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Why ODbject-Oriented?

Clear interfaces and strong encapsulation provide for:

o Safety
o Software protection mechanisms.

e Ease
e Clean composition semantics.
e Uniform synchronization.

e Performance
e Specialized implementations.

 Natural grouping/locality.
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Why Non-Blocking?

Increased robustness
* No deadlocks, no bookkeeping.

Better decoupling

« Better code structure; protection from
asynchronous events.

Increased parallelism
* No idle processors, no convoys.

| ow overhead
« No semaphore queue maintenance.

Progress guarantees
* Real-time properties; no priority inversion.
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Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions
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The Synthesis Kernel
Synthesis Is a lock-free OS implemented by
Massalin and Pu.

Explored use of run-time specialization for
efficiency.

Object encapsulation required to enable
specialization; objects called quajects.

Implemented in 680x0 assembly; macro support
for quajects.

Extremely high performance.
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The Synthesis Kernel, cont.

Types of quajects:
 Threads

« Memory segments
e Symbol tables
e Data channels (I/O, pipes, filters, ...)

Three quajects for synchronization:
e LIFO stack

 FIFO queue (4 variants)

* Linked list
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Synthesis Synchronization Errors

Three synchronization errors found in published
lock-free algorithms for Synthesis.

 One ABA problem in LIFO stack.
e One likely race in MP-SC FIFO queue.

e One interesting corner case in quaject callback
handling.
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LIFO stack: Push

SP new SP

Push(elem)

{

retry:
O|d_SP = SP; i old val
new SP = old SP - 1; grows

old val = *new_SP;
if(DCAS(old_SP, old val,
new_ SP, elem,
&SP, new_SP) == FAIL)
goto retry;
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LIFO stack: Push

SP new SP

Push(elem)

{

retry:
O|d_SP = SP; i old val
new SP = old SP - 1; grows

old val = *new_ SP;
if(DCAS(old_SP, old val,
new_ SP, elem,
&SP, new_SP) == FAIL)
goto retry;
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LIFO stack: Push

SP new SP

Push(elem)
{
retry:
old SP = SP;
new SP = old SP - 1;
old val = *new_SP;
if( DCAS(old_SP, old val,
new_SP, elem,
&SP, new_SP) == FAIL)
goto retry;

old val
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LIFO stack: Push

SP new SP

Push(elem)

{

retry:
O|d_SP = SP; l old val
new SP = old SP - 1; rows

old val = *new_SP;
if(DCAS(old_SP, old val,
new_ SP, elem,
&SP, new_SP) == FAIL)
goto retry;
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LIFO stack: Pop

SP new SP

Pop()

{

retry:
old SP = SP; i o
new SP = old SP + 1; grows

elem = *old SP;

if(CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;

return elem;
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LIFO stack: Pop

SP new SP

Pop()

{

retry:
old SP = SP; i e
new SP = old SP + 1; grows 10

elem = *old SP;

if(CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;

return elem;
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LIFO stack: Pop

SP new SP

Pop()
{
retry:
old SP = SP; o
new SP = old SP + 1; grows 10
elem = *old SP;
if( CAS(old_SP, new SP, &SP) == FAIL)
goto retry;
return elem;
}
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LIFO stack: Pop

SP new SP

Pop()

{

retry:
old SP = SP; i e
new SP = old SP + 1; grows 10

elem = *old SP;

if(CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;

return elem;

Ananian, Lock-free O-O OS —p.



LIFO stack: Pop

SP new SP

Pop()
{
retry:
old SP = SP; o
new SP = old SP + 1; grows 10
elem = *old SP;
if( CAS(old_SP, new SP, &SP) == FAIL)
goto retry;
return elem;
}
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Pop()

retry:

LIFO stack: Pop

old SP = SP;

new SP = old SP + 1;

elem = *old SP;

if( CAS(old_SP, new SP,
goto retry;

return elem;

&SP)

new SP

elem
10
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LIFO stack: Pop

SP new SP

Pop()

retry:
old SP = SP;
new SP = old SP + 1;
elem = *old SP;
if( CAS(old_SP, new_SP, &SP) == FAIL)
goto retry;
return elem;

elem
10
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SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
h = Q head,
if (next(h) == Q_tail)
wait;
Q _buf[h] = data;
Q_head = next(h);

