Efficient Object-Based
Software Transactions

C. Scott Ananian and Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{cananian,rinard}@csail.mit.edu

SCOOL 2005

This research supported by DARPA/AFRL Contract F33615-00-C-1692.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [1]

Transactions: Philosophy

* Transactions will be large & small, short & long
- Mechanisms should be unbounded

* They will be frequent and visible in user code
- Easy to use
- Not hidden In libraries
* Implemented with general-purpose mechanisms
- In addition to synchronization, useful for fault
tolerance, exception handling, backtracking, priority
scheduling...
* Object-based transactions
- Expose aricher abstraction
- Move beyond emulating an unavailable HTM

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [2]

Why object-based transactions?

e Synchronization abstraction matches

programming abstraction

- No false sharing due to variables incidentally
colocated in same word/cache line/page.
Possible deadlock!

* Matching the programming abstraction
allows better compiler analysis and
optimization of transactional code

- For example, escape analysis
* Performance benefits for long-running

transactions
- Pay cloning costs up-front, then run at full-

speed in own copy of the object graph

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [3]

Three Big Ideas

* Functional Arrays: A solution to the
Large Object Problem
e Cooperating with FLAGS

- Non-transactional code interacting with
transactions

- Software transactions interacting with a
Hardware Transactional Memory

* Model-checking Software
Transactions

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [4]

The Large Object Problem

.
Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [5]

Single-Object Protocol

Valid for operations on a single object only.

Object Contents

Result of Operation
Object
. e Object Contents
(atomic swap) Prior State

* Object representation contains a pointer to
object contents.

* Object mutation inside transaction creates
new object contents.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [6]

Single-Object Protocol

Valid for operations on a single object only.

Object Contents

Result of Operation
Object
| e Object Contents

(atomic swap) Prior State

e At start of transaction, load and remember
fields pointer as prior state.

* To commit, compare-and-swap the result of
operation for prior state.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [7]

Single-Object Protocol

Valid for operations on a single object only.

Functional Array

-
Result of Operation
Object
% Functional Array
(atomic swap) Prior State

* Large Object Problem: cloning prior state for
result of operation is O(object size)

 Solution: use a data structure where cloning
IS cheap — O(1) would be nice!

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [8]

Functional arrays

* Functional arrays are persistent: after an
element is updated both the new and the
old contents of the array are available for
use.

* Fundamental operation:

Update (A,i,v):A=>N,—»V—A
 Arrays are just mappings from integer to
value; any persistent map can be used as
a functional array.
* A fast functional array will have O(1)

access and update for the common cases.
- Variant of shallow binding due to [Chuang '94]

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [9]

Functional Arrays using Shallow Binding

A functional array Is either a cache node...

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [10]

Functional Arrays using Shallow Binding

w

! Al

index 1 S

value 5

* A functional array Is either a cache node
or a difference node.
* A[1]=1 but BJ[1]=5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [11]

Functional Arrays using Shallow Binding

* Changing one element is O(1)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [12]

Functional Arrays using Shallow Binding

< By A Dy
index 5 Rindex 1 [
valve 1

S index 2

value 3

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [13]

Functional Arrays using Shallow Binding

* We rotate the cache node on reads to keep
access times fast.

* The bottom shows the graph after D is read.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [14]

Functional Arrays using Shallow Binding

C B A D
v B A D
index 5 gindex 1 1 R
ale 3

3

* Ping-pong
danger!

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [15]

Functional Arrays using Shallow Binding

C B A D
v B A D
index 5 gindex 1 1 R
ale 3

3

C+ I A

o 5 [1 [
e S

w

e Split with pFmm- =
1/N

chance.

2z
HHHHH

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [16]

Making a non-blocking algorithm

* Adding difference nodes is easy.

* Two hard operations:
- Rotation
- Splitting

* These can be made non-blocking
[Ananian '03]

e Can also use a small Hardware
Transactional Memory to implement these
operations.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [17]

Multiple-Object
Protocol

* Objects point to lists
of versions.

e Each version has an
assoclated
Transaction ID and
field array reference.

e Transaction IDs are
Initialized to
WAITING and are
changed exactly
once to COMMITTED
or ABORTED.

Transaction ID

status
_ WAITING (W
Object N
: Version
J owner '

|
Rl next

fields

*_Functional Array//, 7
N |

*

~a

Object

o

: Version
versions g

| owner -

V
R next

fields

*_Functional Array

“a

e xt

Version

L next

Transaction ID

status

COMMITTED M

Version a
|

owner =

- -

fields

Transaction ID

status

COMMITTED M,

owner

.

fields

Functional Array

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [18]

Transaction ID

Multiple-Object

Protocol

* At end of transaction,
attempt to set
Transaction ID to

=
>
=
Z
@

Object

e

VErsions .

