Systems

Ananian, Lock-free O-O OS - p.

Why ODbject-Oriented?

Clear interfaces and strong encapsulation provide for:

o Safety
o Software protection mechanisms.

e Ease
e Clean composition semantics.
e Uniform synchronization.

e Performance
e Specialized implementations.

 Natural grouping/locality.

Ananian, Lock-free O-O OS - p.

Why Non-Blocking?

Increased robustness
* No deadlocks, no bookkeeping.

Better decoupling

« Better code structure; protection from
asynchronous events.

Increased parallelism
* No idle processors, no convoys.

| ow overhead
« No semaphore queue maintenance.

Progress guarantees
* Real-time properties; no priority inversion.

Ananian, Lock-free O-O OS - p.

Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions

Ananian, Lock-free O-O OS - p.

The Synthesis Kernel
Synthesis Is a lock-free OS implemented by
Massalin and Pu.

Explored use of run-time specialization for
efficiency.

Object encapsulation required to enable
specialization; objects called quajects.

Implemented in 680x0 assembly; macro support
for quajects.

Extremely high performance.

Ananian, Lock-free O-O OS - p.

The Synthesis Kernel, cont.

Types of quajects:
 Threads

« Memory segments
e Symbol tables
e Data channels (I/O, pipes, filters, ...)

Three quajects for synchronization:
e LIFO stack

 FIFO queue (4 variants)

* Linked list

Ananian, Lock-free O-O OS - p.

Synthesis Synchronization Errors

Three synchronization errors found in published
lock-free algorithms for Synthesis.

 One ABA problem in LIFO stack.
e One likely race in MP-SC FIFO queue.

e One interesting corner case in quaject callback
handling.

Ananian, Lock-free O-O OS - p.

LIFO stack: Push

SP new SP

Push(elem)

{

retry:
O|d_SP = SP; i old val
new SP = old SP - 1; grows

old val = *new_SP;
if(DCAS(old_SP, old val,
new_ SP, elem,
&SP, new_SP) == FAIL)
goto retry;

Ananian, Lock-free O-O OS - p.

LIFO stack: Push

SP new SP

Push(elem)

{

retry:
O|d_SP = SP; i old val
new SP = old SP - 1; grows

old val = *new_ SP;
if(DCAS(old_SP, old val,
new_ SP, elem,
&SP, new_SP) == FAIL)
goto retry;

Ananian, Lock-free O-O OS - p.

LIFO stack: Push

SP new SP

Push(elem)
{
retry:
old SP = SP;
new SP = old SP - 1;
old val = *new_SP;
if(DCAS(old_SP, old val,
new_SP, elem,
&SP, new_SP) == FAIL)
goto retry;

old val

Ananian, Lock-free O-O OS - p.

LIFO stack: Push

SP new SP

Push(elem)

{

retry:
O|d_SP = SP; l old val
new SP = old SP - 1; rows

old val = *new_SP;
if(DCAS(old_SP, old val,
new_ SP, elem,
&SP, new_SP) == FAIL)
goto retry;

Ananian, Lock-free O-O OS - p.

LIFO stack: Pop

SP new SP

Pop()

{

retry:
old SP = SP; i o
new SP = old SP + 1; grows

elem = *old SP;

if(CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;

return elem;

Ananian, Lock-free O-O OS —p.

LIFO stack: Pop

SP new SP

Pop()

{

retry:
old SP = SP; i e
new SP = old SP + 1; grows 10

elem = *old SP;

if(CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;

return elem;

Ananian, Lock-free O-O OS —p.

LIFO stack: Pop

SP new SP

Pop()
{
retry:
old SP = SP; o
new SP = old SP + 1; grows 10
elem = *old SP;
if(CAS(old_SP, new SP, &SP) == FAIL)
goto retry;
return elem;
}

Ananian, Lock-free O-O OS —p.

LIFO stack: Pop

SP new SP

Pop()

{

retry:
old SP = SP; i e
new SP = old SP + 1; grows 10

elem = *old SP;

if(CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;

return elem;

Ananian, Lock-free O-O OS —p.

LIFO stack: Pop

SP new SP

Pop()
{
retry:
old SP = SP; o
new SP = old SP + 1; grows 10
elem = *old SP;
if(CAS(old_SP, new SP, &SP) == FAIL)
goto retry;
return elem;
}

Ananian, Lock-free O-O OS —p.

