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Transactional Memory
(definition)

* A transaction is a sequence of memory loads and
stores that either commits or aborts

e |f atransaction commits, all the loads and stores
appear to have executed atomically

e |f atransaction aborts, none of its stores take
effect

* Transaction operations aren't visible until they
commit or abort

e Simplified version of traditional ACID database
transactions (no durability, for example)

e [For this talk, we assume no I/O within transactions

(2) Ananian/Asanovi¢/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05



Locks are not our friends

void pushFlow(Vertex v1, Vertex v2, double flow) {

lock t lock1, lock2;

if (v1.id < v2.1d) { /* avoid deadlock */
lock1 = v1.lock; lock2 = v2.lock; ﬁ
} else {
e
L \

lock1 = v2.lock; lock2 = v1.lock;
]

lock(lock1);

lock(lock2); . :
if (v2.oxcess > f) { Deadlocks/ordering

/* move excess flow */ ® MUlti-ObjeCt Operations

vl.excess += f; e Priority i ]
v2.excess -= f; riority inversion

} * Faults in critical regions

unlock(Tock2); . .
unlock(Tock1): Inefficient
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Invisible transactions?

* Rajwar & Goodman: Speculative Lock
Elision and Transactional Lock Removal
- speculatively identify locks; make xactions

* Martinez & Torrellas: Speculative
Synchronization

- guarantee fwd progress w/ nhon-speculative
thread

Keep
transactions
visible
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Infrequent, Small, Mostly-Serial?

To date, xactions assumed to be:
e Small 25
- BBN Pluribus (~1975): 16 clock- ~8
cycle bus-locked “transaction” (’; ™
- Knight; Herlihy & Moss: & =3
transactions which fit in cache ,?
* Infrequent
- Software Transactional Memory (Shavit &
Touitou; Harris & Fraser; Herlihy et al)
* Mostly-serial

- Transactional Coherence & Consistency
(Hammond, Wong, et al)
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Transact-ifying Linux

 Experiment to discover xaction

properties of large real-world app.
- First complete OS investigated!

e User-Mode Linux 2.4.19

- instrumented every load and store, all locks
- locks—xactions; locks not held over I/O!
- run 2-way SMP (two processes; two processors)

* Two workloads
- Parallel make of Linux kernel ('make linux')
- dbench running three clients

* Run program to get a trace; run trace

through Transactional Memory simulator
- 1MB 4-way set-associative 64-byte-line cache
- Paper also has simulation runs for SpecJVM98




™ Cache -Size requirements (Linux)
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Fully associative cache size (64 byte lines)

e # of overflowing xactions as a function of (fully-
associlative) cache size for nake | | nux & dbench

* Almost all of the xactions require < 100 cache lines
- 99.9% need fewer than 54 cache lines

* There are, however, some very large transactions!
- >500k-byte fully-associative cache required
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May Be Large, Frequent, and
Concurrent

e | ots of small xactions
— Millions of xactions in these benchmarks
- Problem for software-only schemes

* Significant tail: large xactions are few, but
very large
- Thousands of cache lines touched
- Problem for bounded transactional schemes

* Potential for additional concurrency
- Distribution of hot cache lines suggest that 4x
more concurrency may be possible on our
Linux benchmarks

Programmers want unbounded xactions...




Transactional Programming

e | ocks: the devil we know

* Complex sync techniques: library-only
- Nonblocking synchronization

- Bounded transactions
* Compilers don't expose memory references
(Indirect dispatch, optimizations, constants)
* Not portable! Changing cache-size breaks apps.

