
Efficient Object-Based Software Transactions

C. Scott Ananian
Computer Science and

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

cananian@csail.mit.edu

Martin Rinard
Computer Science and

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

rinard@csail.mit.edu

ABSTRACT
This paper proposes an efficient object-based implementa-
tion of non-blocking software transactions. We use ideas
from software distributed shared memory to efficiently im-
plement transactions with little overhead for non-transactional
code. Rather than emulating a flat transactional memory,
our scheme is object-based, which allows compiler optimiza-
tions to provide better performance for long-running trans-
actions. We present empirical data on transaction properties
to support the design. A model for the software transaction
implementation is given in Promela, whose correctness has
been mechanically verified using the Spin model checker.
The design presented cooperates well with an HTM provid-
ing support for small short transactions.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hard-
ware/software interfaces; D.2.4 [Software Engineering]:
Software/Program Verification—Model checking ; D.3.2 [Pro-
gramming Languages]: Language Classifications—Object-
oriented languages, Java ; D.3.3 [Programming Languages]:
Language Constructs and Features—Concurrent program-
ming structures; D.3.4 [Programming Languages]: Pro-
cessors—Compilers ; E.2 [Data Storage Representations]:
Object representation

General Terms
Algorithms, Verification, Languages, Experimentation

Keywords
Object-based transactions, synchronization, Java, Promela,
Spin

1. INTRODUCTION

This research was supported by DARPA/AFRL Contract
F33615-00-C-1692.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCOOL’05,October 16, 2005, San Diego, California, USA.
Copyright 2005 ACM ...$5.00.

The transaction model is a natural means to express atom-
icity, fault tolerance, exception handling, and backtrack-
ing. Although transactions can be implemented using mu-
tual exclusion (locks), the algorithms presented utilize non-
blocking synchronization1 to exploit optimistic concurrency
among transactions. Non-blocking synchronization offers a
number of advantages; among them fault tolerance: pro-
cesses that fail in critical regions cannot prevent other pro-
cesses from making progress.

In this paper we discuss the benefits and disadvantages of
an object-based transaction system. We present a mechanically-
checked non-blocking object-based implementation, and ex-
perimental measurements of transactional code justifying its
design. We provide one solution to the “large object” prob-
lem, and describe a hybrid hardware/software transaction
system.

2. USING OBJECTS FOR PERFORMANCE
Many recent lightweight transaction system designs have

used a transactional memory abstraction. The performance
improvements and other advantages demonstrated by Hard-
ware Transactional Memory (HTMs) [19, 16, 13, 8, 3], using
cache-line–based abstractions to match the standard cache/memory
system, have inspired similar word-based Software Transac-
tional Memory (STM) systems [25, 9]. We suggest that the
exclusive2 use of flat memory abstractions in designing a
modern lightweight transaction system is a mistake.

There is no guarantee that the transactional data in an ap-
plication will be matched to word, cache line, or page bound-
aries, leading to false sharing. This false sharing may have
semantic implications (may create new deadlocks) when trans-
actions that ought to be able to commit in parallel are
instead made exclusive because some piece of data is co-
located. To some degree authors of parallel code are al-
ready aware of these issues: locks are placed, for example,
to minimize cache ping-pong on SMP systems. But this is
an unnecessary burden.

Moreover, the flat memory model complicates basic and
important optimizations. An alternative, “clone and mu-
tate” or an object-based transaction system, performs trans-
actional operations on copies of the objects involved which
are then atomically substituted for the originals at com-

1We use the term non-blocking to describe generally any
synchronization mechanism that doesn’t rely on mutual ex-
clusion or locking, including wait-free [14], lock-free [22], and
obstruction-free [15] implementations.
2In Section 5.4 we describe how to use a small flat HTM to
augment our object-based system.

total transactional biggest
program memory ops transactions memory ops transaction
201 compress 2,981,777,890 2,272 <0.1% 2,302
202 jess 405,153,255 4,892,829 9.1% 7,092
205 raytrace 420,005,763 4,177 1.7% 7,149,099
209 db 848,082,597 45,222,742 23.0% 498,349
213 javac 472,416,129 668 99.9% 118,041,685
222 mpegaudio 2,620,818,169 2,991 <0.1% 2,281
228 jack 187,029,744 12,017,041 34.2% 14,266