Version

| owner =
e next

fields

Y

. - xt

Transaction ID

status

COMMITTED M

Version \\‘

owner o

- -9

fields

COMMITTED.

* Value of object is the
value of the first
committed version.

e ABORTED versions
can be collected.

*_Functional Array//, 7
N |

*

Transaction ID

status

: COMMITTED &
Object

=

Version Version

versions — \

owner =

- -

owner -

D next > next

fields

*_Functional Array

“a

fields

._Functional Array

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [19]

Transaction ID

Multiple-Object

Protocol

* Only one WAITING
version allowed on
versions list, and it
must be at the head.

=
>
=
Z
@

Object

o

VErsions .

Version

| owner —
Rl next

fields

*

~a

e Before we can link a
new version onto the

versions list, we
must ensure that
every other version is -
either COMMITTED or

ABORTED.

Object

_ Version
versions S

| owner -

fields

*_Functional Array

“a

Y

- xt

*_Functional Array//, 7
N |

next - next

Transaction ID

status

COMMITTED M

Version a
|

owner =

- -

fields

Transaction ID

status

COMMITTED M,

Version :
|

owner

.

fields

Functional Array

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [20]

Making things practical:
Things to keep in mind

e There is both transactional and non-
transaction code in real systems

- A robust mechanism won't allow violations of
transactional atomicity

e Non-transactional code should be fast!

* Transaction duration may reach 100M
memory operations

e Transactional reads out-number
transactional writes 3to 1

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [21]

Software Transaction Implementation

* Goals:
- Non-transactional operations should be fast
- Reads should be faster than writes
- Minimal amount of object bloat

e Solution:

- Use special FLAG value to indicate “location
Involved in a transaction”

- Object points to a linked list of versions,
containing values written by (in-progress,
committed, or aborted) transactions

- Semantic value of FLAGged field is: “value of the
first version owned by a committed transaction on
the version list”

- Values which are “really” FLAG are handled with an

escape mechanism (we call these “false flags™)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [22]

Transactions using version lists

Transaction ID #68 Transaction ID #56

WAITING COMMITTED
status status

MyClass \
|

/I

Version Version

.

{TID68}

readers =

FLAG
field1

3.14159
field2

fieldl

FLAG
field2

field1

FLAG
field2

-
>

N
w

| Transaction ID #23

COMMITTED
status

OtherClass
type

@) o
= =
® ®
0 0
~— ~
H* H
N ay

S

®

_—

Version Version
versions \\
{TID25

readers -

2.71828
field1l

FLAG
field2

FLAG

. FLAG
field1

field1

field2 field2

2T
| P
L

III%
III%&

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [23]

Non-transactional Read (ReadNT)

Transaction ID #68 Transaction ID #56

WAITING COMMITTED
status status

N

ersion
N .|

‘0
\
|
FLAG
field1
FLAG
field2
-
»
|
/ Transaction ID #23

COMMITTED
status

* Begins with a Object #1

MyClass

normal read of
the field. {TID68}

readers

FLAG
field1

e |[f value Is not
FLAG, we're

donel!

/

j
i

fieldl

FLAG
field2

N
w

O
S
®

o
H
N

/

OtherClass

_—

Version Version

¢
versions \\

(Toze)

2.71828
field1l

FLAG

) FLAG
field1l

field1
field2

field2 field2

5 .

S

D
(
III%

-
R -
| PG
I

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [24]

Non-transactional Read (ReadNT)

* Begins with a
normal read of
the field...

e Otherwise:
— kill writers

Transaction ID #68 Transaction ID #56

WAITING COMMITTED
3 status

N

ersion
N .|

FLAG

field1
FLAG

field2

Object #1

/

MyClass

type .
yp Version

i

{110 %Bers

FLAG
field1

3.14159
field2

fieldl

FLAG
field2

\
|
|
|
\
|
|
|
-
|
/ Transaction ID #23

COMMITTED
status

N
w

O
S
®
o
H
N

/

OtherClass

_—

Version Version

¢
versions \\

TID25
{ rea]aers

2.71828
field1l

FLAG

) FLAG
field1l

FLAG field1
field2

field2 field2

-
R -
| PG
I

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [25]

Non-transactional Read (ReadNT)

Transaction ID #68 Transaction ID #56

ABORTED COMMITTED
2 status

N

ersion
N .|

FLAG

field1
FLAG

field2

* Begins with a Object #1

MyClass

normal read of
the field... {TID68}

readers

FLAG
field1

* Otherwise:
- kill writers
- copy back field

i

fieldl

FLAG
field2

\
|
|
|
\
|
|
|
-
|
/ Transaction ID #23

COMMITTED
status

N
w

O
S
®
o
H
N

/

OtherClass

_—

Version Version

¢
versions \\

TID25
{ rea]aers

2.71828
field1l

FLAG

) FLAG
field1l

\ field1l
field2

o
3
D
n
III%

field2 field2

I!I%!

