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Notes
Nothing should be said on the title slide.
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Our Goal
Reduce the memory consumption of object-oriented

programs

By
Using program analysis to identify opportunities to

reduce the space required to store objects,

Then
Applying transformations to reduce the memory

consumption of the program.
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Notes
This talk is about size optimizations for Java programs. Our goal is to reduce the amount of
memory used by object-oriented programs (in this case, Java) by using static whole-program
analyses to identify opportunities and applying transformations to effect the reduction.
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Structure of a Java Object
• Typical of many O-O languages.
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Notes
Here’s our starting point. This is how most Java implementations lay out objects. I want you to
notice that there are three kinds of space in this layout, helpfully delineated with red lines. The
first section of the object usually consists of information required by the runtime implementation
but not directly specified by the programmer. This includes a claz pointer, which points to an
external structure of information about the object’s type, and some information to support the
hashcode and locking semantics of Java. The second section of the object contains the fields
declared by the programmer. If this were a car object, these fields might indicate the color and
model of the car. The last section consists of padding which the runtime implementation will add
to bring the various parts of the object to certain alignment boundaries.
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Strategy
Push hard on all the bits.
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Notes
Our strategy is simple: @ we’re going to push hard on all the bits, in the object header, in the
fields of the object, and even on the padding bytes, in order to reduce the size of each object and
thus the total allocated and live memory of the program.
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How to compress objects
Three broad techniques:

• Field compression
• Mostly-constant field

elimination
• Header optimizations
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Notes
There are three broad techniques we are going to use to effect our size reductions: @ field
compression, which reduces the size of the programmer-declared fields, @ mostly-constant field
elimination, to completely eliminate memory used to store common values, and @ header
optimizations, which leverage more-efficient representations for the data needed by the runtime.
We will look at each of these in order, starting with. . .
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How to compress objects
Three broad techniques:

• Field compression
• Mostly-constant field

elimination
• Header optimizations
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Notes
. . . field compression.
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Field Compression
Reduce the space taken up by an object’s fields.

• Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

• Bitwidth analysis to discover tight upper bounds
on field size.

• Field packing into bytes or bits.

class Car {

int color;

...

} BLACK=0 RED=1 BLUE=2
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Notes
Field compression targets the space directly allocated by the programmer. In the sample class at
the bottom of the slide, we define an object representing cars. Its first field is a color, and it is
declared an integer which allows the enumeration of up to 2

32 different colors of cars.
@ The first analysis we do is a standard sparse conditional constant propagation pass over the
whole program to identify unused, unread, or constant fields. @ Suppose we’re building Ford
Model-T’s. Since they only come in black, this field will be constant and can be removed.
@ A novel contribution is the next step, bitwidth analysis, which discovers tighter upper bounds
on field sizes. @ Actually, Model-T’s were produced in several different colors before Ford
started mass-production. Our bitwidth analysis could determine that we really only need two bits
to store colors, since our program only ever stores three different colors in a Car object.
@ After we perform the analysis, we use the results to reduce the space used by the fields. We’ll
talk about this later.
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How are these analyses
performed?
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Notes
So how do we actually obtain the information we need to do field compression?
We’ll look first at a simple constant propagation analysis, and then see how, by a series of
extensions, we can obtain a powerful bitwidth analysis.
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Intraprocedural Analysis

int foo() {

if (...)

i=1;

else

i=2;

if (i>0)
...

}
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Notes
Let’s look at a quick example of how the Sparse Predicated Typed Constant analysis is done. @
We have this simple program, which assigns values to an integer variable i and then tests the
result. @ When we perform the dataflow analysis, we will abstract the value domain of the
program using this lattice of integer constants. The ⊥ value indicates that nothing is known about
the value of a variable. @ At the start of the analysis, we know nothing about the value of i. @
When the analysis finds that the first assignment to i is executable, then @ it will perform a meet
operation on the previous value (⊥) and the new value (1) to obtain @ 1, because 1 is the
minimum element greater-than-or-equal-to both operands. The analysis now knows that the
variable i can have the value 1. @ Later, it finds that the second assignment to i is executable,
and @ it computes 1 u 2, @ which yields the > element in the lattice. The > element usually
means, “I give up, I can’t constrain this value any more, it could be anything.” This example
illustrates the limitations of the simplified SPTC lattice shown here, because @ when we now
look at the final if statement, the analysis can’t tell that, one way or another, i will always be
positive and thus this comparison will always be true. The > element means that any value is
possible for i, which is a very conservative approximation.
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A signed integer lattice
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An integer lattice for signed integers. A classification into
negative (M), positive (P), or zero (Z) is grafted onto the
standard flat integer constant domain.
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Notes
So let’s see how we’d extend the lattice to make the analysis stronger. Here we have a lattice that
allows us to classify values as positive or negative, even if we don’t know what the actual value
will be. @ Here if we perform meet on 1 and 2 we get the element ( P), which indicates “any
positive number”. If we then do a meet with a negative number, say, −2, @ we’ll get (M P), or “a
non-zero number”. If we later discover an assignment of zero, @ we finally get the > element.
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Example, redux

