
Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(1)

Unbounded Transactional Memory

C. Scott Ananian, Krste Asanovi!,
 Bradley C. Kuszmaul, Charles E. Leiserson,

Sean Lie

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

!"#$#$%#$&'()*+&,(#-.+/&"+.012%*3+-4&5
)+#$1).%+3"#

Thanks to Marty Deneroff (then at SGI)

This research supported in part by a DARPA HPCS grant with SGI,
DARPA/AFRL Contract F33615-00-C-1692, NSF Grants ACI-0324974 and
CNS-0305606, NSF Career Grant CCR00093354, and the Singapore-MIT

Alliance

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(2)

Transactional Memory
(definition)

! A transaction is a sequence of memory loads and
stores that either commits or aborts

! If a transaction commits, all the loads and stores
appear to have executed atomically

! If a transaction aborts, none of its stores take
effect

! Transaction operations aren't visible until they
commit or abort

! Simplified version of traditional ACID database
transactions (no durability, for example)

! For this talk, we assume no I/O within transactions

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(5)

Infrequent, Small, Mostly-Serial?

To date, xactions assumed to be:
! Small

" BBN Pluribus (~1975): 16 clock-
cycle bus-locked “transaction”

" Knight; Herlihy & Moss:
transactions which fit in cache

! Infrequent
" Software Transactional Memory (Shavit &

Touitou; Harris & Fraser; Herlihy et al)
! Mostly-serial

" Transactional Coherence & Consistency
(Hammond, Wong, et al)

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(7)

9.355x10^6

10^6

10^4

10^2

 1
 8144 1000 100 10 1N

u
m

b
er

 o
f

ov
er

flo
w

in
g

tr
an

sa
ct

io
ns

Fully associative cache size (64 byte lines)

make
dbench

TM Cache-size requirements (Linux)

! # of overflowing xactions as a function of (fully-
associative) cache size for make_linux & dbench

! Almost all of the xactions require < 100 cache lines
" 99.9% need fewer than 54 cache lines

! There are, however, some very large transactions!
" >500k-byte fully-associative cache required

Note: log-log scale

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(9)

Transactional Programming
! Locks: the devil we know
! Complex sync techniques: library-only

" Nonblocking synchronization
" Bounded transactions

! Compilers don't expose memory references
(Indirect dispatch, optimizations, constants)

! Not portable! Changing cache-size breaks apps.
! Unbounded Transactions:

" Can be thought about at high-level
" Match programmer's intuition about atomicity
" Allow black box code to be composed safely
" Promise future excitement!

! Fault-tolerance / exception-handling
! Speculation / search

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(11)

Two new instructions
! XBEGIN pc

" Begin a new transaction. Entry point
to an abort handler specified by pc.

" If transaction must fail, roll back processor
and memory state to what it was when
XBEGIN was executed, and jump to pc.

! Think of this as a mispredicted branch.
! XEND

" End the current transaction. If XEND
completes, the xaction is committed and
appeared atomic.

! Nested transactions are subsumed into
outer transaction.

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(12)

Transaction Semantics

! Two transactions
" “A” has an abort handler at L1
" “B” has an abort handler at L2

! Here, very simplistic retry. Other choices!
! Always need “current” and “rollback”

values for both registers and memory

"#$%&'()*

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

)23 "#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

A

 B

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(13)

Handling conflicts

! We need to track locations read/written by
transactional and non-transactional code

! When we find a conflict, transaction(s)
must be aborted
" We always “kill the other guy”
" This leads to non-blocking systems

!"#$%&&#"'(!"#$%&&#"')

"#$%&'()* /0(*111.(45

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

)23 "#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(14)

Restoring register state
! Minimally invasive changes; build on

existing rename mechanism
! Both “current” and “rollback” architectural

register values stored in physical registers
! In conventional speculation, “rollback”

values stored until the speculative
instruction graduates (order 100 instrs)

! Here, we keep these until the transaction
commits or aborts (unbounded # of instrs)

! But we only need one copy!
" only one transaction in the memory system

per processor

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(15)

Multiple in-flight transactions
*"+,+-./

"#$%&'()*

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

! This example has two transactions, with abort
handlers at L1 and L2

! Assume instruction window of length 5
" allows us to speculate into next transaction(s)

A

 B

 Instruction Window

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(16)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

! During instruction decode:
" Maintain rename table and “saved” bits
" “Saved” bits track registers mentioned in current

rename table
! Constant # of set bits: every time a register is added to

“saved” set we also remove one

!!

graduate

decode

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(17)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

6(72.(888(9

/0(*111.(-*

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

+,,(72.(7*.(7* -*:72.(888

! When XBEGIN is decoded:
" Snapshots taken of current Rename table and S-

bits.
" This snapshot is not active until XBEGIN

graduates

!!

graduate

decode

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(18)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

6(72.(888(9

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

/0(*111.(72 -*:72.(888

!!

graduate

decode

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(19)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$', 6(72.(888(9

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

-*:72.(888

!!

graduate

decode

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(20)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

-*:72.(888

! When XBEGIN graduates:
" Snapshot taken at decode becomes active, which

will prevent P1 from being reused
" 1st transaction queued to become active in memory
" To abort, we just restore the active snapshot's

rename table

!!

graduate

decode

active
snapshot

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(21)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

-*:7;.(888 6(7;.(888(9

/0(2111.(-*

"$',

-*:7*.(888

-*:72.(888

+,,(7;.(72.(72

!!

graduate

decode

! We're only reserving registers in the active set
" This implies that exactly #AR registers are saved
" This number is strictly limited, even as we

speculatively execute through multiple xactions

active
snapshot

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(22)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(7;.(72.(72

-*:7;.(888 6(7;.(888(9

"$',

-*:7*.(888

-*:72.(888

/0(2111.(7;

!!

graduate

decode

! Normally, P1 would be freed here
! Since it's in the active snapshot's “saved” set,

we put it on the register reserved list instead

active
snapshot

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(23)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()*

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(7;.(72.(72

/0(2111.(7;

"$', -*:7;.(888 6(7;.(888(9

-*:72.(888

! When XEND graduates:
" Reserved physical registers (P1) are freed, and

active snapshot is cleared.
" Store queue is empty

!!

graduate

decode

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(24)

Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()*

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(7;.(72.(72

/0(2111.(7;

"$',

-*:72.(888

! Second transaction becomes active in
memory.

