
Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [1]

Efficient Object-Based
Software Transactions

C. Scott Ananian and Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{cananian,rinard}@csail.mit.edu

SCOOL 2005

This research supported by DARPA/AFRL Contract F33615-00-C-1692.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [2]

Transactions: Philosophy
● Transactions will be large & small, short & long

– Mechanisms should be unbounded
● They will be frequent and visible in user code

– Easy to use
– Not hidden in libraries

● Implemented with general-purpose mechanisms
– In addition to synchronization, useful for fault

tolerance, exception handling, backtracking, priority
scheduling...

● Object-based transactions
– Expose a richer abstraction
– Move beyond emulating an unavailable HTM

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [3]

Why object-based transactions?
● Synchronization abstraction matches

programming abstraction
– No false sharing due to variables incidentally

colocated in same word/cache line/page.
Possible deadlock!

● Matching the programming abstraction
allows better compiler analysis and
optimization of transactional code
– For example, escape analysis

● Performance benefits for long-running
transactions
– Pay cloning costs up-front, then run at full-

speed in own copy of the object graph

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [4]

Three Big Ideas

● Functional Arrays: A solution to the
Large Object Problem

● Cooperating with FLAGs
– Non-transactional code interacting with

transactions

– Software transactions interacting with a
Hardware Transactional Memory

● Model-checking Software
Transactions

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [5]

The Large Object Problem

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [6]

Single-Object Protocol

● Object representation contains a pointer to
object contents.

● Object mutation inside transaction creates
new object contents.

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Object Contents

Object Contents

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [7]

Single-Object Protocol

● At start of transaction, load and remember
fields pointer as prior state.

● To commit, compare-and-swap the result of
operation for prior state.

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Object Contents

Object Contents

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [8]

Single-Object Protocol

● Large Object Problem: cloning prior state for
result of operation is O(object size)

● Solution: use a data structure where cloning
is cheap – O(1) would be nice!

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Functional Array

Functional Array

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [9]

Functional arrays
● Functional arrays are persistent: after an

element is updated both the new and the
old contents of the array are available for
use.

● Fundamental operation:

● Arrays are just mappings from integer to
value; any persistent map can be used as
a functional array.

● A fast functional array will have O(1)
access and update for the common cases.
– Variant of shallow binding due to [Chuang '94]

Update A , i , v: A N 0V  A

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [10]

Functional Arrays using Shallow Binding

● A functional array is either a cache node...

A

1
2
3
4
5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [11]

Functional Arrays using Shallow Binding

● A functional array is either a cache node
or a difference node.

● A[1]=1 but B[1]=5

B A

1
2
3
4
5

index

value 5
1

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [12]

Functional Arrays using Shallow Binding

● Changing one element is O(1)

C B A

1
2
3
4
5

index

value 5
1index

value 1
5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [13]

Functional Arrays using Shallow Binding

● A[1] = D[1] = 1 C[1] = B[1] = 5
● C[5] = 1 D[2] = 3

C B A D

1
2
3
4
5

index

value 3
2index

value 5
1index

value 1
5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [14]

Functional Arrays using Shallow Binding

● We rotate the cache node on reads to keep
access times fast.

● The bottom shows the graph after D is read.

C B A D

1
2
3
4
5

index

value 3
2index

value 5
1index

value 1
5

index

value 2
2 1

3
3
4
5

C B A D

index

value 5
1index

value 1
5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [15]

Functional Arrays using Shallow Binding

● C is read.
● Ping-pong

danger!

index

value 2
2 1

3
3
4
5

C B A D

index

value 5
1index

value 1
5

5
2
3
4
1

C B A D

index

value 3
2index

value 5
5 index

value 1
1

C B A D

1
2
3
4
5

index

value 3
2index

value 5
1index

value 1
5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [16]

Functional Arrays using Shallow Binding

● Split with
1/N
chance.

C B A D

1
2
3
4
5

index

value 3
2index

value 5
1index

value 1
5

index

value 2
2 1

3
3
4
5

C B A D

index

value 5
1index

value 1
5

5
2
3
4
1

C B A D

index

value 3
2index

value 5
5 1

2
3
4
5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [17]

Making a non-blocking algorithm
● Adding difference nodes is easy.
● Two hard operations:

– Rotation

– Splitting

● These can be made non-blocking
[Ananian '03]

● Can also use a small Hardware
Transactional Memory to implement these
operations.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [18]

Multiple-Object
Protocol
● Objects point to lists

of versions.
● Each version has an

associated
Transaction ID and
field array reference.

● Transaction IDs are
initialized to
WAITING and are
changed exactly
once to COMMITTED
or ABORTED.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus

WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [19]

Multiple-Object
Protocol
● At end of transaction,

attempt to set
Transaction ID to
COMMITTED.