int foo() {

if (...)

i=1;

else

i=2;

if (i>0)
...

}
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Notes
With the new lattice, we start at ⊥ as before. @ Looking at i=1, @ we do a meet with 1 @ to get
1. But now, when we see i=2, @ and meet with 2, @ we get ( P), or “a positive integer.” @
This time, when we get to the comparison, we can tell that i>0 will always be true.
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Extending the lattice
Replace M and P in previous lattice entries with
positive integers m and p. Encode zero as m = p = 0.

( P)⇒ 〈0, p〉

(M )⇒ 〈m, 0〉

( Z ) ⇒ 〈0, 0〉

In lattice context:

〈0, 31〉

...

( P) ⇒ 〈0, 3〉

〈0, 2〉

〈0, 1〉 Ananian/LCTES’03 – p. 23

Notes
To perform bitwidth analysis, we need only extend this signed integer value lattice a little further.
We replace all the letters M and P in the previous lattice entries with positive integers m and p

indicating the bitwidths of the negative and positive portions of the possible values. @ We now
represent these lattice entries as tuples 〈m, p〉, and use the 〈0, 0〉 tuple to represent zero — what
our previous lattice would have called ( Z ). @ We can imagine expanding each node in our
previous lattice with distinct tuples, with the ordering relations shown.
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Bitwidth lattice detail
〈0, 31〉

...

〈0, 2〉

〈0, 1〉

0

〈0, 0〉
1 2 3 · · · 232 − 1

⊥
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Notes
The picture is actually a little more complicated. Here we see a small piece of the new expanded
lattice. We see that performing a meet of any two positive integers will result in a tuple which
accurately reflects the minimum bitwidth needed to represent both numbers.
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Example redux, redux

int foo() {

if (...)

i=1;

else

i=2;

if (i>0)
...

}
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Notes
Revisiting our example: we still start with i = ⊥. @ Looking at i=1, @ we do a meet with 1 @ to
get 1. @ We look at i=2, @ and meet with 2, @ now we get the tuple 〈0, 2〉, indicating that i can
not be negative and that we only need two bits to store the positive portion. @ We can still tell at
the comparison point that i>0 will always be true, but the real value of this analysis will be the
space reductions we obtain when we apply it to fields.
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Bitwidth combination rules

−〈m, p〉 = 〈p, m〉

〈ml, pl〉 + 〈mr, pr〉 = 〈1 + max(ml,mr), 1 + max(pl, pr)〉

〈ml, pl〉 × 〈mr, pr〉 =

〈

max(ml + pr, pl + mr),

max(ml + mr, pl + pr)

〉

〈0, pl〉 ∧ 〈0, pr〉 = 〈0, min(pl, pr)〉

〈ml, pl〉 ∧ 〈mr, pr〉 = 〈max(ml, mr), max(pl, pr)〉

Some combination rules for bit-width analysis.
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Notes
For completeness: here are some of the combination rules we use to perform abstract evaluation
of unary and binary operations using our bitwidth value domain. I’m afraid time doesn’t permit us
to go through these individually at this point, but these are in the paper. Note for the first rule that
we’re tracking the bitwidth of the absolute value of the number, so the rule for negation is simply
interchanging the positive and negative portions of the tuple.
If questioned: The first entry simply says that negation exchanges the positive and negative
bitwidths. The second entry gives the rules for addition: we have to add one to the width to allow
for carry out. The rule for multiplication should remind you that we’re operating in the log-domain.
The underlying numeric representation shows through in our rules for logical-AND: when anding
two positive integers, the resulting bitwidth will match the smaller of the two inputs, since leading
zeros will force zeros on the output. But if negative numbers are possible, we must use a far
more conservative rule to account for the leading ones in the twos-complement representation of
negative numbers. The m-component of the tuple roughly identifies the leftmost zero, so clearly
the largest m will dictate where the leftmost zero can be in the result. The p component identifies
the leftmost one, and since the all-ones value −1 is included in all negative ranges, the largest
positive value input could emerge unchanged. We cannot create a larger positive value because
the AND operation cannot create ones anywhere there is a zero in the input.
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Interprocedural analysis

int foo() {

if (...)