!!

graduate

decode

active
snapshot

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(25)

Cache overflow mechanism

! Need to keep “current” values
as well as “rollback” values
" Common-case is commit, so

keep “current” in cache
" What if uncommitted “current”

values don't all fit in cache?
! Use overflow hashtable as

extension of cache
" Avoid looking here if we can!

<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(26)

Cache overflow mechanism

! T bit per cache line
" set if accessed during xaction

! O bit per cache set
" indicates set overflow

! Overflow storage in physical
DRAM
" allocated/resized by OS
" probe/miss: complexity of

search C page table walk

<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(27)

Cache overflow mechanism

! Start with non-transactional
data in the cache

<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

*111 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(28)

Cache overflow: recording reads
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

0 *111 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Transactional read sets the
T bit.

Overflow hashtable
key data

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(29)

Cache overflow: recording writes
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

0 *111 55 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Most transactional writes fit
in the cache.

Overflow hashtable
key data

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(30)

Cache overflow: spilling
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

? 0 ;111 DD 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Overflow sets O bit
! New data replaces LRU
! Old data spilled to DRAM

Overflow hashtable
key data

1000 55

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(31)

Cache overflow: miss handling
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

? 0 *111 55 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Miss to an overflowed line
checks overflow table

! If found, swap overflow and
cache line; proceed as hit

! Else, proceed as miss.

Overflow hashtable
key data

3000 77

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(32)

Cache overflow: commit/abort
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

? 0 *111 55 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Abort:
" invalidate all lines with T set
" discard overflow hashtable
" clear O and T bits

! Commit:
" write back hashtable; NACK

interventions during this
" clear O and T bits

Overflow hashtable
key data

3000 77

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(33)

Cycle-level LTM simulation
! LTM implemented on top of UVSIM (itself

built on RSIM)
" shared-memory multiprocessor model
" directory-based write-invalidate coherence

! Contention behavior:
" C microbenchmarks w/ inline assembly
" Up to 32 processors

! Overhead measurements:
" Modified MIT FLEX Java compiler
" Compared no-sync, spin-lock, and LTM xaction
" Single-threaded, single processor

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(34)

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

A
vg

.
cy

cl
es

 p
er

 it
er

at
io

n

Number of processors

locks
transactions

Contention behavior

! Contention microbenchmark: 'Counter'
" 1 shared variable; each processor repeatedly adds
" locking version uses global LLSC spinlock
" Small xactions commit even with high contention
" Spin-lock causes lots of cache interventions even

when it can't be taken (standard SGI library impl)

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(36)

Is this good enough?
! Problems solved:

" Xactions as large as physical memory
" Scalable overflow and commit
" Easy to implement!
" Low overhead
" May speed up Linux!

! Open Problems...
" Is “physical memory” large enough?
" What about duration?

! Time-slice interrupts!

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(37)

Beyond LTM: UTM
! We can do better!
! The UTM architecture

allows transactions as large as virtual
memory, of unlimited duration, which can
migrate without restart

! Same XBEGIN pc/XEND ISA; same register
rollback mechanism

! Canonical transaction info is now stored in
single xstate data struct in main memory

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(38)

Commit Log Entry Transaction Log Log Entry
record Rollback values Blk Ptr Next Reader

P 44 ! ...

xstate data structure

! Transaction log in DRAM for each active transaction
" commit record: PENDING, COMMITTED, ABORTED
" vector of log entries w/ “rollback” values

! each corresponds to a block in main memory
! Log ptr & RW bit for each application memory block

" Log ptr/next reader form linked list of all log entries
for a given block

Application Memory
RW bit Log Ptr Memory Block

! ! #!

W 32
! ! #!

Current values

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(39)

Caching in UTM
! Most log entries don't need to be created
! Transaction state stored in cache/overflow

DRAM and monitored using cache-
coherence, as in LTM

! Only create transaction log when thread is
descheduled, or run out of physical mem.

! Can discard all log entries when xaction
commits or aborts
" Commit – block left in X state in cache
" Abort – use old value in main memory

! In-cache representation need not match
xstate representation

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(40)

Performance/Limits of UTM
! Limits:

" More-complicated implementation
! Best way to create xstate from LTM state?

" Performance impact of swapping.
! When should we abort rather than swap?

! Benefits:
" Unlimited footprint
" Unlimited duration
" Migration and paging possible
" Performance may be as fast as LTM in the

common case

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(41)

Conclusions
! First look at xaction properties of Linux:

" 99.9% of xactions touch E 54 cache lines
" but may touch > 8000 cache lines
" 4x concurrency?

! Unbounded, scalable, and efficient
Transactional Memory systems can be built.
" Support large, frequent, and concurrent xactions
" What could software for these look like?

! Allow programmers to (finally!) use our parallel
systems!

! Two implementable architectures:
" LTM: easy to realize, almost unbounded
" UTM: truly unbounded

Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(42)

Open questions
! I/O interface?
! Transaction ordering?

" Sequential threads provide inherent ordering
! Programming model?
! Conflict resolution strategies