Figure 1: Transactification of SPECjvm98 benchmark suite: resulting transaction counts and sizes, compared
to total number of memory operations (loads and stores). These are full input size runs.

mit time. Compile- or JIT-time analysis can track objects
that have already been cloned, and henceforth operate on
them without any synchronization overhead. The details
can be subtle, but a compiler can emit transactional code
which is, after initial overhead, equal in performance with
unsynchronized/non-transactional code. In Section 3 we will
show that common applications may contain large and long-
running transactions for which this behavior is important.

A number of object-based transaction systems have been
proposed, starting with Herlihy’s “small object protocol”
[11]. Shavit and Touitou’s STM [25] required that that all in-
put and output locations touched by a transaction be known
in advance. Herlihy, Luchangco, Moir, and Scherer’s scheme
[12] allows transactions to touch a dynamic set of memory
locations; however the user still has to explicitly “open” ev-
ery object touched before it can be used in a transaction.
Moreover, the cost of opening R objects for reading and
W objects for writing is O(R(R + W)); that is, potentially
quadratic in the number of objects involved. The transac-
tion system we will present in Section 5 does not require
foreknowledge of the behavior of a transaction, and does
not blow up on transactions that touch a large number of
objects.

Large objects and arrays typically present problems for
object-based transaction systems. Herlihy presented a “large
object protocol” [11] which required the programmer to man-
ually break up large objects; we present our own solution to
this problem in Section 5.3.

In the following section we will examine the properties of
transactional code that motivate our design.

3. PROPERTIES OF TRANSACTIONS
One of the difficulties of evaluating transaction implemen-

tations is the lack of benchmarks. Although there is no
body of code that uses atomic regions, there is a substan-
tial body of code that uses Java (locking) synchronization.
We have implemented a compiler that substitutes atomic

blocks/methods for synchronized blocks/methods in order
to evaluate the properties Java transactions are likely to
have. Note that the semantics are not precisely compati-
ble [5]: the existing Java memory model allows unsynchro-
nized updates to shared fields to be observed within a syn-
chronized block, while such updates will never be visible to
an atomic block. The proposed revision of the Java mem-
ory model [21] narrows the semantic gap, however we do not
treat volatile fields in this work. In addition, updates from
nested atomic blocks are not visible until the outer trans-
action commits. Despite the differences in semantics, the

IV

III

II

I

205_raytrace

209_db

222_mpegaudio

201_compress

202_jess
High

Low

213_javac

Large
Size of Largest Transaction

Small

memory operations
% transactional

Figure 2: Classification of SPECjvm98 benchmarks
into quadrants based on transaction properties.

automatic substitution of atomic for synchronized does, in
fact, preserve the correctness of the benchmarks we examine.

We compiled the SPECjvm98 benchmark suite with the
FLEX Java compiler [1], modified to turn synchronized blocks
and methods into transactions, in order to investigate the
properties of the transactions in such “automatically con-
verted” code. Method splitting was performed to distinguish
methods called from within an atomic block, and nested
atomic blocks were implemented as a single transaction around
the outermost atomic region. We instrumented this trans-
formed program to produce a trace of memory references
and transaction boundaries for analysis. We found both
large transactions (touching up to 8.9 million cache lines)
and frequent transactions (up to 45 million of them).

The SPECjvm98 benchmark suite represents a variety of
typical Java applications which use the capabilities of the
Java standard library. Although the SPECjvm98 bench-
marks are largely single-threaded, since they use the thread-
safe Java standard libraries they contain synchronized code
which is transformed into transactions. Because in this eval-
uation we are looking at transaction properties only, the
multithreaded 227 mtrt benchmark is identical to its serial-
ization, 205 raytrace. For consistency, we present only the
latter.

Figure 1 (previously presented in [3]) shows the raw sizes
and frequency of transactions in the transactified SPECjvm98
suite. Figure 2 proposes a taxonomy for Java applications
with transactions, grouping the SPECjvm98 applications
into quadrants based on the number and size of the trans-
actions that they perform.