}
Q_get() {
ro=s :
if (t == Q_head) data Q_tail
wait; _
data = Q_buf[t];
Q_tail = next(t);
return data;
}
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SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
h = Q head,
if (next(h) == Q_tail)
wait;
Q_buf[h] = data;
Q_head = next(h);

}
Q_get() {
t = Q tall
if (t == Q_head) data
wait;
data = Q_buf[t];
Q_tail = next(t);
return data;
}
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SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {

h = Q head,

if (next(h) == Q_tail)
wait;

Q_buf[h] = data;

Q_head = next(h);

}
Q_get() {
ro=s :
if (t == Q_head) data Q_tail
wait; _
data = Q_buf[t];
Q_tail = next(t);
return data;
}
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SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
h = Q head,
if (next(h) == Q_tail)
wait;
Q _buf[h] = data;
Q_head = next(h);

}

Q_get() f
if (t == Q_head) data Q_tail
wait;

data = Q_buft];
Q_tail = next(t);
return data;

}

Ananian, Lock-free O-O OS —p.



SP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {

h = Q head, -
if (next(h) == Q_tail)
wait;
Q_buf[h] = data; _

Q_head = next(h);

}
Q_get() {
t = Q tail;
if (t == Q_head) data Q_tail
wait; 58
data = Q_buf[t];
Q_tail = next(t);
return data;
}
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MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q head, -

if (next(h) == Q_tail) _
wait;

Q_buf[h] = data;

} while (CAS(h, next(h), &Q_ head)==FAIL);

}
Q_get() {
t = Q tail;
if (t == Q_head) data Q_tail
wait;
data = Q_buf[t];
Q_tail = next(t);
return data;
}
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MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q head, -

if (next(h) == Q_tail)
wait;

Q_buf[h] = data;

} while (CAS(h, next(h), &Q_ head)==FAIL);

}
Q_get() {
t = Q tail;
if (t == Q_head) data Q_tail
wait;
data = Q_buf[t];
Q_tail = next(t);
return data;
}
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MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q_head,
if (next(h) == Q_tail)
wait;
Q_buf[h] = data;
} while ( CAS(h, next(h), &Q head) ==FAIL);
}

Q_get() {
t=Qtal;, [ ik

if (t == Q_head) data Q_tail
wait;

data = Q_buf[t];

Q_tail = next(t);

return data;

~
-
------
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MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q_head,
if (next(h) == Q_tail)
wait;
Q_buf[h] = data;
} while ( CAS(h, next(h), &Q head) ==FAIL);
}

Q_get() {
t=Qtal;, [ ik

if (t == Q_head) data Q_tail
wait;

data = Q_buf[t];

Q_tail = next(t);

return data;

~
-
------
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MP-SC FIFO queue

next(x) { return (x+1) % Q size; }

Q_put(data) {
do {

h = Q_head,
if (next(h) == Q_tail)
walt;
Q_buf[h] = data;
} while ( DCAS( )
}
Q_get() {
t = Q tail;
if (t == Q_head) data
walt;
data = Q_buf[t];
Q_tail = next(t);
return data;
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Quaject callback

Queue quaject hooked up to a hardware interrupt (consumer) and a user thread (producer).

Kind of User Device
Reference| Thread ByteQueug| ByteQueue Driver Hardware
send-complete
callentry write — Qput Qqget — interrupt
turn off
callback | suspend <«— Q-full Qempty — send-complete
turn on
callback | resume <«— Qfull-1 Qempty-1 — send-complete

o Calls to Qput (Qget ) return immediately as
long as queue Is not full (empty), otherwise the
Qfull (Qempty ) callback is invoked.

 When the queue later empties (fills) the
Qfull-1  (Qempty-1 ) callback is invoked.
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Quaject callback

Queue quaject hooked up to a hardware interrupt (consumer) and a user thread (producer).

Kind of User Device
Reference| Thread ByteQueug| ByteQueue Driver Hardware
send-complete
callentry write — Qput Qqget — interrupt
turn off
callback | suspend <«— Q-full Qempty — send-complete
turn on
callback | resume <«— Qfull-1 Qempty-1 — send-complete

 Intended to emulate blocking I/O when callbacks
are hooked up to thread suspend/resume.

