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Transactional Memory
(definition)

! A transaction is a sequence of memory loads and 
stores that either commits or aborts

! If a transaction commits, all the loads and stores 
appear to have executed atomically

! If a transaction aborts, none of its stores take 
effect

! Transaction operations aren't visible until they 
commit or abort

! Simplified version of traditional ACID database 
transactions (no durability, for example)

! For this talk, we assume no I/O within transactions
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Infrequent, Small, Mostly-Serial?

To date, xactions assumed to be:
! Small

" BBN Pluribus (~1975): 16 clock-
cycle bus-locked “transaction”

" Knight; Herlihy & Moss:
transactions which fit in cache

! Infrequent
" Software Transactional Memory (Shavit & 

Touitou; Harris & Fraser; Herlihy et al)
! Mostly-serial

" Transactional Coherence & Consistency 
(Hammond, Wong, et al)
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TM Cache-size requirements (Linux)

! # of overflowing xactions as a function of (fully-
associative) cache size for make_linux & dbench

! Almost all of the xactions require < 100 cache lines
" 99.9% need fewer than 54 cache lines

! There are, however, some very large transactions!
" >500k-byte fully-associative cache required

Note: log-log scale
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Transactional Programming
! Locks: the devil we know
! Complex sync techniques: library-only

" Nonblocking synchronization
" Bounded transactions

! Compilers don't expose memory references
(Indirect dispatch, optimizations, constants)

! Not portable! Changing cache-size breaks apps.
! Unbounded Transactions:

" Can be thought about at high-level
" Match programmer's intuition about atomicity
" Allow black box code to be composed safely
" Promise future excitement!

! Fault-tolerance / exception-handling
! Speculation / search





Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(11)

Two new instructions
! XBEGIN pc

" Begin a new transaction.  Entry point
to an abort handler specified by pc.

" If transaction must fail, roll back processor 
and memory state to what it was when
XBEGIN was executed, and jump to pc.

! Think of this as a mispredicted branch.
! XEND

" End the current transaction.  If XEND 
completes, the xaction is committed and 
appeared atomic.

! Nested transactions are subsumed into 
outer transaction.
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Transaction Semantics

! Two transactions
" “A” has an abort handler at L1
" “B” has an abort handler at L2

! Here, very simplistic retry.  Other choices!
! Always need “current” and “rollback” 

values for both registers and memory

"#$%&'()*

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

)23 "#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

A

 B
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Handling conflicts

! We need to track locations read/written by 
transactional and non-transactional code

! When we find a conflict, transaction(s) 
must be aborted
" We always “kill the other guy”
" This leads to non-blocking systems

!"#$%&&#"'( !"#$%&&#"')

"#$%&'()* /0(*111.(45

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

)23 "#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',
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Restoring register state
! Minimally invasive changes; build on 

existing rename mechanism
! Both “current” and “rollback” architectural 

register values stored in physical registers
! In conventional speculation, “rollback” 

values stored until the speculative 
instruction graduates (order 100 instrs)

! Here, we keep these until the transaction 
commits or aborts (unbounded # of instrs)

! But we only need one copy!
" only one transaction in the memory system 

per processor
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Multiple in-flight transactions
*"+,+-./

"#$%&'()*

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

! This example has two transactions, with abort 
handlers at L1 and L2

! Assume instruction window of length 5
" allows us to speculate into next transaction(s)

A

 B

 Instruction Window
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(-*.(-*.(-*

/0(*111.(-*

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

! During instruction decode:
" Maintain rename table and “saved” bits
" “Saved” bits track registers mentioned in current 

rename table
! Constant # of set bits: every time a register is added to 

“saved” set we also remove one

!!

graduate

decode
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

6(72.(888(9

/0(*111.(-*

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

+,,(72.(7*.(7* -*:72.(888

! When XBEGIN is decoded:
" Snapshots taken of current Rename table and S-

bits.
" This snapshot is not active until XBEGIN 

graduates

!!

graduate

decode
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

6(72.(888(9

"$',

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

/0(*111.(72 -*:72.(888

!!

graduate

decode
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$', 6(72.(888(9

"#$%&'()2

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

-*:72.(888

!!

graduate

decode
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(-*.(-*.(-*

/0(2111.(-*

"$',

-*:7*.(888

-*:72.(888

! When XBEGIN graduates:
" Snapshot taken at decode becomes active, which 

will prevent P1 from being reused
" 1st transaction queued to become active in memory
" To abort, we just restore the active snapshot's 

rename table

!!

graduate

decode

active
snapshot
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

-*:7;.(888 6(7;.(888(9

/0(2111.(-*

"$',

-*:7*.(888

-*:72.(888

+,,(7;.(72.(72

!!

graduate

decode

! We're only reserving registers in the active set
" This implies that exactly #AR registers are saved
" This number is strictly limited, even as we 

speculatively execute through multiple xactions

active
snapshot
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()* 6(7*.(888(9

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(7;.(72.(72

-*:7;.(888 6(7;.(888(9

"$',

-*:7*.(888

-*:72.(888

/0(2111.(7;

!!

graduate

decode

! Normally, P1 would be freed here
! Since it's in the active snapshot's “saved” set, 

we put it on the register reserved list instead

active
snapshot
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()*

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(7;.(72.(72

/0(2111.(7;

"$', -*:7;.(888 6(7;.(888(9

-*:72.(888

! When XEND graduates:
" Reserved physical registers (P1) are freed, and 

active snapshot is cleared.
" Store queue is empty

!!

graduate

decode
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Multiple in-flight transactions
*"+,+-./ 0%-.1%'2.3/% 4.5%6'&%7

"#$%&'()*

+,,(72.(7*.(7*

/0(*111.(72

"$',

"#$%&'()2 6(72.(888(9

+,,(7;.(72.(72

/0(2111.(7;

"$',

-*:72.(888

! Second transaction becomes active in 
memory.