Any scheme that allows the programmer free choice of de-
sired transaction and/or atomicity properties will inevitably
result in some applications in each of these categories. Exist-

Transactional size distribution for SPECjvm98

P
er

ce
nt

ag
e

of
 x

op
s

in
 tr

an
sa

ct
io

ns
 la

rg
er

 th
an

 g
iv

en
 s

iz
e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Transaction size (# memory operations)
1 10 100 1k 10k 100k 1M 10M 100M

201_compress

202_jess

205_raytrace

209_db

213_javac

222_mpegaudio

228_jack

Figure 3: Distribution of transaction size in the
SPECjvm98 benchmark suite. Note that the x-axis
uses a logarithmic scale.

ing hardware transactional memory schemes only efficiently
handle relatively short-lived and small transactions (Quad
I or II), although for these they are very efficient. How-
ever, large and long-lived transactions can be readily seen
in Figure 3, which plots the distribution of transaction sizes
in SPECjvm98 on a semi-log scale. Object-based transac-
tion systems pay copying overhead up front, making them
costly for small transactions, but have low subsequent per-
operation costs, which make them the best choice for long-
lived transactions.

An ideal system would combine an HTM and an object-
based transaction system to obtain the strengths of both;
we will briefly describe such a system in Section 5.4.

4. DESIGNING EFFICIENT TRANSACTIONS
In this section we briefly describe some desired properties

of our object-based software transaction system.

4.1 Field Flags
We would like non-transactional code to execute with min-

imal overhead, however, transactions should still appear atomic
to non-transactional code. Our basic mechanism is loosely
based on the distributed shared memory implementation
of Scales and Gharachorloo [24]. We will pick a special
“flag” value, and “cross-out” locations currently involved
in a transaction by overwriting them with the flag value.
Reading or attempting to overwrite a flagged value will in-
dicate to non-transactional code that exceptional processing
is necessary; all other non-transactional operations proceed
as usual.

This read barrier is the only overhead required for non-
transactional code. As the test is simple and predictable,
the runtime cost can be very low: the compare-and-branch
can be scheduled in otherwise unused instruction slots on a
multiple-issue processor [18].

Note that our technique explicitly allows safe access to
fields involved in a transaction from non-transactional code.

0 4 8 12 16
Added bloat, in bytes per object

0.98

1.00

1.02

1.04

1.06

1.08

1.10

E
xe

cu
tio

n
tim

e,
 r

el
at

iv
e

to
 n

o-
bl

oa
t c

as
e

compress
jess
raytrace
db
javac
mpegaudio
mtrt
jack
Geo. Mean

Figure 4: Application slowdown with increasing ob-
ject bloat for the SPECjvm98 benchmark applica-
tions. Note that in some cases bloat actually in-
creases performance, due to fortuitous alignment
and cache effects.

transactional transactional
program memory ops stores %
201 compress 50,029 26.2%
202 jess 36,701,037 0.6%
205 raytrace 7,294,648 23.2%
209 db 195,374,420 6.3%
213 javac 472,134,289 22.9%
222 mpegaudio 41,422 18.6%
228 jack 63,912,386 17.0%

Figure 5: Comparison of loads and stores inside
transactions for the SPECjvm98 benchmark suite,
full input runs.

4.2 Object expansion
We will need to add some additional information to each

object to track transaction state. We measured the slow-
down caused by various amounts of object “bloat” to de-
termine reasonable bounds on the size of this extra infor-
mation. Figure 4 presents these results for the SPECjvm98
applications; we determined that two words (eight bytes)
of additional storage per object would not impact perfor-
mance unreasonably. This amount of bloat causes a geo-
metric mean of 2% (and no more than 10%) slowdown on
these benchmarks, including costs caused by increased heap
size and more-frequent garbage collection. This is consistent
with the results reported by Bacon, Fink, and Grove, who
found that reducing object header size from two words to
one gave speedups ranging from -1.5% to 2.2% [4].