ia.f=1;

else

ib.f=2;

if (ic.f>0)
...

}

int foo() {

ithis.f=1;

}

int bar() {

ithis.f=2;

}

int bar() {

if (ithis.f>0)

...

}
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Notes
Our examples have all been intraprocedural. We use a field-based technique to perform the
analysis interprocedurally, maintaining a single analysis value for each distinct object field. @
Instead of maintaining a value for i, we maintain a value for field f, @ and this works even when
the various accesses take place in different methods.
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All cars are black
void paint(int color) {

if (this.model == FORD)
color = BLACK;

this.color = color;
}
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Notes
Returning to our car example, we can see how our initial Sparse Predicated Typed Constant
analysis could determine that, if all cars’ model is FORD, then all car’s color will be BLACK.
Having determined this, we can simply substitute BLACK for the color wherever it appears and
remove the field. However, if there are non-FORD cars, we can still use our bitwidth analysis to
determine a bound on how many bits we need to represent the various car colors that we see
assigned to the color field.
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Field compression using bitwidths
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Notes
Once we’ve used our analysis to determine accurate widths for fields, we would like to shrink the
objects’ allocations to use only the space actually needed for each field. So if we have less than
256 colors, we can use a single byte in the object structure to represent color.
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Field packing
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Notes
The actual situtation is a little more complicated. There is padding within and at the end of the
object, required for various reasons. The heap allocator may prefer to have the chunks it returns
aligned on certain boundaries, and the machine architecture may prefer to access, for example,
word data aligned at word boundaries. At some runtime cost, we can overcome these limitations.
At the top, is the standard “Java” object packing. All fields are aligned to their natural size, so
that, word-sized fields will always begin at word boundaries. In this work we implemented a
“byte” alignment strategy, where all fields are placed at the nearest byte boundaries, irrespective
of their preferred alignment. One can also imagine a “bit” alignment strategy where each field
uses exactly the number of bits it requires. At runtime we must then perform bit-masking and
-extraction operations to access the fields. We found very little additional space-savings potential
from going to bit alignment, which is why the numbers we will present use “byte” alignment.
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How to compress objects
Three broad techniques:

• Field compression
• Mostly-constant field

elimination
• Header optimizations
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Notes
Let’s return to our outline. So far we have talked about field compression; using bitwidth analysis
to reduce the static size of fields allocated in objects, and using field packing to reduce the
amount of object padding. Now we will talk about “Mostly-constant field elimination,” our second
space-reduction technique.
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Mostly-constant field elimination
• It’s easy to remove constant fields.
• Key idea: remove mostly constant fields.

• Identify fields which have a certain value
“most of the time.”
• Static analysis/profiling.

• Transform objects to remove fields w/ the
common value.
• Static specialization/externalization.
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Notes
It’s easy to remove constant fields; we just replace the field reference with the appropriate
constant. @ But our key idea here is that it is also possible to replace mostly -constant fields. @
We identify fields which have a certain value “most of the time” using @ static analysis and
profiling. @ We can then transform the objects to remove fields with the common value, so that
we only spend space on fields with unusual values. @ Our techniques for doing this are called
static specialization and externalization. The types of “mostly-constant” fields that can be
removed are slightly different with the two techniques; we will look at static specialization first.
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Specialization example:
java.lang.String

public final class String {
private final char value[];

private final int offset;
private final int count;

...
public char charAt(int i) {

return value[offset+1];

}
public String substring(int start) {

int noff = offset + start;
int ncnt = count - start;

return new String(value, noff, ncnt);
}

}
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Notes
We’re going to jump right in with an example. This is java.lang.String from the Java
standard class library. It has three fields: a character array and an integer length and offset. This
representation was chosen to allow you to perform the substring operation in constant time; you
don’t have to copy the string, you just create a new string with a different offset and length and
share the same character array.
The interesting thing about java.lang.String is that the offset field is almost always zero.
Only strings created with the substring() method have non-zero offset fields. And the offset
field is never changed after the object is created. These are the key properties needed to enable
static specialization.
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Key properties
To use static specialization we need:

• A field with a frequently-occuring value.
• String.offset is almost always zero.