* Unbounded Transactions:
- Can be thought about at high-level
- Match programmer's intuition about atomicity
- Allow black box code to be composed safely

- Promise future excitement!
* Fault-tolerance / exception-handling
* Speculation / search

L
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LTM: Visible, Large, Frequent, Scalable

e “Large Transactional Memory”
- not truly unbounded, but simple and cheap

 Minimal architectural changes, high
performance
- Small mods to cache and processor core

- No changes to main memory, cache
coherence protocols or messages

- Can be pin-compatible with conventional proc
* Design presented here based on SGI
Origin 3000 shared-memory multi-proc

- distributed memory

- directory-based write-invalidate coherency
protocol

I8 =77

LTAN




Two new Instructions

e XBEG N pc |
- Begin a new transaction. Entry point & =%
to an abort handler specified by pc. ™

- If transaction must fail, roll back processor
and memory state to what it was when
XBEGQ Nwas executed, and jump to pc.

* Think of this as a mispredicted branch.

e XEND

- End the current transaction. If XEND

completes, the xaction is committed and
appeared atomic.

e Nested transactions are subsumed Into
outer transaction.

(11) Ananian/Asanovi¢/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05



(12)

Transaction Semantics

1 XBEGIN L1

ADD R1, R1, R1

ST 1000, R1

v+ XEND

L2: XBEGIN L2 $
ADD R1, R1, R1
ST 2000, R1
XEND v

-

e Two transactions
- “A” has an abort handler at L1

- “B” has an abort handler at L2
* Here, very simplistic retry. Other choices!

* Always need “current” and “rollback”
values for both registers and memory
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Handling conflicts

Processor 1 Processor 2
XBEGIN L1 ST 1000, 65 €=
ADD R1, R1, R1

= ST 1000, R1
XEND

L2: XBEGIN L2

ADD R1, R1, R1
ST 2000, R1
XEND

* We need to track locations read/written by
transactional and non-transactional code
* When we find a conflict, transaction(s)

must be aborted
- We always “kill the other guy”
- This leads to non-blocking systems
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Restoring register state

* Minimally invasive changes; build on
existing rename mechanism "

e Both “current” and “rollback” architectural
register values stored in physical registers

* In conventional speculation, “rollback”
values stored until the speculative
Instruction graduates (order 100 instrs)

* Here, we keep these until the transaction
commits or aborts (unbounded # of Instrs)

* But we only need one copy!
- only one transaction in the memory system
per processor
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Multiple in-flight transactions

Original
+ XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
v XEND
XBEGIN L2 !
ADD R1, R1, R1
ST 2000, R1
XEND ,

B

* This example has two transactions, with abort
handlers at L1 and L2

* Assume instruction window of length 5
- allows us to speculate into next transaction(s)
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—
graduate

Multiple in-flight transactions

Original Rename Table Saved set
XBEGIN L1 R1-P1, ... {P1, ..}
ADD R1, R1, R1

ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

* During Instruction decode:
- Maintain rename table and “saved” bits
- “Saved” bits track registers mentioned in current

rename table
 Constant # of set bits: every time a register is added to
“saved” set we also remove one

L
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graduate MUItlple |n ﬂlght traﬂsaCthnS

Original Rename Table Saved set
XBEGIN L1 R1-P1, ... {P1, ..}
ADD P2, P1, P1 R1-P2, ... {P2,..}
ST 1000, R1

XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

* When XBEGIN is decoded:
- Snapshots taken of current Rename table and S-
bits.
- This snapshot is not active until XBEGIN
graduates
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. Multiple in-flight transactions

—
graduate o pjginal Rename Table Saved set

XBEGIN L1 R1-P1, ... {P1,..)}
ADD P2, P1, P1

ST 1000, P2 R1-P2, ... {P2,..)}
XEND

XBEGIN L2

ADD R1, R1, R1

ST 2000, R1

XEND

L
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Multiple in-flight transactions

—»-Original Rename Table Saved set
graduate ¥ BEGIN L1 R1—P1, ... {P1,..}
ADD P2, P1, P1
ST 1000, P2
XEND R1-P2, ... {P2,..}
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND
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Multiple in-flight transactions

Original Rename Table Saved set etive
gd—t’xggﬁi‘;‘ o . R1I>P1,...  {P1,..} [*—30