« BUT what if gueue empties between invocation of
Qfull and the actual thread suspend?
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Quaject callback

Queue quaject hooked up to a hardware interrupt (consumer) and a user thread (producer).

Kind of User Device
Reference| Thread ByteQueug| ByteQueue Driver Hardware
send-complete
callentry write — Qput Qqget — interrupt
turn off
callback | suspend <«— Q-full Qempty — send-complete
turn on
callback | resume <«— Qfull-1 Qempty-1 — send-complete

e Solution #1: Disable signals/interrupts in this
critical region.

o Solution #2: Atomically add to suspend list iff
gueue Is still full. What about additional
compare?
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I'he Cache Kernel
[Greenwald and Cheriton 1996]

Minimal microkernel with only three operating
system object types:

e Address spaces
e Threads
* Application kernels

Only one interprocess notification mechanism:;
asynchronous signals.

Lock-free implementation to handle large amount
of asynchrony w/o coupling.

Lock-free sync allows pushing OS functions into
userland w/o deadlock when user threads are
terminated.
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Cache Kernel synchronization

General strategy for lock-free data structures:
« Each data structure has a version number.

e Each modification to the data structure
Increments the version number.

To make a one-word change:

e Read and remember v, the current version
number.

» Traverse the structure to compute the change.

« Use DCAS to atomically apply the change and
Increment the version number, conditional on the
current version number still being equal to v.
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Lock-Free Linked List

Delete(elt) {

do {
retry:
backofflfNeeded();
version = list->version,;
for (p = list->head; p->next != elt , p = p->next) {
if (p==NULL) { [* Not found */
If (version != list->version)
goto retry; [* Changed */
return NULL; [* Really not found */
}
} while (IDCAS(&(list->version), &(p->next),
version, elt,
version+1, elt->next));
return elt;
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Version-Number/DCAS Limitations

Version number protects entire data structure.

e Concurrent mutations to non-interfering sections
of data structure not allowed.

 Workaround: break up data structure. List of lists,
etc.

Only one-word mutations are allowed.

e Copy-and-swap larger objects.
« Copying Is expensive!
« Remove, mutate, and add.

e Results In “best-effort” data structures which
require high-level timeout and retry
mechanisms.
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Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions
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A More General Scheme

Ad hoc impl. of lock-free data structures are:

e Hard to get right!

e Three errors in Synthesis.
e Limited

 Small number of hand-coded data structures.
e Brittle

e Small number of atomic actions.

e Forced to copy-and-swap to make larger
actions atomic.

» Copy-and-swap works poorly on large objects.

Solution: integrate synchronization into the Ianguage.

n, Lock-free O-O OS —p. .



Monitor Synchronization

 Introduced by Emerald [Black et al 1986]; familiar
now In Java.

» Every object contains a monitor which:

e Enforces mutual exclusion
e Serves as a signalling mechanism

e Certain methods are monitored

o Shared variables of objects can only be accessed
by monitored methods.

e Java doesn’t enforce this.

Not sufficient to prevent unexpected parallel behavior!
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Synchronization Fallures

class A { /I OK!
int x; // shared variable
synchronized int inc() {
return X++;

class B { /I Race-free, but not OK.
int x; // shared variable
synchronized int get() { return x; }
synchronized void set(int y) { x=y; }
int inc() { // not monitored
int t = get();
t++;
set(t);
return ft;

} Ananian, Lock-free O-O OS —p. .



Atomic Blocks

public class Count {
private int cntr = O;
void inc() {
synchronized (this) {

cntr = cntr + 1;

}
}
}

 Traditionally, monitors associated with each
object provide mutual exclusion between
concurrent accesses to the object.
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Atomic Blocks

public class Count { public class Count {

private int cntr = O; private int cntr = O;

void inc() { void inc() {
synchronized (this) { = atomic {
cntr = cntr + 1; cntr = cntr + 1;
} }

} }

} }

 Instead we provide an atomic block, and make

oroviding mutual exclusion.

Inearizablity guarantees without (necessarily)
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Language Design for OSes

We’ll start with Java
o C-like expressions, O-0O structure, type-safety.