• The value of the field must never be modified
after the object is created.
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Notes
In order to apply our technique, we need to find a “mostly-constant” field, which in our example is
String.offset, with the value “mostly zero”, and, importantly, the value of that field cannot be
modified after the object is created.
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Transforming the class
We will split String into two classes:

• SmallString without the field.
• BigString with the field.

We will use SmallString for all instances where the
offset field is zero (our “mostly-constant” value).

Problems:
• The code could directly access the

to-be-removed field.
• Allocation sites directly instantiate the old class.
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Notes
So, how are we going to save memory in java.lang.String? We’re going to split the class in
two: there will be a SmallString class without the offset field, and a BigString class that
does have it.
@ A couple of problems that come up:

• @ What happens to places in SmallString where the removed offset field is
referenced?

• @ And when we see an allocation of String, do we change it to SmallString or
BigString?
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Specialization example:
java.lang.String

public final class StringSmallString {
private final char value[];

private final int offset;
private final int count;

protected int getOffset() { return 0; }
...
public char charAt(int i) {

return value[offsetoffsetgetOffset()+1];
}

public String substring(int start) {
int noff = offsetoffsetgetOffset() + start;

int ncnt = count - start;
return new String(value, noff, ncnt);

}

}
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Notes
Let’s go back and see how this works. We take the String class, rename it @ SmallString
and remove the offset field. But what do we do with the references to the now-deleted field?
@ We solve this problem by virtualizing the field: adding a getOffset() accessor method
(which always returns zero) and replacing references to offset with calls to getOffset().

Ananian/LCTES’03 – p. 50

Specialization example:
java.lang.String

public final class SmallString {
private final char value[];

private final int count;

protected int getOffset() { return 0; }
...
public char charAt(int i) {

return value[getOffset()+i];
}

...
}

public final class BigString extends SmallString {
private final int offset;
protected int getOffset() { return offset; }

}
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Notes
Now we create BigString as an almost-trivial subclass of SmallString. It shared all of the
same functionality, except BigString has an offset field, and implements getOffset() in the
way you’d expect. So any object which needs a non-zero offset can instatiate BigString and
things will work as expected.
From our key properties, remember that there are no assignments to the offset field except in
the constructor. But what do we do there? And how do we tell if we’re supposed to replace a call
to the String constructor with a SmallString or a BigString?
It turns out there are three cases to worry about.
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Transforming allocation sites
Case 1: field is constant in constructor.

SmallString s = new StringSmallString(new char[] {’a’, ’b’, ’c’});

StringSmallString(char[] val) {
this.value = (char[]) val.clone();
this.offset = 0;
this.count = val.length;

}
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Notes
In the first case, the field is constant in the constructor. Every instantiation which uses this
constructor will set offset to zero. (And as we mentioned before, it is never reset after
construction.) So we juse @ remove the assignment to offset and replace the instantiation of
String with that of SmallString.
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Transforming allocation sites
Case 2: field is simple function of constructor
parameter.

String s = new String(new char[] {’a’, ’b’, ’c’},
x, 1);

String(char[] val, int offset, int length) {
this.value = (char[]) val.clone();
this.offset = offset;
this.count = length;

}
SmallString s;

if (x==0)
s = new SmallString(new char[] {’a’, ’b’, ’c’}, x, 1);

else
s = new BigString(new char[] {’a’, ’b’, ’c’}, x, 1);
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Notes
But what if we have code like this, where we don’t know what value x will have when the String
is created? This is essentially the case for the substring method of String. In this case, the
value of the offset field is a simple function of some parameter given to the constructor. Here’s
our solution: @ we add a test around the allocation site, so that we can construct a Small or Big
string depending on the value x actually has at runtime.
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Transforming allocation sites
Case 3: assignment to field is unknown.