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [26]

Non-transactional Read (ReadNT)

Transaction ID #68 Transaction ID #56

ABORTED COMMITTED
status status

N

ersion
N .|

FLAG

field1
FLAG

field2

* Begins with a Object #1

MyClass

normal read of
the field... {TID68}

readers

FLAG
field1

e Otherwise:
— kill writers

- copy back field
- restart

i

fieldl

FLAG
field2

\
|
|
|
\
|
|
|
-
|
/ Transaction ID #23

COMMITTED
status

N
w

O
S
®
o
H
N

/

OtherClass

_—

Version Version

¢
versions \\

TID25
{ rea]aers

2.71828
field1l

FLAG

) FLAG
field1l

\ field1
field2

o
3
D
n
III%

field2 field2

-
R -
| PG
I

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [27]

Non-transactional Read (ReadNT)

* Begins with a
normal read of
the field...

 “False flags”
are discovered
during copy-
back: the read
value Is FLAG In

this case.

Transaction ID #68 Transaction ID #56

WAITING COMMITTED
status status

\ Version x
N -]
\

\
FLAG_
FLAG
J field2
- .
»
f
Transaction ID #23
COMMITTED

Object #1

MyClass
type

/

Version

i

{TID68}, _
FLAG

3.14159 field1l
field

FLAG
field2

N
w

status

x

\
Version \

-
BREW -

O
S
®
o
H
N

OtherClass
Version

?/ersions \\
TID25
{ rea}aers
2.71828
fieldl

FLAG
field2

FLAG
field1l

FLAG
field1l

field2

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [28]

Non-transactional Write (WriteNT)

.
e |f value-to-write o=

IS hot FLAG:

- B e

FLAG
fieldl

- LL(readers)

FLAG

3.14159
=1[0

FLAG

- check that it's
empty

- SC(field)

field2

Transaction ID #23
COMMITTED
status

OtherClass

versions

{TID25}
readers

2.71828

fieldl FLAG

, field1
field2

IBI]
field2

@)
O \
) \
D \
- ~+ \
w] 3+ \
N \ D
S o \I5
®
|
|

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [29]

Non-transactional Write (WriteNT)

Transaction ID #56
. status
* |f value-to-write obecin
MyClass

IS hot FLAG:
- LL(readers) s K/» BEEY -©

field1l FLAG

3.14159 0 field1
- check that it's =

empty

FLAG

field2

Transaction ID #23

- SC(field)

Object #2

e |[f unsuccessful

- kill readers and ﬂxv,
writers
'B' ield2
- repeat R

/

FLAG
field1l

field2

i

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [30]

Non-transactional Write (WriteNT)

Transaction ID #56
. status
* |f value-to-write obecin
MyClass

i S FLAG. " Version
- make this a e K/" e -©

field1 FLAG

short
transactional]

write (WriteT)

fieldl

FLAG
field2

Transaction ID #23

COMMITTED
status

Object #2

OtherCIatsse
P Version

readers) -
field1

/

FLAG
field1l

'B -
field2

field2

R

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [31]

Transactional Write (WriteT)

* Once per object

written in this
transaction: -
— find writable e
version

- create (by cloning) L
If necessary

* Analysis and

rewriting can offer
big wins

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [32]

Transactional Write (WriteT)

* Once per object
written in this
transaction:

- find writable
version

- create (by cloning)
If necessary

* Analysis and
rewriting can offer
big wins

Transaction ID #68 Transaction ID #56

WAITING COMMITTED
status

Object #1
MyCIasts pe
Y Version Version

status
aders
ie 23
field1l
ield2
field2

1

3.14159
field

23
fieldl

ie
field2

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [33]

Transactional Write (WriteT)

* Once per object
written in this
transaction:

- find writable
version

- create (by cloning)
If necessary

* Analysis and

rewriting can offer
big wins

Transaction ID #68 Transaction ID #56

WAITING COMMITTED
status status
Object #1
MyCIasts .
¥p Version Version
i R -
3.14159 field1l field1
field2

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [34]

Transactional Write (WriteT)

* Once per object
written in this \
transaction:

- find writable ;LZ;j;j m m
version -
- create (by cloning) _ _ L

If necessary
* Analysis and
rewriting can offer
big wins
* Then, just write to
the version.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [35]

Transactional Read (ReadT)

* Once per object

read in this
transaction:

Object #1
_ ensure we're on Version
list of readers

_ kl I I an y WY | te I S readers m—> @

3.14159

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [36]

Transactional Read (ReadT)

* Once per object

read | n th |S Transaction ID #56
- COMMITS-!c_zIaEtE)s
transaction: |
- ensure We're On MyCIaS:‘Sype Version

Object #1 :

list of readers
- kill any writers

{TID18}

FLAG
field1

3.14159
field2

fieldl

field2

.
Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [37]

Transactional Read (ReadT)

* Once per object
read in this
transaction:

— ensure we're on
list of readers

- kill any writers

* Read field of
object

e [f this Is not FLAG,
you're done!