Add low-level constructs

 Interrupt linkage, fixed object layout for
memory-mapped I/O

 JEPES [Schultz et al 2003], Lisaac [Sonntag
and Colnet 2002]
Use software protection mechanisms
« Remove address spaces from kernel
 DrScheme [Flatt et al 1999]

Provide atomic operation blocks
* Implement with non-blocking synchronization
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Functional Arrays

Our implementation of atomic blocks will be based
on fast functional arrays.

e Functional arrays are persistent; after an element
IS updated both the new and the old contents of
the array are available for use.

 Fundamental operation:
UPDATE(A,7,v) : A—=Ny—=V — A

o Arrays are just mappings from integers to values;
any persistent map can be used as a functional
array.

e A fast functional array will have O(1) access and
update “for the common cases”.
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Single Object Protocol

Valid for operations on a single object only.

Functional Array

SRS
K Result of Operation
Object
Functional Array
.. [
(atomic swap) Prior State

e Object representation contains a pointer to a
functional array.

e Object mutation inside atomic creates new
funCtlonaI array' Ananian, Lock-free O-O OS —p. .



Single Object Protocol

Valid for operations on a single object only.

Functional Array

SRS
K Result of Operation
Object
Functional Array
.. [
(atomic swap) Prior State

e At start of atomic block load and remember
fields array pointer as prior state.

« At end of atomic block compare-and-swap the
result of operation for the prior state.
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FProplems with Multiple ODjects

The case of the StringBuffer

public final class StringBuffer ...{

private int count;

public synchronized StringBuffer append(StringBuffer sb) {

}

if (sb == null) { sb = NULL; }

int len = sb.length(); /[ len may be stale.

Int newcount = count + len;

if (newcount > value.length) expandCapacity(newcount);

sb.getChars(0, len, value, count); // use of stale len

count = newcount;
return this;

public synchronized int length() { return count; }
public synchronized void getChars(...) { ...}
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Multiple Object Protocol

Operation ID Operation ID

status status

« Objects point to | |
version lists.
‘

IN-PROGRESSh % COMPLETE  h

Version 7 Version

« Each version has an .

next —ﬁ> next 4,.3

associated operation

_— —

ID and field array \ v
reference.

 Operation IDs are | emEE

Operation ID

Object

i n Itl a'l Ized to IN- Version /ﬁ Version \

PROGRESS  and EEl mm

are changed exactly ”%Hwo

once to COMPLETE //

\ Functional Array \Functional Array

or DISCARDED. ~ N
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Multiple Object Protocol

Operation ID Operation ID

[ At end Of atOm IC Object /N—PROGL\\\ COMPL\
block, attempt to set

Version 7 \ Version

Operation ID to f\ EEm
next —ﬁ> next 4».1‘
COMPLETE.

_— —

« Value of object is Comcan /
value of first <

committed version. N
° Old Or DISCARDED Version /// Version \

versions can be i - B
" * next e next ."
trimmed. - -H

—

7 Ve
\_ Functional Array \Functional Array
N

Sa Sa
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Multiple Object Protocol

Operation ID Operation ID
status status
IN-PROGRESSh % COMPLETE  h

 Only one = |
IN-PROGRESS

Version 7 Version

version allowed on **\ N -

versions list, and it a El o
|
must be at the head. s

(_Functional Array |
N |
Y / |

- Before we can link :
a new version onto
the versions list, we FOE
must ensure that ev- R i ' )
ery other version IS N e
either COMPLETE or L

—

DIS CA RDED_ < unctional Array <F\u\rTctionaI Array

Sa Sy
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Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions
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Functional Arrays using

Shallow Binding
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Functional Arrays using

Shallow Binding
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Functional Arrays using

Shallow Binding

C B A
i i i
index 5 ugindex 1 g 1
3

3
4
5
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Functional Arrays using

Shallow Binding
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Functional Arrays using

Shallow Binding

C =] A D
y y Y y
nioc 5 B Go 1 IS T
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C* B* A
index 1 S index 7 e
value 2
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Functional Arrays using

Shallow Binding

C =] A D
y y Y y
nioc 5 B Go 1 IS T
alse 3
Te

B

i
valve 2.