StringBigString s = new StringBigString(s, o, l);

StringBigString(char[] val, int offset, int length) {
this.value = (char[]) val.clone();
while (length>0 && value[offset]==’ ’) {

offset++; length-;
}
this.offset = offset;
this.count = length;

}
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Notes
But what about code such as this? Here we know nothing about the value of offset, as it is
derived programmatically within the constructor. There’s no easy test we can do outside the
constructor. @ Here we must simply give up and always allocate an instance of BigString.
Code such as this is not actually found in java.lang.String, but this solution allows us to
take advantage of frequently-constant fields in many cases with a fairly neutral (no cost, no gain)
fallback in the worst case.
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Static specialization
• Split class implementations into “field-less” and

“field-ful” versions.
• Use virtual accessor functions to hide this split

from users of the class.
• Can be done recursively on multiple fields.

• Profiling guides splitting order if there are
multiple candidates.

• Done at compile time, on fields which can be
shown to be compile-time constants, thus “static.”
• Fields can not be mutated after the

constructor completes.
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Notes
Let’s review the static specialization transformation: we split the target class into two parts, one
of which has the field and one which doesn’t, and use virtual accessor functions to hide this split
from users of the class. We can do this recursively on multiple fields; we use profiling to
determine the best splitting order in that case. We have two constraints: @ the fields must be
“mostly-constant”, and then cannot be modified after the completion of the constructor.
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Key properties (revisited)
To use static specialization we need:

• A field with a frequently-occuring value.
• String.offset is almost always zero.

• The value of the field must never be modified
after the object is created.
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Notes
But what if the first of these conditions hold, @ but the second doesn’t?
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Creating external fields

• Sometimes fields are run-time constants (or
nearly so) but not compile-time constants.
• Examples: sparse matrices, “two-input nodes”

in Jess expert system, the “next” field in short
linked lists.

• Exploit field→map duality to reduce memory
overhead in the common case.
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Notes
Sometimes fields are run-time constants but not compile-time constants. @ Some examples are
sparse matrices, an example from the SPEC benchmark suite, and short linked lists. In graphics
applications, the background color will typically be another example. What are we going to do in
this case?
@ Our solution is to exploit the relationship between fields and maps to reduce memory
overhead when we’re storing the common value.
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Fields and Maps
• Accessing an object field a.b (where a is the

object reference and b is the field name) is
equivalent to evaluating a map from 〈a, b〉 to the
value type.

• The mapping we will implement will be
incomplete. We define the result of accessing a
non-existing mapping to be ⊥.

• To achieve our storage savings, we map ⊥ to the
frequent “mostly-constant” value.
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Notes
Read this slide.
. . . This means we don’t actually have to store this value in the map; we can just remove the
entry instead.
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Externalization example:
java.lang.String

public final class String {
private final char value[];

private final int offset;
private final int count;

public char charAt(int i) {
return value[offsetoffsetgetOffset()+1];

}

public String substring(int start) {
int noff = offsetoffsetgetOffset() + start;

int ncnt = count - start;
return new String(value, noff, ncnt);

}
protected int getOffset() {

Integer i = External.map.get(this, "offset");

if (i==null) return 0;
else return i.intValue();

}
}
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Notes
Let’s see how it would work if we took our static specialization example and externalized the
field, instead. @ Again, the field is deleted from the class. But now, the @ getOffset()
method references an external map.
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External map implementation
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FieldObject Value
FieldObject Value
FieldObject Value
FieldObject Value
FieldObject Value
FieldObject Value
FieldObject Value
FieldObject Value
FieldObject Value

...... ...

Key Value

Open−addressed Hashtable
• “open addressed” for low

overhead.
• load-factor of 2/3
• two-word key and one-word

values means break-even
point is 82%
(i.e. field may not differ from the “mostly-constant”

value in more than 18% of objects.)
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Notes
The efficiency of this external map crucially dictates how much space savings we are able to
achieve with this scheme. So let’s look at implementation for a moment. We choose an
“open-addressed” hash table, to keep our overhead low. The alternative is some sort of
linked-bucket structure, and the links between buckets add crucially to our overhead. @ Every
hash table needs to have some entries empty in order to have good performance; we assume a
load-factor of 2/3, which means that 1/3 of the hashtable slots will be empty. @ We can do the
math, and find that a two-word key and one-word values mean our break-even point is 82%; @
that means that no more than 18% of the fields can differ from the “mostly-constant” value in
order to attain any space savings at all.
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We can do better!
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ValueObject + Field
ValueObject + Field
ValueObject + Field
ValueObject + Field
ValueObject + Field
ValueObject + Field
ValueObject + Field
ValueObject + Field
ValueObject + Field

Open−addressed Hashtable

Key Value

• Use small integers to enumerate
fields.