Transaction ID #56

COMMITTED
status

MyClass _
type Version

TID18
{ rea%jers

FLAG
field1

3.14159

fieldl

field2

@)
=
@D
52
I+
[IAN
] L

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [38]

Transactional Read (ReadT)

* Once per object
read I n th IS Transaction ID #18 Transaction ID #56

transaction: |
— ensure we're on Stsype \ \
list of readers
- kill any writers {:f;} R -
* Read field of
object N

e |[f this IS FLAG,
then read field
from version

- remember version
for next time!

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [39]

Performance

* Non-transactional code only needs to check
whether a memory operand is FLAG before

continuing.

- On superscalar processors, there are plenty of
extra functional units to do the check

- The branch is extremely predictable
- This gives only a few % slowdown

e Once FLAGQed, transactional code operates
directly on the object’s “version”

* Creating versions can be an issue for large
arrays; use “functional array” techniques

.
Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [40]

Non-blocking concurrent algorithms
are hard!

* In published work on Synthesis, a non-blocking
operating system implementation, three separate
races were found:

- One ABA problem in LIFO stack

- One likely race in MP-SC FIFO queue

- One Interesting corner case in quaject
callback handling

* It's hard to get these right! Ad hoc reasoning
doesn't cut it.

* Non-blocking algorithms are too hard for the
programmer

* Let's get it right once (and verify this!)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [41]

Verification with Spin

e Modeled the software transaction
iImplementation in Promela

* Low-level model — every memory
operation represented

- details in the paper

* Spin used 16G of memory to check the
iImplementation within a 6-version 2-object

scope.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [42]

The Spin Model Checker

* Spin is a model checker for communicating
concurrent processes. It checks:

- Safety/termination properties
- Liveness/deadlock properties
- Path assertions (requirements/never claims)

* It works on finite models, written the Promela
language, which describe infinite executions.

* Explores the entire state space of the model,
Including all possible concurrent executions,
verifying that Bad Things don't happen.

* Not an absolute proof — pretty useful in practice

* Make systems reliable by concentrating
complexity in a verifiable component

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [43]

Spin theory

e Generates a Bluchi Automaton from the Promela
specification.
- Finite-state machine w/ special acceptance

conditions
- Transitions correspond to executability of

statements
* Depth-first search of state space, with each state

stored in a hashtable to detect cycles and

prevent duplication of work
- If x followed by y leads to the same state as y
followed by x, will not re-traverse the succeeding

steps
* If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate

coverage metric

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [44]

Bugs Found

* Memory management

- reference counting, object recycling
* Read caching

- check freshness of copies in local variables
* “Big” bug

- missing abort of readers during a non-
transactional write (field copy back)

.
Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [45]

Hybrid Hardware/Software Implementation

* Hardware transaction implementation is very fast!
But it is limited:

- Slow once you exceed cache capacity
- Transaction lifetime limits (context switches)
- Limited semantic flexibility (nesting, etc)

e Software transaction implementation is unlimited
and very flexible!

- But transactions may be slow
e Solution: failover from hardware to software

- Simplest mechanism: after first hardware abort,
execute transaction in software

- Need to ensure that the two algorithms play
nicely with each other (consistent views)
=» see next slide...

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [46]

Cooperation

e Software transaction mechanism writing
FLAG over object fields is sufficient to
abort conflicting HTM

* HTM must execute ReadNT/WriteNT
algorithms (read barrier) to cooperate with
the software mechanism

- no extra silicon needed!
- can still leverage compiler analysis
* Other synergies:
- non-blocking functional array implementation
- LL/SC sequences

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [47]

Leveraging hardware for speed

Simple node-push benchmark [Lie '04]
As xaction size increases, we eventually run out
of cache space in the HW transaction scheme

300

250 -

N
o
o

HTM Transactions
stop fitting after

/ this point

[
o
s}
Z
S
[
o
”
2
3]
>
o

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [48]

Leveraging hardware for speed

e Simple node-push benchmark [Lie '04]
* Hybrid scheme best of both worlds!

[
.
s}
Z
P
o
o
"
2
3]
>
)

5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [49]

Conclusions

* Transactional/non-transactional
cooperation is really a lot like STM/HTM
cooperation

- same mechanism can be used!

* The Large Object Problem can be solved!
- Good news for object-based transactions
- Compiler and analysis benefits to reap

* Writing correct transaction protocols is
hard

- Model checking can help

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [50]

Thank you!

(p.s. I'm graduating soon!)

.
Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [51]