‘ A

index b —>—> index 2 pames

value 1 value 2

)

value

B

‘ JAN
B ncex 5 i index
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-
O

!

el index 2
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Functional Arrays using

Shallow Binding

C =] A D
y y y y
nioc 5 B Go 1 IS T
Te

B

‘ A

O
-

index 5 mmmmmindex 1 mmmmedlindex 2 e

value 5 value 2

value 1

II

Sl index 2

value 3
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Lock-free Rotations

Unique pointer to cache acts as reservation.

Array

N / size \

node

‘DiffNode

Array

index X

value y

array

node
dB

0

CacheNode
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Lock-free Rotations

Unique pointer to cache acts as reservation.

Array

/ size \

node

Array
size
B |
node

DiffNode

index

value

array

C

da

DiffNode

index

value

array

dg

b4 Array
/\/ size

node

0

CacheNode
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Lock-free Rotations

Unique pointer to cache acts as reservation.

DiffNode

DiffNode
Array >
i index
B / size \
array
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Lock-free Rotations

Unique pointer to cache acts as reservation.

Array

A / size \

DiffNode

index x

value =z

array
d, )

node

‘DiffNode

index X

value y

array

dg

Array

size

node

0

CacheNode
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Lock-free Rotations

Unique pointer to cache acts as reservation.

DiffNode

CacheNode

Arra
y . 0
size
C
node

]

DiffNode
Array
v size ™~ index X
B value y
node
array n
dB

DCAS
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Lock-free Rotations

Unique pointer to cache acts as reservation.

DiffNode

DiffNode

) index X
E3 size
value
node y
array

dg

Array

(: / size \

node

DCAS

acheNode
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A Few Optimizations

e Use hardware small-transaction support to
Implement rotations

* Naive functional arrays for small objects
e Only use synchronization protocol for shared data
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Outline

e Survey prior non-blocking O-O Operating
Systems:

» Synthesis [Massalin and Pu 1991]
e Cache Kernel [Greenwald and Cheriton 1996]

A more general approach:
e Language support for synchronization
* Functional Arrays
» Single-object protocol
e Multiple-object protocol
* Lock-free functional arrays

e Assessment and conclusions
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Assessment and conclusions

e Surveyed Synthesis and Cache Kernel
« Ad hoc implementations are hard to get right.

* Version-number scheme is better, but very
limited.

* Presented language design for non-blocking
object-oriented operating system.

* Novel feature: compiler-supported
non-blocking atomic regions.
* Presented algorithms for implementing
non-blocking atomic regions in O-O languages
« Avoids “large object” problems.

e Good complexity bounds, due to fast
fu n Ctl O n a.l arrays . Ananian, Lock-free O-O OS — p. .



The Graveyard Of Unused Slides
follows this point.



Blocking Synchronization

e Spin-locks
e Processor runs in tight loop while waiting to
enter a critical region.

e Cheap, but wastes processor cycles.

 Semaphores

e Maintain a waiting queue of blocked
processes.

 Queue maintenance and semaphore
operations expensive.
e Hybrids
» Spin-lock for short time periods.
« Semaphore for long walits.
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Non-blocking Synchronization

Walt-free

* Any process can complete any operation in finite # of
steps, regardless of activities of other processes.

* “Recursive helping.”
Lock-free

* Some process will complete in a finite # of steps.
e Allows starvation.

Obstruction-free

* Processes will always complete if executed in isolation.
e Contention can halt all progress indefinitely.

Other (Lamport, . ..)
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V++/Cache Kernel structure

Application kernel
(UNIX emulator or
simulation kernel or
database kerndl or ...)
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Account example

class Account {
int balance = O;

synchronized int deposit(int amt) {
Int t = this.balance;
t =1+ amt
this.balance = t;
return t;

synchronized int readBalance() {
return this.balance;

synchronized int withdraw(int amt) {
Int t = this.balance;
t=1- amt;

+thic halancra — +-
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Optimistic parallelism

for (...)
optimistically {

...do an Iteration ...

}

conquer(A[n], n) {

optimistic spawn
conguer(A, n/2);

optimistic spawn

conquer(A+n/2, n-n/2);

Programmer notes
that the iterations or
spawns are expected
to be Independent.
Iff there are dynamic

dependencies, the
computations are
serialized.

Ananian, Lock-free O-O OS —p. .
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