• Offset the object pointer by the
field index to get a 1-word key.

• Limits the number of fields which
may be externalized, based on
the size of the object.

• One-word key and one-word
value lowers break-even point to
66%.
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Notes
We can do better than this, though: since all we really need is a unique identifier for the
object/field pair, we can simply @ offset the object pointer to obtain a one-word key. @ Note that
this is like using a pointer to the field instead of a field ID and a pointer to the object ; the field we
would like to point to is not actually present in the object, though. This means that @ the scheme
imposes a limit of the number of fields which may be externalized, based on the number of
non-externalized fields, including header fields, remaining in the object. @ This limitation is not
overly burdensome, however, and we lower our break-even point to 66%.
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Other details
• Use value profiling to identify classes where field

externalization will be worthwhile.
• In our experiments, looked for integer

“mostly-constant” values in the range [−5, 5] for
numeric types. Only looked at null as a
candidate for pointer types.

• 0 and 1 by far the most common.
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Notes
A few more implementation details: First, we use value profiling to identify where externalization
will be worthwhile. Remember, we need at least 2/3 of the values to be some constant. @ When
we did the profiling, we looked at integer constants from −5 to 5 and at null for pointer types.
@ We could that 0 and 1 were by far the most common “mostly-constant” values; in a production
implementation you could look only at these two and get most of our savings.
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How to compress objects
Three broad techniques:

• Field compression
• Mostly-constant field

elimination
• Header optimizations
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Notes
Returning to our outline. We talked about using bitwidth and constant analysis to compress
fields, and at two different techniques for eliminating the space required to store
“mostly-constant” values. Now we’ll quickly look at header optimizations, which reduce the
amount of overhead needed by the runtime implementation.

Ananian/LCTES’03 – p. 76



Header optimizations:
Hashcode/Lock compression
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Notes
Of the two words in a typical object header, let’s look at the hashcode/lock field first. We were
able to completely eliminate this field in a large proportion of our objects.
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Header optimizations:
Hashcode/Lock compression

• Implemented as a special case of field
externalization.

• The hashcode/lock field often unused because:
• Most objects do not use their built-in

hashcode.
• Most objects are not synchronization targets.

• Could also use a static pointer analysis.
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Notes
We implemented this as a special case of field externalization. @ Although we can’t always tell
at compile-time, in fact this field is very infrequently used. Most object types either are never
used as keys in a hashtable, or implement their own hashing method not based on the
identity-based hash specified by the Java semantics. Similarly, most programs are either not
multi-threaded, or when they are, perform synchronization on only a small handful of their object
types. Using externalization means that we allocate space as-needed in an external map; @ we
could also use a static pointer analysis and techniques similar to static specialization to remove
these fields from types where they are statically unused.
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Header optimizations:
claz compression
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Notes
And now looking at the second word: the claz pointer typically points directly to some structure
with information about the object type. @ We can save space by imposing a level of indirection
and using a small table index instead.
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Header optimizations:
claz compression

• replace claz pointer with a (smaller) table index.
• With co-operation of GC, works in dynamic

environments.
• Many applications use less than 256 object types.
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Notes
Our static analysis can tell how many instantiated types are in the program, and thus bound the
index size. @ But this can even work in a dynamic environment, with a little co-operation from
the GC. @ We’d like to reduce the claz pointer to a single byte. Is this possible in practice? How
many classes are in typical applications?
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Class statistics
Class statistics for applications in SPECjvm98
benchmark suite:

200_check 201_compress 202_jess 205_raytrace 209_db 213_javac 222_mpegaudio 227_mtrt 228_jack
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Notes
Here are the class statistics, etc. Note that all but three are below 256 classes, or 1 byte of claz
index. I have never seen an application that required more than 2 bytes of claz index.
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How well does it work?
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Notes
So how well does all this work?
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Reduction in total allocations