ST 1000, P2

XEND

XBEGIN L2 R1-P2, ... {P2, ..}

ADD R1, R1, R1

ST 2000, R1

XEND

* When XBEGIN graduates:
- Shapshot taken at decode becomes active, which
will prevent P1 from being reused
- 1% transaction queued to become active in memory
- To abort, we just restore the active snapshot's
rename table

L
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Multiple in-flight transactions

Original Rename Table Saved set |

XBEGIN L1 R1-P1, ... {P1,...} [+ ot
grathe»ADD P2, P1, P1

ST 1000, P2

XEND

XBEGIN L2 R1-P2, ... {P2,...}

ADD P3, P2, P2 R1-P3, ... {P3, ...}

ST 2000, R1

XEND

* We're only reserving registers In the active set
- This implies that exactly #AR registers are saved
- This number is strictly limited, even as we
speculatively execute through multiple xactions
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Multiple in-flight transactions

Original Rename Table Saved set .
active
ADD P2, P1, P1
—»ST 1000, P2
graduate XEND

XBEGIN L2 R1-P2, ... {P2,..}
ADD P3, P2, P2

ST 2000, P3 R1-P3, ... {P3,..}
XEND

* Normally, P1 would be freed here
* Since it's In the active snapshot's “saved” set,
we put it on the register reserved list instead
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Multiple in-flight transactions

Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
—-XEND

9raduate yBEGIN L2 R1>P2,.. {P2, ..}
ADD P3, P2, P2
ST 2000, P3
XEND R1—-P3, ... {P3,..}

* When XEND graduates:
- Reserved physical registers (P1) are freed, and
active snapshot is cleared.
- Store queue Is empty
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graduate ADD P3, P2, P2

(24)

Multiple in-flight transactions

Original Rename Table Saved set

XBEGIN L1
ADD P2, P1, P1
ST 1000, P2

XEND |
active
—»-XBEGIN L2 R1-P2, ... {P2,..} [ apshot

ST 2000, P3
XEND

e Second transaction becomes active In
memory.
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Cache overflow mechanism

Overflow hashtable

= e ® Need to keep “current” values

B as well as “rollback” values
Y - common-case is commit, so

ST 1000, 55 keep “current” in cache
XBEGIN L1 - What if uncommitted “current”
LD R1, 1000 values don't all fit in cache?
g :23888’ ?3 e Use overflow hashtable as
LD R 1000 extension of cache

XEND - Avoid looking here If we can!
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Cache overflow mechanism

Overflow hashtable

-~ saa® 1 DIt per cache line

B setif accessed during xaction
P . O bit per cache set

ST 1000, 55 - Indicates set overflow

XBEGIN L1 * Overflow storage in physical
LD R1, 1000

ST 2000, 66 DRAM .

ST 3000. 77 - allocated/resized by OS

LD R1. 1000 - probe/miss: complexity of

XEND search = page table walk
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Cache overflow mechanism

tag

O T
H
W | 1000

Overflow hashtable

key data

B © Start with non-transactional
P datain the cache

ST 1000, 55
XBEGIN L1

LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

L
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Cache overflow: recording reads

Overflow hashtable

key data

I © Transactional read sets the
I T bit.

ST 1000, 55
XBEGIN L1
__, LDR1,1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND
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Cache overflow: recording writes

Overflow hashtable

key data

I © Most transactional writes fit
I in the cache.