!!

graduate

decode

active
snapshot
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Cache overflow mechanism

! Need to keep “current” values 
as well as “rollback” values
" Common-case is commit, so 

keep “current” in cache
" What if uncommitted “current” 

values don't all fit in cache?
! Use overflow hashtable as 

extension of cache
" Avoid looking here if we can!

<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data
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Cache overflow mechanism

! T bit per cache line
" set if accessed during xaction

! O bit per cache set
" indicates set overflow

! Overflow storage in physical 
DRAM
" allocated/resized by OS
" probe/miss: complexity of 

search C page table walk

<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data
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Cache overflow mechanism

! Start with non-transactional 
data in the cache

<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

*111 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data
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Cache overflow: recording reads
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

0 *111 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Transactional read sets the 
T bit.

Overflow hashtable
key data
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Cache overflow: recording writes
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

0 *111 55 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Most transactional writes fit 
in the cache.

Overflow hashtable
key data
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Cache overflow: spilling
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

? 0 ;111 DD 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Overflow sets O bit
! New data replaces LRU
! Old data spilled to DRAM

Overflow hashtable
key data

1000 55
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Cache overflow: miss handling
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

? 0 *111 55 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Miss to an overflowed line 
checks overflow table

! If found, swap overflow and 
cache line; proceed as hit

! Else, proceed as miss.

Overflow hashtable
key data

3000 77



Ananian/Asanovi!/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(32)

Cache overflow: commit/abort
<=>(1 <=>(*

? 0 @=A B=@= 0 @=A B=@=

? 0 *111 55 0 2111 44

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

! Abort:
" invalidate all lines with T set
" discard overflow hashtable
" clear O and T bits

! Commit:
" write back hashtable; NACK 

interventions during this
" clear O and T bits

Overflow hashtable
key data

3000 77
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Cycle-level LTM simulation
! LTM implemented on top of UVSIM (itself 

built on RSIM)
" shared-memory multiprocessor model
" directory-based write-invalidate coherence

! Contention behavior:
" C microbenchmarks w/ inline assembly
" Up to 32 processors

! Overhead measurements:
" Modified MIT FLEX Java compiler
" Compared no-sync, spin-lock, and LTM xaction
" Single-threaded, single processor
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Contention behavior

! Contention microbenchmark: 'Counter'
" 1 shared variable; each processor repeatedly adds
" locking version uses global LLSC spinlock
" Small xactions commit even with high contention
" Spin-lock causes lots of cache interventions even 

when it can't be taken (standard SGI library impl)
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Is this good enough?
! Problems solved:

" Xactions as large as physical memory
" Scalable overflow and commit
" Easy to implement!
" Low overhead
" May speed up Linux!

! Open Problems...
" Is “physical memory” large enough?
" What about duration?

! Time-slice interrupts!
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Beyond LTM: UTM
! We can do better!
! The UTM architecture

allows transactions as large as virtual 
memory, of unlimited duration, which can 
migrate without restart

! Same XBEGIN pc/XEND ISA; same register 
rollback mechanism

! Canonical transaction info is now stored in 
single xstate data struct in main memory
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Commit Log Entry Transaction Log Log Entry
record Rollback values Blk Ptr Next Reader

P 44 ! ...

xstate data structure

! Transaction log in DRAM for each active transaction
" commit record: PENDING, COMMITTED, ABORTED
" vector of log entries w/ “rollback” values 

! each corresponds to a block in main memory
! Log ptr & RW bit for each application memory block

" Log ptr/next reader form linked list of all log entries 
for a given block

Application Memory
RW bit Log Ptr Memory Block

! ! #!

W 32
! ! #!

Current values
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Caching in UTM
! Most log entries don't need to be created
! Transaction state stored in cache/overflow 

DRAM and monitored using cache-
coherence, as in LTM

! Only create transaction log when thread is 
descheduled, or run out of physical mem.

! Can discard all log entries when xaction 
commits or aborts
" Commit – block left in X state in cache
" Abort – use old value in main memory

! In-cache representation need not match 
xstate representation
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Performance/Limits of UTM
! Limits:

" More-complicated implementation
! Best way to create xstate from LTM state?

" Performance impact of swapping.
! When should we abort rather than swap?

! Benefits:
" Unlimited footprint
" Unlimited duration
" Migration and paging possible
" Performance may be as fast as LTM in the 

common case
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Conclusions
! First look at xaction properties of Linux:

" 99.9% of xactions touch E 54 cache lines
" but may touch > 8000 cache lines
" 4x concurrency?

! Unbounded, scalable, and efficient 
Transactional Memory systems can be built.
" Support large, frequent, and concurrent xactions
" What could software for these look like?

! Allow programmers to (finally!) use our parallel 
systems!

! Two implementable architectures:
" LTM: easy to realize, almost unbounded
" UTM: truly unbounded
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Open questions
! I/O interface?
! Transaction ordering?

" Sequential threads provide inherent ordering
! Programming model?
! Conflict resolution strategies