201_compress 202_jess 205_raytrace 209_db 213_javac 222_mpegaudio 227_mtrt 228_jack
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Notes
This is the reduction in total number of bytes allocated during the run of the programs. The
programs at the bottom are from the SPECjvm98 benchmark suite, and represent real, complete,
Java applications. Let me quickly step through them: here on the left is compress, a
gzip-compression program. jess in an expert system, raytrace is a graphics rendering
program — mtrt is actually the same program, but run in multi-threaded mode; the numbers are
slightly different because (in theory) we can’t do as much hash/lock externalization, because the
locking capability of Java is being used. In practice, you can see it doesn’t have much effect. db
is a simple database, javac is the Sun java compiler, mpegaudio is an MP3 decoder, and
jack is a parser generator.
But if you’re paying attention, you’ll realize that these aren’t actually the really interesting
numbers. A reduction in total allocated bytes is great, it reduces the amount of allocation and
collection work the garbage collector has to do, but what you’d really like to see is a reduction in
the maximum live data in the program. This would mean that the program would run in a smaller
memory environment.
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Reduction in total live data
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Notes
And that is what we see here. You’ll notice the numbers look roughly the same, but they improve
a lot for javac; what this shows you is that the objects we target in javac are precisely the ones
which are live the longest and stress the system the most.
OK. You no doubt have noticed by now that compress is getting no help at all by anything we are
doing. Why is that?
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Available reduction opportunities
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Notes
This graph shows the percent of total allocated bytes which consist of arrays (as opposed to
objects), and pointer fields in objects. Our transformations are all object-oriented, and none of
them currently target arrays. In addition, the field compression techniques I’ve been describing
are fundamentally integer-based; apart from sometimes being able to remove mostly-null fields,
they are not terribly effective on fields of pointer type. So the yellow bars show you how much of
the program is left for our techniques to optimize, after you take away the pointers and the
arrays. Compress is all array allocations; hence our poor performance should make sense now.
The thing to notice here is that we do a fantastic job with the portion of the program allocation
that we’re targetting.
Indeed, if you want us to look good, you might consider how we do solely on the object
allocations in the program; discounting all array allocations.
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Reduction in object allocations
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Notes
And that’s what we show here. There are very sizable reductions now. But they have to be taken
with a grain of salt: we know already that compress has almost no object allocations, so even
though we do well on those that are present, it doesn’t “really” matter.
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Moderate performance impact
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Notes
We’ve talked about some transformations that impact performance; this graph shows you what
that performance impact really is. One represents the speed of the program before we touch it.
You’ll notice that the first three transformations, which are claz/field compression and
byte-packing, offer a moderate speed improvement over the original code. This is wholly due to
better performance in the garbage collector and cache as we shrink the objects. The potential
performance penalty for the claz indirection and the unaligned memory accesses are
overwhelmed by the GC and caching improvements.
Static specialization, the white bar, gives back some of that performance gain. This is due to the
fact that we’ve virtualized field accesses, so where you previously had a simple memory access,
you know have a method call and the overhead that goes with that. There are various techniques
we could use to mitigate this.
Field externalization costs a little more, because it’s a more expensive form of field virtualization.
In mtrt and jack it seems we are probably externalizing too many fields, and we’re getting
significant performance penalties. In jack, if you look at our live data numbers, you’ll see that the
space gain this is giving us is minimal; so our heuristics for choosing fields definitely need further
tweaking.
In four cases, the final step, hash/lock externalization, costs about 30% of our performance.
These are programs which lock extensively, although none of them strictly need to do any
locking. Static techniques for lock-removal will mitigate this cost greatly.
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How can we make this even better?
• Currently no array analysis/can’t distinguish

between different uses of a class.
• Use pointer analysis to discriminate among objects by

allocation site; optimize each alloc site.

• We hardly compress pointers at all.
• Investigate region-based/enumerated approaches.
• Zhang, Gupta (ICCC ’02)

• The mostly-constant analysis requires profiling.
• Investigate heuristic methods.
• Leverage dynamic profiling; identify cold fields.