Pop()

retry:

LIFO stack: Pop

old SP = SP;

new SP = old SP + 1;

elem = *old SP;

if(CAS(old_SP, new SP,
goto retry;

return elem;

&SP)

new SP

elem
10

Ananian, Lock-free O-O OS —p.

LIFO stack: Pop

SP new SP

Pop()

retry:
old SP = SP;
new SP = old SP + 1;
elem = *old SP;
if(CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;
return elem;

elem
10

Ananian, Lock-free O-O OS —p.

SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
h = Q head,
if (next(h) == Q_tail)
wait;
Q _buf[h] = data;
Q_head = next(h);

}
Q_get() {
ro=s :
if (t == Q_head) data Q_tail
wait; _
data = Q_buf[t];
Q_tail = next(t);
return data;
}

Ananian, Lock-free O-O OS —p.

SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
h = Q head,
if (next(h) == Q_tail)
wait;
Q_buf[h] = data;
Q_head = next(h);

}
Q_get() {
t = Q tall
if (t == Q_head) data
wait;
data = Q_buf[t];
Q_tail = next(t);
return data;
}

Ananian, Lock-free O-O OS —p.

SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {

h = Q head,

if (next(h) == Q_tail)
wait;

Q_buf[h] = data;

Q_head = next(h);

}
Q_get() {
ro=s :
if (t == Q_head) data Q_tail
wait; _
data = Q_buf[t];
Q_tail = next(t);
return data;
}

Ananian, Lock-free O-O OS —p.

SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
h = Q head,
if (next(h) == Q_tail)
wait;
Q _buf[h] = data;
Q_head = next(h);

}

Q_get() f
if (t == Q_head) data Q_tail
wait;

data = Q_buft];
Q_tail = next(t);
return data;

}

Ananian, Lock-free O-O OS —p.

SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {

h = Q head, -
if (next(h) == Q_tail)
wait;
Q_buf[h] = data; _

Q_head = next(h);

}
Q_get() {
t = Q tail;
if (t == Q_head) data Q_tail
wait; 58
data = Q_buf[t];
Q_tail = next(t);
return data;
}

Ananian, Lock-free O-O OS —p.

MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q head, -

if (next(h) == Q_tail) _
wait;

Q_buf[h] = data;

} while (CAS(h, next(h), &Q_ head)==FAIL);

}
Q_get() {
t = Q tail;
if (t == Q_head) data Q_tail
wait;
data = Q_buf[t];
Q_tail = next(t);
return data;
}

Ananian, Lock-free O-O OS —p.

MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q head, -

if (next(h) == Q_tail)
wait;

Q_buf[h] = data;

} while (CAS(h, next(h), &Q_ head)==FAIL);

}
Q_get() {
t = Q tail;
if (t == Q_head) data Q_tail
wait;
data = Q_buf[t];
Q_tail = next(t);
return data;
}

Ananian, Lock-free O-O OS —p.

MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q_head,
if (next(h) == Q_tail)
wait;
Q_buf[h] = data;
} while (CAS(h, next(h), &Q head) ==FAIL);
}

Q_get() {
t=Qtal;, [ik

if (t == Q_head) data Q_tail
wait;

data = Q_buf[t];

Q_tail = next(t);

return data;

~
-

Ananian, Lock-free O-O OS —p.

MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q_head,
if (next(h) == Q_tail)
wait;
Q_buf[h] = data;
} while (CAS(h, next(h), &Q head) ==FAIL);
}

Q_get() {
t=Qtal;, [ik

if (t == Q_head) data Q_tail
wait;

data = Q_buf[t];

Q_tail = next(t);

return data;

~
-

Ananian, Lock-free O-O OS —p.

MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q_head,
if (next(h) == Q_tail)
walt;
Q_buf[h] = data;
} while (DCAS()
}
Q_get() {
t = Q tail;
if (t == Q_head) data
walt;
data = Q_buf[t];
Q_tail = next(t);
return data;

Ananian, Lock-free O-O OS —p.

Quaject callback

Queue quaject hooked up to a hardware interrupt (consumer) and a user thread (producer).