● Value of object is the
value of the first
committed version.

● ABORTED versions
can be collected.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus

WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [20]

Multiple-Object
Protocol
● Only one WAITING

version allowed on
versions list, and it
must be at the head.

● Before we can link a
new version onto the
versions list, we
must ensure that
every other version is
either COMMITTED or
ABORTED.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus

WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [21]

Making things practical:
 Things to keep in mind

● There is both transactional and non-
transaction code in real systems
– A robust mechanism won't allow violations of

transactional atomicity

● Non-transactional code should be fast!

● Transaction duration may reach 100M
memory operations

● Transactional reads out-number
transactional writes 3 to 1

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [22]

Software Transaction Implementation
● Goals:

– Non-transactional operations should be fast
– Reads should be faster than writes
– Minimal amount of object bloat

● Solution:
– Use special FLAG value to indicate “location

involved in a transaction”
– Object points to a linked list of versions,

containing values written by (in-progress,
committed, or aborted) transactions

– Semantic value of FLAGged field is: “value of the
first version owned by a committed transaction on
the version list”

– Values which are “really” FLAG are handled with an
escape mechanism (we call these “false flags”)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [23]

Transactions using version lists

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'

. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [24]

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field.

● If value is not
FLAG, we're
done!

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'

. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [25]

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● Otherwise:
– kill writers

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'

. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [26]

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● Otherwise:
– kill writers
– copy back field

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'

. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTED

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

'B'

ABORTED

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [27]

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● Otherwise:
– kill writers
– copy back field
– restart

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'

. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTED

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

'B'

ABORTED

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [28]

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● “False flags”
are discovered
during copy-
back; the read
value is FLAG in
this case.

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'

. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [29]

Non-transactional Write (WriteNT)

● If value-to-write
is not FLAG:

– LL(readers)

– check that it's
empty

– SC(field)

type

type

Version

Transaction ID #23

Object #2

Object #1

Version

Transaction ID #56

'B'

. . .
. . .

2.71828

OtherClass

MyClass

3.14159

. . .

COMMITTED

. . .

COMMITTED

next

owner

field2

field1

readers

versions

status

status

field2

field1

next

owner

field2

field1

readers

versions

field2

FLAG

FLAG

FLAG

field1
FLAG

'B'

{TID25}

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [30]

Non-transactional Write (WriteNT)

● If value-to-write
is not FLAG:

– LL(readers)

– check that it's
empty

– SC(field)

● If unsuccessful
– kill readers and

writers
– repeat

type

type

Version

Transaction ID #23

Object #2

Object #1

Version

Transaction ID #56

'B'

. . .
. . .

2.71828

OtherClass

MyClass

3.14159

. . .

COMMITTED

. . .

COMMITTED

next

owner

field2

field1

readers

versions

status

status

field2

field1

next

owner

field2

field1

readers

versions

field2

FLAG

FLAG

FLAG

field1
FLAG

'B'

{TID25}

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [31]

Non-transactional Write (WriteNT)

● If value-to-write
is FLAG...

– make this a
short
transactional
write (WriteT)

type

type

Version

Transaction ID #23

Object #2

Object #1

Version

Transaction ID #56

'B'

. . .
. . .

2.71828

OtherClass

MyClass

3.14159

. . .

COMMITTED

. . .

COMMITTED

next

owner

field2

field1

readers

versions

status

status

field2

field1

next

owner

field2

field1

readers

versions

field2

FLAG

FLAG

FLAG

field1
FLAG

'B'

{TID25}

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [32]

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version
– create (by cloning)

if necessary
● Analysis and

rewriting can offer
big wins

type

Object #1

MyClass

3.14159

. . .

field2

field1

readers

23

versions

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [33]

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version
– create (by cloning)

if necessary
● Analysis and

rewriting can offer
big wins

type

Object #1

Version Version

Transaction ID #56Transaction ID #68

MyClass

3.14159

.
. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

field2

field1
2323

23

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [34]

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version
– create (by cloning)

if necessary
● Analysis and

rewriting can offer
big wins

type

Object #1

Version Version

Transaction ID #56Transaction ID #68

MyClass

3.14159

.
. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

field2

field1
23

FLAG
23

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [35]

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version
– create (by cloning)

if necessary
● Analysis and

rewriting can offer
big wins

● Then, just write to
the version.

type

Object #1

Version Version

Transaction ID #56Transaction ID #68

MyClass

3.14159

.
. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

field2

field1
23

FLAG
5

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [36]

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

Version

Transaction ID #56

. . .