4.3 Reads vs. Writes
Figure 5 shows that transactional reads typically outnum-

ber transactional writes by 3 to 1; in some cases reads out-
number writes by over 100 to 1. The read/write ratios in
transactions do not depart much from observed data-cache

read/write ratios [10, pp. 105, 379]. It is worthwhile, there-
fore, to make reads more efficient than writes. In particular,
since the flag-overwrite technique discussed in Section 4.1 re-
quires us to allocate additional memory to store the “real”
value of the field, we wish to avoid this process for transac-
tional reads, reserving the extra allocation effort for trans-
actional writes.

5. SOFTWARE TRANSACTION MECHANISM
We now present an algorithm that has these desired prop-

erties. Our algorithms will be completely non-blocking, which
allows good scaling and proper fault tolerant behavior: one
faulty or slow processor cannot hold up the remaining good
processors.

We will implement the synchronization required by our al-
gorithm using Load Linked/Store Conditional instructions.
We require a particular variant of these instructions that al-
lows the location of the Load Linked to be different from the
target of the Store Conditional: this variant is supported on
the PowerPC processor family, although it has been depre-
cated in the newest chips. This disjoint location capability
is essential to allow us to keep a finger on one location while
modifying another: a poor man’s “Double Compare And
Swap” instruction. Load Linked/Store Conditional also pro-
vides a convenient solution to the so-called “ABA” problem
of Compare-And-Swap.3

We will describe our algorithms in the Promela model-
ing language [17], which we used to allow mechanical model
checking of the race-safety and correctness of the design.
Portions of the model have been abbreviated for this pre-
sentation; the full Promela model is available from a URL
given at the end of the paper.

Appendix A provides a brief primer on Promela syntax
and semantics.

5.1 Object Structures
Figure 6 illustrates the basic data structures of our soft-

ware transaction implementation. Objects are extended with
two additional fields. The first field, versions, points to a
singly-linked list of object versions. Each one contains field
values corresponding to a committed, aborted, or in-progress
transaction, identified by its owner field. There is a single
unique transaction object for each transaction.

The other added field, readers, points to a singly-linked
list of transactions that have read from this object. Commit-
ted and aborted transactions are pruned from this list. The
readers field is used to ensure that a transaction does not
operate with out-of-date values if the object is later written
non-transactionally.

There is a special flag value, here denoted by FLAG. It
should be an uncommon value, i.e., not a small positive or
negative integer constant, nor zero. In our implementation,
we have chosen the byte 0xCA to be our flag value, repeated
as necessary4 to fill out the width of the appropriate type.
The semantic value of an object field is the value in the
original object structure, unless that value is FLAG , in which
case the field’s value is the value of the field in the first
committed transaction in the object’s version list. A “false

3Store Conditional will fail if the target of the Load Linked
is written to, even if the value written is identical to value
previously in the location.
4Slight scatological pun intended.

field1

field2
3.14159

FLAG

field1

field2
FLAG

2.71828

Object #1

Object #2

Version

field1

field2
FLAG

23

owner

next

Version

field1

field2
FLAG

55

owner

next

type

readers

versions

OtherClass

type

{OID68}

MyClass

readers

versions

status
WAITING

status
COMMITTED

status
COMMITTED

Version

field1

field2
’A’

FLAG

owner

next

Version

field1

field2
’B’

FLAG

owner

next

{OID25}

Transaction ID #68 Transaction ID #56

Transaction ID #23

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6: Implementing software transactions with
version lists. A transaction object consists of a single
field status, which indicates if it has COMMITTED,
ABORTED, or is WAITING. Each object contains
two extra fields: readers, a singly-linked list of trans-
actions that have read this object; and versions a
linked list of version objects. If an object field is
FLAG, then the value for the field is obtained from
the appropriate linked version object.

flag” occurs when the application wishes to “really” store
the value FLAG in a field; this is handled by creating a fully-
committed version attached to the object and storing FLAG

in that version as well as in the object field.