Kind of User Device
Reference| Thread ByteQueug| ByteQueue Driver Hardware
send-complete
callentry write — Qput Qqget — interrupt
turn off
callback | suspend <«— Q-full Qempty — send-complete
turn on
callback | resume <«— Qfull-1 Qempty-1 — send-complete

o Calls to Qput (Qget) return immediately as
long as queue Is not full (empty), otherwise the
Qfull (Qempty) callback is invoked.

 When the queue later empties (fills) the
Qfull-1 (Qempty-1) callback is invoked.

Ananian, Lock-free O-O OS —p.

Quaject callback

Queue quaject hooked up to a hardware interrupt (consumer) and a user thread (producer).

Kind of User Device
Reference| Thread ByteQueug| ByteQueue Driver Hardware
send-complete
callentry write — Qput Qqget — interrupt
turn off
callback | suspend <«— Q-full Qempty — send-complete
turn on
callback | resume <«— Qfull-1 Qempty-1 — send-complete

 Intended to emulate blocking I/O when callbacks
are hooked up to thread suspend/resume.

« BUT what if gueue empties between invocation of
Qfull and the actual thread suspend?

Ananian, Lock-free O-O OS —p.

Quaject callback

Queue quaject hooked up to a hardware interrupt (consumer) and a user thread (producer).

Kind of User Device
Reference| Thread ByteQueug| ByteQueue Driver Hardware
send-complete
callentry write — Qput Qqget — interrupt
turn off
callback | suspend <«— Q-full Qempty — send-complete
turn on
callback | resume <«— Qfull-1 Qempty-1 — send-complete

e Solution #1: Disable signals/interrupts in this
critical region.

o Solution #2: Atomically add to suspend list iff
gueue Is still full. What about additional
compare?

Ananian, Lock-free O-O OS —p.

I'he Cache Kernel
[Greenwald and Cheriton 1996]

Minimal microkernel with only three operating
system object types:

e Address spaces
e Threads
* Application kernels

Only one interprocess notification mechanism:;
asynchronous signals.

Lock-free implementation to handle large amount
of asynchrony w/o coupling.

Lock-free sync allows pushing OS functions into
userland w/o deadlock when user threads are
terminated.

Ananian, Lock-free O-O OS —p.

Cache Kernel synchronization

General strategy for lock-free data structures:
« Each data structure has a version number.

e Each modification to the data structure
Increments the version number.

To make a one-word change:

e Read and remember v, the current version
number.

» Traverse the structure to compute the change.

« Use DCAS to atomically apply the change and
Increment the version number, conditional on the
current version number still being equal to v.

Ananian, Lock-free O-O OS —p.

Lock-Free Linked List

Delete(elt) {

do {
retry:
backofflfNeeded();
version = list->version,;
for (p = list->head; p->next != elt , p = p->next) {
if (p==NULL) { [* Not found */
If (version != list->version)
goto retry; [* Changed */
return NULL; [* Really not found */
}
} while (IDCAS(&(list->version), &(p->next),
version, elt,
version+1, elt->next));
return elt;

Ananian, Lock-free O-O OS —p.

Version-Number/DCAS Limitations

Version number protects entire data structure.

e Concurrent mutations to non-interfering sections
of data structure not allowed.

 Workaround: break up data structure. List of lists,
etc.

Only one-word mutations are allowed.

e Copy-and-swap larger objects.
« Copying Is expensive!
« Remove, mutate, and add.

e Results In “best-effort” data structures which
require high-level timeout and retry
mechanisms.

Ananian, Lock-free O-O OS —p.

Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions

Ananian, Lock-free O-O OS —p.

A More General Scheme

Ad hoc impl. of lock-free data structures are:

e Hard to get right!

e Three errors in Synthesis.
e Limited

 Small number of hand-coded data structures.
e Brittle

e Small number of atomic actions.

e Forced to copy-and-swap to make larger
actions atomic.

» Copy-and-swap works poorly on large objects.

Solution: integrate synchronization into the Ianguage.

n, Lock-free O-O OS —p. .

Monitor Synchronization

 Introduced by Emerald [Black et al 1986]; familiar
now In Java.

» Every object contains a monitor which:

e Enforces mutual exclusion
e Serves as a signalling mechanism

e Certain methods are monitored

o Shared variables of objects can only be accessed
by monitored methods.

e Java doesn’t enforce this.

Not sufficient to prevent unexpected parallel behavior!

Ananian, Lock-free O-O OS —p. .