• We know nothing about “field-like” maps.
• Enable internalization.
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Notes
So how can we go even further with this? @ First off, we currently do nothing with allocated
arrays. Further, we make decisions for all instances of a class, so if a class is used in multiple
very different ways, we are forced to pick one strategy for all uses. @ The solution is to use
pointer analysis to help discriminate among objects and arrays, which will allow us to apply the
techniques we’ve been describing. @ On a related note, we don’t attempt to compress fields
with pointer values at all. @ We have a region-based approach to limiting pointer sizes which we
feel is worth exploring in this regard, and @ Zhang and Gupta have described an orthogonal
technique which it may be useful to incorporate. @ Our “mostly-constant” transformations are
dependent on profiling. @ We could either find good heuristics to remove the profiling
requirement, @ or embrace run-time profiling, which would allow us to avoid transforming “hot”
fields. @ Finally, we’ve used maps to implement fields via externalization; @ it’s worth exploring
whether fields can more space-efficiently implement some maps in the program.
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Related Work
• Reducing lock overhead.

• Bacon, Sweeney (OOPSLA ’96)
• Onodera, Kawachiya (OOPSLA ’99)
• Agesen, Detlefs, Garthwaite, Knippel, Ramakrishna,

White (OOPSLA ’99)

• Escape analysis.
• Aldrich, Chambers, Sirer, Eggers (SAS ’99)
• Bogda, Hözle (OOPSLA ’99)
• Whaley, Rinard (OOPSLA ’99)
• Choi, Gupta, Serrano, Sreedhar, Midkiff (OOPSLA ’99)
• Ruf (PLDI ’00)
• Sălcianu, Rinard (PPoPP ’01)
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Notes
The has been related work on reducing lock overhead, and in escape analyses to statically
remove locking operations.
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Related Work II
• Space and time usage of Java programs.

• Dieckmann, Hölzle (ECOOP ’99)
• Bacon, Fink, Grove (ECOOP ’02)

• Bitwidth Analyses
• Ananian (MIT ’99)
• Rugină, Rinard (PLDI ’00)
• Stephenson, Babb, Amarasinghe (PLDI ’00)
• Budiu, Sakr, Walker, Goldstein (Europar ’00)

• Dead members in C++
• Sweeney, Tip (PLDI ’98)
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Notes
We’ve also seen some surveys to attempt to quantify the space and time usage of Java
programs, and devise efficient runtime representations.
Bitwidth analyses have been investigated, starting with my Master’s thesis in 99. An early focus
was reducing the size of generated circuits in hardware compilers; the Europar paper also
investigates applying the technique to MMX-like SIMD instruction sets.
Sweeney and Tip investigated a dead member analysis in C++ which is a subset of the constant
field elimination technique I discussed at the beginning of this talk.
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Conclusions
• We identified a variety of opportunities for space

reductions in object-oriented programs.
• We described analyses and transformations to

exploit these opportunities.
• We achieved substantial space savings on typical

object-oriented applications.
• In one case, over 40% reduction in total live

data.
• Even more space reduction is possible!
• Performance impact was acceptable and tunable.

Ananian/LCTES’03 – p. 105

Notes
Read this slide.
It’s worth mentioning the “memory wall” in this regard. We’ve already seen a decent
improvement in performance in many cases for some of these transformations, caused simply by
reducing memory costs (including GC) and improving caching. This is despite adding extra
instructions in the form of indirections, unaligned accesses, and virtualization. One can expect
that the memory wall will continue to get steeper and the benefits of increasing the effective
cache size will get greater, even as the ALU cost of unpacking operations becomes releatively
cheaper. We believe this work has shown that space optimizations can be remarkably effective.
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Size Optimizations for Java
Programs

FLEX homepage
http://flex-compiler.lcs.mit.edu

This talk:
http://flex-compiler.lcs.mit.edu/Harpoon/papers.html
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Notes
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The Graveyard Of Unused Slides
follows this point.

Ananian/LCTES’03 – p. 109

Notes
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Available reduction opportunities

200_check 201_compress 202_jess 205_raytrace 209_db 213_javac 222_mpegaudio 227_mtrt 228_jack

Benchmarks
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) Other object fields
Pointer fields
Array allocations
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Notes
This is the “total bytes” version of the slide.
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Bitwidth analysis
Motivation:

• Tedious and error-prone for programmer to
manually specify widths.

struct foo {

int x:24;

int y:5;

int z:1;

};

void foo() {

int x:24;

int y:5;

int z:1;

...

}

void foo() {

int x, y, z;

...

}

• The compiler can do it for us! Ananian/LCTES’03 – p. 113

Notes
Why specify widths manually when the compiler can do it?
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