5.2 Operations
We support transactional read/write and non-transactional

read/write as well as transaction begin, transaction abort,
and transaction commit. Transaction begin simply involves
the creation of a new transaction identifier object. Trans-
action commit and abort are simply compare-and-swap op-
erations that atomically set the transaction object’s status
field appropriately if and only if it was previously in the
WAITING state. The simplicity of commit and abort are
appealing: our algorithm requires no complicated process-
ing, delay, roll-back or validate procedure to commit or
abort a transaction.

We will present the other operations one by one.

5.2.1 Read
The ReadNT function does a non-transactional read of field

f from object o, putting the result in v. In the common
case, the only overhead is to check that the read value is not
FLAG. However, if the value read is FLAG, the thread must
copy back the field value from the most-recently committed
transaction (aborting all other transactions) and try again.
The copy-back procedure will notify the caller if this is a
“false flag”, in which case the value of this field really is
FLAG. The kill writers constant is passed to the copy-back
procedure to indicate that only transactional writers need

be aborted, not transactional readers. All possible races are
confined to the copy-back procedure.

inline readNT(o, f, v) {
do
:: v = object[o].field[f];

if
:: (v!=FLAG) -> break /* done! */
:: else
fi;
copyBackField(o, f, kill_writers, _st);
if
:: (_st==false_flag) ->

v = FLAG;
break

:: else
fi

od
}

5.2.2 Write
The WriteNT function does a non-transactional write of

new value nval to field f of object o. For correctness, the
thread needs to ensure that the reader list is empty be-
fore it does the write. We implement this with a Load
Linked/Store Conditional pair (modelled slightly differently
in Promela), ensuring that the write only takes effect so
long as the reader list remains empty.5 If it is not empty,
the thread must call the copy-back procedure (as in readNT),
passing the constant kill all to indicate that both trans-
actional readers and writers should be aborted during the
copy-back. The copy-back procedure leaves the reader list
empty.

If the value to be written is actually the FLAG value, things
get a little bit trickier. This case does not occur often, and
so the simplest correct implementation is to treat this non-
transactional write as a short transactional write, creating a
new transaction for this one write, and attempting to com-
mit it immediately after the write. This is slow, but ade-
quate for this uncommon case.

inline writeNT(o, f, nval) {
if
:: (nval != FLAG) ->

do
:: atomic {

if /* this is a LL(readerList)/SC(field) */
:: (object[o].readerList == NIL) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = nval;
break /* success! */

:: else
fi

}
/* unsuccessful SC */
copyBackField(o, f, kill_all, _st)

od
:: else -> /* create false flag */

/* implement this as a short *transactional* write. */
/* start a new transaction, write FLAG, commit the */
/* transaction; repeat until successful. */
/* Implementation elided. */
...

fi;
}

5.2.3 Field Copy-Back
Figure 7 presents the field copy-back routine. The thread

creates a pseudo-version owned by a pre-aborted transaction

5Note that a standard CAS would not suffice, as the Load
Linked targets a different location than the Store Condi-
tional.

which serves as a reservation on the head of the version list.
It then writes to the object field (with a Load Linked/Store
Conditional pair) if and only if its pseudo-version remains
at the head of the versions list.6 We want to avoid being
interrupted while writing back some value A, and having a
concurrent transaction finish writing back A and then com-
mit and write back some other value B, before we resume
and clobber B with our (interrupted) write-back of A. The
use of the LL/SC on the head of the version list prevents
this possible race.

5.2.4 Transactional Read
A transactional read is split into two parts. Before the

read, the thread must ensure that its transaction is on the
reader list for the object. This is straight-forward to do
in a non-blocking manner as long as all inserts are to the
head of the list. The thread must also walk the versions list
and abort any uncommitted transaction other than its own.
The ensureReader routine in Figure 8 performs these two
operations. With sufficiently precise pointer analysis these
steps can be combined and hoisted so that they are done
once before the first read from an object and not repeated
at every read. Imprecision in the analysis may cause re-
examination of the reader list.