Synchronization Fallures

class A { /I OK!
int x; // shared variable
synchronized int inc() {
return X++;

class B { /I Race-free, but not OK.
int x; // shared variable
synchronized int get() { return x; }
synchronized void set(int y) { x=y; }
int inc() { // not monitored
int t = get();
t++;
set(t);
return ft;

} Ananian, Lock-free O-O OS —p. .

Atomic Blocks

public class Count {
private int cntr = O;
void inc() {
synchronized (this) {

cntr = cntr + 1;

}
}
}

 Traditionally, monitors associated with each
object provide mutual exclusion between
concurrent accesses to the object.

Ananian, Lock-free O-O OS —p. .

Atomic Blocks

public class Count { public class Count {

private int cntr = O; private int cntr = O;

void inc() { void inc() {
synchronized (this) { = atomic {
cntr = cntr + 1; cntr = cntr + 1;
} }

} }

} }

 Instead we provide an atomic block, and make

oroviding mutual exclusion.

Inearizablity guarantees without (necessarily)

Ananian, Lock-free O-O OS —p. .

Language Design for OSes

We’ll start with Java
o C-like expressions, O-0O structure, type-safety.

Add low-level constructs

 Interrupt linkage, fixed object layout for
memory-mapped I/O

 JEPES [Schultz et al 2003], Lisaac [Sonntag
and Colnet 2002]
Use software protection mechanisms
« Remove address spaces from kernel
 DrScheme [Flatt et al 1999]

Provide atomic operation blocks
* Implement with non-blocking synchronization

Ananian, Lock-free O-O OS —p. .

Functional Arrays

Our implementation of atomic blocks will be based
on fast functional arrays.

e Functional arrays are persistent; after an element
IS updated both the new and the old contents of
the array are available for use.

 Fundamental operation:
UPDATE(A,7,v) : A—=Ny—=V — A

o Arrays are just mappings from integers to values;
any persistent map can be used as a functional
array.

e A fast functional array will have O(1) access and
update “for the common cases”.

Ananian, Lock-free O-O OS —p. .

Single Object Protocol

Valid for operations on a single object only.

Functional Array

SRS
K Result of Operation
Object
Functional Array
.. [
(atomic swap) Prior State

e Object representation contains a pointer to a
functional array.

e Object mutation inside atomic creates new
funCtlonaI array' Ananian, Lock-free O-O OS —p. .

Single Object Protocol

Valid for operations on a single object only.

Functional Array

SRS
K Result of Operation
Object
Functional Array
.. [
(atomic swap) Prior State

e At start of atomic block load and remember
fields array pointer as prior state.

« At end of atomic block compare-and-swap the
result of operation for the prior state.

Ananian, Lock-free O-O OS —p. .

FProplems with Multiple ODjects

The case of the StringBuffer

public final class StringBuffer ...{

private int count;

public synchronized StringBuffer append(StringBuffer sb) {

}

if (sb == null) { sb = NULL; }

int len = sb.length(); /[len may be stale.

Int newcount = count + len;

if (newcount > value.length) expandCapacity(newcount);

sb.getChars(0, len, value, count); // use of stale len

count = newcount;
return this;

public synchronized int length() { return count; }
public synchronized void getChars(...) { ...}

Ananian, Lock-free O-O OS —p. .

Multiple Object Protocol

Operation ID Operation ID

status status

« Objects point to | |
version lists.
‘

IN-PROGRESSh % COMPLETE h

Version 7 Version

« Each version has an .

next —ﬁ> next 4,.3

associated operation

_— —

ID and field array \ v
reference.

 Operation IDs are | emEE

Operation ID

Object

i n Itl a'l Ized to IN- Version /ﬁ Version \

PROGRESS and EEl mm

are changed exactly ”%Hwo

once to COMPLETE //

\ Functional Array \Functional Array

or DISCARDED. ~ N

Ananian, Lock-free O-O OS —p. .

Multiple Object Protocol

Operation ID Operation ID

[At end Of atOm IC Object /N—PROGL\\\ COMPL\
block, attempt to set

Version 7 \ Version

Operation ID to f\ EEm
next —ﬁ> next 4».1‘
COMPLETE.

_— —

« Value of object is Comcan /
value of first <

committed version. N
° Old Or DISCARDED Version /// Version \

versions can be i - B
" * next e next ."
trimmed. - -H

—

7 Ve
_ Functional Array \Functional Array
N

Sa Sa

Ananian, Lock-free O-O OS —p. .