COMMITTED

next

owner

status

field2

field1
23

type

Object #1

MyClass

3.14159

. . .

field2

field1

readers

versions

FLAG

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [37]

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

type

Object #1

MyClass

3.14159

. . .

field2

field1

readers

versions

FLAG

Version

Transaction ID #56

. . .

COMMITTED

next

owner

status

field2

field1
23

{TID18}

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [38]

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

● Read field of
object

● If this is not FLAG,
you're done!

type

Object #1

MyClass

3.14159

. . .

field2

field1

readers

versions

FLAG

Version

Transaction ID #56

. . .

COMMITTED

next

owner

status

field2

field1
23

{TID18}

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [39]

type

Object #1

MyClass

3.14159

. . .

field2

field1

readers

versions

FLAG

Version

. . .

next

owner

field2

field1
5

WAITING
status

{TID18}

Version

. . .

COMMITTED

next

owner

status

field2

field1
23

Transaction ID #18 Transaction ID #56

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

● Read field of
object

● If this is FLAG,
then read field
from version
– remember version

for next time!

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [40]

Performance
● Non-transactional code only needs to check

whether a memory operand is FLAG before
continuing.
– On superscalar processors, there are plenty of

extra functional units to do the check
– The branch is extremely predictable
– This gives only a few % slowdown

● Once FLAGged, transactional code operates
directly on the object’s “version”

● Creating versions can be an issue for large
arrays; use “functional array” techniques

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [41]

Non-blocking concurrent algorithms
are hard!

● In published work on Synthesis, a non-blocking
operating system implementation, three separate
races were found:
– One ABA problem in LIFO stack
– One likely race in MP-SC FIFO queue
– One interesting corner case in quaject

callback handling
● It's hard to get these right! Ad hoc reasoning

doesn't cut it.
● Non-blocking algorithms are too hard for the

programmer
● Let's get it right once (and verify this!)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [42]

Verification with Spin

● Modeled the software transaction
implementation in Promela

● Low-level model – every memory
operation represented
– details in the paper

● Spin used 16G of memory to check the
implementation within a 6-version 2-object
scope.

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [43]

The Spin Model Checker
● Spin is a model checker for communicating

concurrent processes. It checks:
– Safety/termination properties
– Liveness/deadlock properties
– Path assertions (requirements/never claims)

● It works on finite models, written the Promela
language, which describe infinite executions.

● Explores the entire state space of the model,
including all possible concurrent executions,
verifying that Bad Things don't happen.

● Not an absolute proof – pretty useful in practice
● Make systems reliable by concentrating

complexity in a verifiable component

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [44]

Spin theory
● Generates a Büchi Automaton from the Promela

specification.
– Finite-state machine w/ special acceptance

conditions
– Transitions correspond to executability of

statements
● Depth-first search of state space, with each state

stored in a hashtable to detect cycles and
prevent duplication of work
– If x followed by y leads to the same state as y

followed by x, will not re-traverse the succeeding
steps

● If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate
coverage metric

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [45]

Bugs Found

● Memory management

– reference counting, object recycling

● Read caching

– check freshness of copies in local variables

● “Big” bug

– missing abort of readers during a non-
transactional write (field copy back)

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [46]

Hybrid Hardware/Software Implementation
● Hardware transaction implementation is very fast!

But it is limited:
– Slow once you exceed cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware abort,

execute transaction in software
– Need to ensure that the two algorithms play

nicely with each other (consistent views)
  see next slide...

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [47]

Cooperation
● Software transaction mechanism writing

FLAG over object fields is sufficient to
abort conflicting HTM

● HTM must execute ReadNT/WriteNT
algorithms (read barrier) to cooperate with
the software mechanism
– no extra silicon needed!
– can still leverage compiler analysis

● Other synergies:
– non-blocking functional array implementation
– LL/SC sequences

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [48]

Leveraging hardware for speed
● Simple node-push benchmark [Lie '04]
● As xaction size increases, we eventually run out

of cache space in the HW transaction scheme

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HTM Transactions
stop fitting after
this point

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [49]

Leveraging hardware for speed
● Simple node-push benchmark [Lie '04]
● Hybrid scheme best of both worlds!

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HSTM

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [50]

Conclusions
● Transactional/non-transactional

cooperation is really a lot like STM/HTM
cooperation
– same mechanism can be used!

● The Large Object Problem can be solved!
– Good news for object-based transactions
– Compiler and analysis benefits to reap

● Writing correct transaction protocols is
hard
– Model checking can help

Ananian/Rinard: Efficient Object-Based Software Transactions, SCOOL '05 [51]

Thank you!

(p.s. I'm graduating soon!)