Then, to read a field within a transaction, the thread ini-
tially does the read from the original object. If the value
read is not FLAG, the read value is used. Otherwise, the
thread uses findVersion to look up the version object ver

associated with its transaction (this will typically be at the
head of the version list) and then reads the appropriate value
from that version. Note that the initial read-and-check can
be omitted if it knows that it has already written to this field
inside this transaction, and that once ver has been looked
up, it can be used in subsequent calls to readT (it is both
an input and an output argument to the function). If there
is not an uncommitted version for the object, findVersion
returns the committed version in r.

inline readT(tid, o, f, ver, result) {
do
::

/* we should always either be on the readerlist or
* aborted here */
result = object[o].field[f];
if
:: (result==FLAG) ->

if
:: (ver!=NIL) ->

result = version[ver].field[f];
break /* done! */

:: else ->
findVersion(tid, o, ver);
if
:: (ver==NIL) ->/*use val from committed vers.*/

assert (_r!=NIL);
result = version[_r].field[f];/*false flag?*/
moveVersion(_r, NIL);
break /* done */

:: else /* try, try, again */
fi

fi
:: else -> break /* done! */
fi

od
}

6Note again that a CAS does not suffice.

inline copyBackField(o, f, mode, st) {

_nonceV=NIL; _ver = NIL; _r = NIL; st = success;

/* try to abort each version. when abort fails, we’ve got a

* committed version. */

do

:: _ver = object[o].version;

if

:: (_ver==NIL) ->

st = saw_race; break /* someone’s done the copyback for us */

:: else

fi;

/* move owner to local var to avoid races (owner set to NIL behind

* our back) */

_tmp_tid=version[_ver].owner;

tryToAbort(_tmp_tid);

if

:: (_tmp_tid==NIL || transid[_tmp_tid].status==committed) ->

break /* found a committed version */

:: else

fi;

/* link out an aborted version */

assert(transid[_tmp_tid].status==aborted);

CAS_Version(object[o].version, _ver, version[_ver].next, _);

od;

/* okay, link in our nonce. this will prevent others from doing the

* copyback. */

if

:: (st==success) ->

assert (_ver!=NIL);

allocVersion(_retval, _nonceV, aborted_tid, _ver);

CAS_Version(object[o].version, _ver, _nonceV, _cas_stat);

if

:: (!_cas_stat) ->

st = saw_race_cleanup

:: else

fi

:: else

fi;

/* check that no one’s beaten us to the copy back */

if

:: (st==success) ->

if

:: (object[o].field[f]==FLAG) ->

_val = version[_ver].field[f];

if

:: (_val==FLAG) -> /* false flag... */

st = false_flag /* ...no copy back needed */

:: else -> /* not a false flag */

d_step { /* LL/SC */

if

:: (object[o].version == _nonceV) ->

object[o].fieldLock[f] = _thread_id;

object[o].field[f] = _val;

:: else /* hmm, fail. Must retry. */

st = saw_race_cleanup /* need to clean up nonce */

fi

}

fi

:: else /* may arrive here because of readT, which doesn’t set _val=FLAG*/

st = saw_race_cleanup /* need to clean up nonce */

fi

:: else /* !success */

fi;

/* always kill readers, whether successful or not. This ensures that we

* make progress if called from writeNT after a readNT sets readerList

* non-null without changing FLAG to _val (see immediately above; st will

* equal saw_race_cleanup in this scenario). */

if

:: (mode == kill_all) ->

do /* kill all readers */

:: moveReaderList(_r, object[o].readerList);

if

:: (_r==NIL) -> break

:: else

fi;

tryToAbort(readerlist[_r].transid);

/* link out this reader */

CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _);

od;

:: else /* no more killing needed. */

fi;

/* done */

}

Figure 7: The field copy-back routine.

/* per-object, before readT. */

inline ensureReader(tid, o, ver) {

assert(tid!=NIL);

/* make sure we’re on the readerlist */

ensureReaderList(tid, o)

/* now kill any transactions associated with uncommitted versions,

* except for our current transaction. */

findVersion(tid, o, ver);

/* we haven’t looked up a committed version yet */

moveVersion(_r, NIL);

}

Figure 8: The per-object version-setup routine for
transactional reads.