Multiple Object Protocol

Operation ID Operation ID
status status
IN-PROGRESSh % COMPLETE h

 Only one = |
IN-PROGRESS

Version 7 Version

version allowed on **\ N -

versions list, and it a El o
|
must be at the head. s

(_Functional Array |
N |
Y / |

- Before we can link :
a new version onto
the versions list, we FOE
must ensure that ev- R i ')
ery other version IS N e
either COMPLETE or L

—

DIS CA RDED_ < unctional Array <F\u\rTctionaI Array

Sa Sy

Ananian, Lock-free O-O OS —p. .

Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions

Ananian, Lock-free O-O OS —p. .

Functional Arrays using

Shallow Binding

Ananian, Lock-free O-O OS —p. .

Functional Arrays using

Shallow Binding

=] A

y y

nioc 1 MY
Te

3
4
5

Ananian, Lock-free O-O OS —p. .

Functional Arrays using

Shallow Binding

C B A
i i i
index 5 ugindex 1 g 1
3

3
4
5

Ananian, Lock-free O-O OS —p. .

Functional Arrays using

Shallow Binding

C =] A D
y y Y y
nioc 5 B Go 1 IS T
Te

3
4
5

Ananian, Lock-free O-O OS —p. .

Functional Arrays using

Shallow Binding

C =] A D
y y Y y
nioc 5 B Go 1 IS T
Te

C* B* A
index 1 S index 7 e
value 2

II

Ananian, Lock-free O-O OS —p. .

Functional Arrays using

Shallow Binding

C =] A D
y y Y y
nioc 5 B Go 1 IS T
alse 3
Te

B

i
valve 2.

‘ A

index b —>—> index 2 pames

value 1 value 2

)

value

B

‘ JAN
B ncex 5 i index
value

-
O

!

el index 2

value 3

Ananian, Lock-free O-O OS —p. .

Functional Arrays using

Shallow Binding

C =] A D
y y y y
nioc 5 B Go 1 IS T
Te

B

‘ A

O
-

index 5 mmmmmindex 1 mmmmedlindex 2 e

value 5 value 2

value 1

II

Sl index 2

value 3

Ananian, Lock-free O-O OS —p. .

Lock-free Rotations

Unique pointer to cache acts as reservation.

Array

N / size \

node

‘DiffNode

Array

index X

value y

array

node
dB

0

CacheNode

Ananian, Lock-free O-O OS —p. .

Lock-free Rotations

Unique pointer to cache acts as reservation.

Array

/ size \

node

Array
size
B |
node

DiffNode

index

value

array

C

da

DiffNode

index

value

array

dg

b4 Array
/\/ size

node

0

CacheNode

Ananian, Lock-free O-O OS —p. .

Lock-free Rotations

Unique pointer to cache acts as reservation.

DiffNode

DiffNode
Array >
i index
B / size \
array

Ananian, Lock-free O-O OS —p. .

Lock-free Rotations

Unique pointer to cache acts as reservation.

Array

A / size \

DiffNode

index x

value =z

array
d,)

node

‘DiffNode

index X

value y

array

dg

Array

size

node

0

CacheNode

Ananian, Lock-free O-O OS —p. .

Lock-free Rotations

Unique pointer to cache acts as reservation.

DiffNode

CacheNode

Arra
y . 0
size
C
node

]

DiffNode
Array
v size ™~ index X
B value y
node
array n
dB

DCAS

Ananian, Lock-free O-O OS —p. .

Lock-free Rotations

Unique pointer to cache acts as reservation.

DiffNode

DiffNode

) index X
E3 size
value
node y
array

dg

Array

(: / size \

node

DCAS

acheNode

Ananian, Lock-free O-O OS —p. .

A Few Optimizations

e Use hardware small-transaction support to
Implement rotations

* Naive functional arrays for small objects
e Only use synchronization protocol for shared data

Ananian, Lock-free O-O OS —p. .

Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions

Ananian, Lock-free O-O OS —p. .

Assessment and conclusions

e Surveyed Synthesis and Cache Kernel
« Ad hoc implementations are hard to get right.

* Version-number scheme is better, but very
limited.

* Presented language design for non-blocking
object-oriented operating system.