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND
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Cache overflow: spilling

Way 0 Way 1
O T tag data tag data
H B __
ONT| 3000 | 77 JMT| 2000 | 66

Overflow hashtable
key data

* Overflow sets O bit
N e New data replaces LRU

ST 1000, 55 * Old data spilled to DRAM
XBEGIN L1

LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND
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Cache overflow: miss handling

Overflow hashtable

key data

* Miss to an overflowed line
PN checks overflow table

ST 1000, 55 e |[f found, swap overflow and
fgifi'klégo cache line; proceed as hit
) . "
ST 2000, 65 Else, proceed as miss.
ST 3000, 77
LD R1, 1000

XEND
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Cache overflow: commit/abort

Overflow hashtable

key data___ e ApQrt:
3000 - invalidate all lines with T set

— discard overflow hashtable

ST 1000, 55 — clear O and T bits

XBEGIN L1

LD R1, 1000 e Commit:

ST 2000, 66 - write back hashtable; NACK
ST 3000, 77

Interventions during this
LD R1, 1000

YEND - clear O and T bits
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Cycle-level LTM simulation

e LTM implemented on top of UVSIM (itself

built on RSIM)
- shared-memory multiprocessor model

- directory-based write-invalidate coherence
 Contention behavior:

- C microbenchmarks w/ inline assembly

- Up to 32 processors
* Overhead measurements:

- Modified MIT FLEX Java compiler

- Compared no-sync, spin-lock, and LTM xaction

- Single-threaded, single processor

Flex

iler Infrastructure
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Contention behavior
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e Contention microbenchmark: 'Count er'

- 1 shared variable; each processor repeatedly adds

- locking version uses global LLSC spinlock

- Small xactions commit even with high contention

- Spin-lock causes lots of cache interventions even
when it can't be taken (standard SGl library impl)
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LTM Overhead: SPECjvm98
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Is this good enough?

* Problems solved:
- Xactions as large as physical memory
- Scalable overflow and commit
- Easy to implement!
- Low overhead
- May speed up Linux!
* Open Problems...
- Is “physical memory” large enough?
- What about duration?
* Time-slice interrupts!
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Beyond LTM: UTM

e \We can do better!

* The UTM architecture
allows transactions as large as V|rtual

memory, of unlimited duration, which can
migrate without restart

e Same XBEGQ N pc/XEND ISA; same register
rollback mechanism

e Canonical transaction info 1s now stored In
single xstate data struct in main memory
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XSt at e data structure

Application Memory
Log Ptr Memory Block

I ERERENE Current values

RW Dbit

Commit
record

Log Entry Transaction Log
Rollback values Blk Ptr/ Next Reader

L L.

* Transaction log in DRAM for each active transaction
- commit record: PENDI NG, COVM TTED, ABORTED

- vector of log entries w/ “rollback” values
* each corresponds to a block in main memory

* Log ptr & RW bit for each application memory block
- Log ptr/next reader form linked list of all log entries
for a given block

Lpg Entry
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Caching in UTM

* Most log entries don't need to be created

* Transaction state stored in cache/overflow
DRAM and monitored using cache-
coherence, as in LTM

* Only create transaction log when thread is
descheduled, or run out of physical mem.

* Can discard all log entries when xaction

commits or aborts
- Commit — block left in X state Iin cache
- Abort — use old value in main memory

* [n-cache representation need not match
Xxstate representation
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Performance/Limits of UTM

* Limits:
- More-complicated implementation
* Best way to create xstate from LTM state?
- Performance impact of swapping.
* When should we abort rather than swap?

* Benefits:
- Unlimited footprint
- Unlimited duration
- Migration and paging possible
- Performance may be as fast as LTM in the
common case
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Conclusions

* First look at xaction properties of Linux:
- 99.9% of xactions touch =54 cache lines
- but may touch > 8000 cache lines
- 4x concurrency?

e Unbounded, scalable, and efficient

Transactional Memory systems can be built.
- Support large, frequent, and concurrent xactions

- What could software for these look like?
* Allow programmers to (finally!) use our parallel
systems!

* Two implementable architectures:

- LTM: easy to realize, almost unbounded
- UTM: truly unbounded
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Open guestions

e |/O Interface?

* Transaction ordering?
- Sequential threads provide inherent ordering

* Programming model?
* Conflict resolution strategies

L
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