* Novel feature: compiler-supported
non-blocking atomic regions.
* Presented algorithms for implementing
non-blocking atomic regions in O-O languages
« Avoids “large object” problems.

e Good complexity bounds, due to fast
fu n Ctl O n a.l arrays . Ananian, Lock-free O-O OS — p. .

The Graveyard Of Unused Slides
follows this point.

Blocking Synchronization

e Spin-locks
e Processor runs in tight loop while waiting to
enter a critical region.

e Cheap, but wastes processor cycles.

 Semaphores

e Maintain a waiting queue of blocked
processes.

 Queue maintenance and semaphore
operations expensive.
e Hybrids
» Spin-lock for short time periods.
« Semaphore for long walits.

Ananian, Lock-free O-O OS —p. .

Non-blocking Synchronization

Walt-free

* Any process can complete any operation in finite # of
steps, regardless of activities of other processes.

* “Recursive helping.”
Lock-free

* Some process will complete in a finite # of steps.
e Allows starvation.

Obstruction-free

* Processes will always complete if executed in isolation.
e Contention can halt all progress indefinitely.

Other (Lamport, . ..)

Ananian, Lock-free O-O OS —p. .

V++/Cache Kernel structure

Application kernel
(UNIX emulator or
simulation kernel or
database kerndl or ...)

Ananian, Lock-free O-O OS —p. .

Account example

class Account {
int balance = O;

synchronized int deposit(int amt) {
Int t = this.balance;
t =1+ amt
this.balance = t;
return t;

synchronized int readBalance() {
return this.balance;

synchronized int withdraw(int amt) {
Int t = this.balance;
t=1- amt;

+thic halancra — +-

Ananian, Lock-free O-O OS —p. .

Optimistic parallelism

for (...)
optimistically {

...do an Iteration ...

}

conquer(A[n], n) {

optimistic spawn
conguer(A, n/2);

optimistic spawn

conquer(A+n/2, n-n/2);

Programmer notes
that the iterations or
spawns are expected
to be Independent.
Iff there are dynamic

dependencies, the
computations are
serialized.

Ananian, Lock-free O-O OS —p. .

	Our Goal
	Our Goal

	Why Object-Oriented?
	Why Non-Blocking?
	Outline
	The Synthesis Kernel
	The Synthesis Kernel, cont.
	Synthesis Synchronization Errors
	LIFO stack: Push
	LIFO stack: Push
	LIFO stack: Push
	LIFO stack: Push

	LIFO stack: Pop
	LIFO stack: Pop
	LIFO stack: Pop
	LIFO stack: Pop
	LIFO stack: Pop
	LIFO stack: Pop
	LIFO stack: Pop

	SP-SC FIFO queue
	SP-SC FIFO queue
	SP-SC FIFO queue
	SP-SC FIFO queue
	SP-SC FIFO queue

	MP-SC FIFO queue
	MP-SC FIFO queue
	MP-SC FIFO queue
	MP-SC FIFO queue
	MP-SC FIFO queue

	Quaject callback
	Quaject callback
	Quaject callback

	The Cache Kernel\small [Greenwald and Cheriton 1996]
	Cache Kernel synchronization
	Lock-Free Linked List
	Version-Number/DCAS Limitations
	Outline
	A More General Scheme
	Monitor Synchronization
	Synchronization Failures
	Atomic Blocks
	Atomic Blocks

	Language Design for OSes
	Functional Arrays
	Single Object Protocol
	Single Object Protocol

	Problems with Multiple Objects\small The case of the StringBuffer
	Multiple Object Protocol
	Multiple Object Protocol
	Multiple Object Protocol

	Outline
	{small Functional Arrays using}\Shallow Binding
	{small Functional Arrays using}\Shallow Binding
	{small Functional Arrays using}\Shallow Binding
	{small Functional Arrays using}\Shallow Binding
	{small Functional Arrays using}\Shallow Binding
	{small Functional Arrays using}\Shallow Binding
	{small Functional Arrays using}\Shallow Binding

	Lock-free Rotations
	Lock-free Rotations
	Lock-free Rotations
	Lock-free Rotations
	Lock-free Rotations
	Lock-free Rotations

	A Few Optimizations
	Outline
	Assessment and conclusions
	The Graveyard Of Unused Slides follows this point.
	Blocking Synchronization
	Non-blocking Synchronization
	V++/Cache Kernel structure
	Account example
	Optimistic parallelism