5.2.5 Transactional Write
Like the transactional read, transactional writes are split.

The first preparatory step is done once for each object writ-
ten by the transaction. The version list for each object is
traversed, aborting other versions and locating or creating
a version ver for the object corresponding to the current
transaction. We retain ver for the actual write, later. The
reader list must also be traversed, aborting all transactions
on the list except the current transaction. This is shown in
the ensureWriter routine in Figure 9.

The second preparatory step is done once for each field we
intend to write. The thread must perform a copy-through
on each field: copy the object’s (pre-write) field value into all
the versions and then write FLAG to the object’s field. We use
Load Linked/Store Conditional to update versions only if
the object’s field has not already been set to FLAG behind our
backs by a concurrent copy-through. The checkWriteField

routine is shown in Figure 10.
Finally, for each transactional write to an object, we sim-

ply write to the identified version ver for that object.

inline writeT(ver, f, nval) {
/* easy enough: */
version[ver].field[f] = nval;

}

Note that we have chosen not to allow concurrent writes by
separate transactions to different fields in the same object.

5.3 Large objects
Our software transactions implementation clones objects

on transactional writes, so that the previous state of the
object can be restored if the transaction aborts. Figure 11
shows the object size distribution of transactional writes for
SPECjvm98, and indicates that over 10% of writes may be
to large objects. Obviously the copying cost would be pro-
hibitive.

Our solution is to represent large objects as functional

arrays. Functional arrays allow access to both committed
and uncommitted versions of the (large) object without re-
quiring multiple complete copies. O’Neill and Burton [23]
give a fairly inclusive overview of functional array data struc-
tures; we will review very briefly here.

Functional arrays are persistent ; that is, after an element
is updated both the new and the old contents of the array
are available for use. Since arrays are simply maps from
integers (indexes) to values; any functional map datatype
(for example, a functional balanced tree) can be used to
implement functional arrays.

For concreteness, functional arrays have the following three
operations defined:

/* per-object, before writeT. */

inline ensureWriter(tid, o, ver) {

assert(tid!=NIL);

ver = NIL; _r = NIL; _rr = NIL;

do

:: assert (ver==NIL);

findVersion(tid, o, ver);

if

:: (ver!=NIL) -> break /* found a writable version for us */

:: (ver==NIL && _r==NIL) ->

/* create and link a fully-committed root version, then

* use this as our base. */

allocVersion(_retval, _r, NIL, NIL);

CAS_Version(object[o].version, NIL, _r, _cas_stat)

:: else ->

_cas_stat = true

fi;

if

:: (_cas_stat) ->

/* so far, so good. */

assert (_r!=NIL);

assert (version[_r].owner==NIL ||

transid[version[_r].owner].status==committed);

/* okay, make new version for this transaction. */

assert (ver==NIL);

allocVersion(_retval, ver, tid, _r);

/* want copy of committed version _r. No race because

* we never write to a committed versions. */

version[ver].field[0] = version[_r].field[0];

version[ver].field[1] = version[_r].field[1];

assert(NUM_FIELDS==2); /* else ought to initialize more fields */

CAS_Version(object[o].version, _r, ver, _cas_stat);

moveVersion(_r, NIL); /* free _r */

if

:: (_cas_stat) ->

/* kill all readers (except ourself) */

/* note that all changes have to be made from the front of the

* list, so we unlink ourself and then re-add us. */

do

:: moveReaderList(_r, object[o].readerList);

if

:: (_r==NIL) -> break

:: (_r!=NIL && readerlist[_r].transid!=tid)->

tryToAbort(readerlist[_r].transid)

:: else

fi;

/* link out this reader */

CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _)

od;

/* okay, all pre-existing readers dead & gone. */

assert(_r==NIL);

/* link us back in. */

ensureReaderList(tid, o);

break

:: else

fi;

/* try again */

:: else

fi;

/* try again from the top */

moveVersion(ver, NIL)

od;

/* done! */

assert (_r==NIL);

}

Figure 9: The per-object version-setup routine for
transactional writes.

/* per-field, before write. */

inline checkWriteField(o, f) {

_r = NIL; _rr = NIL;

do

::

/* set write flag, if not already set */

_val = object[o].field[f];

if

:: (_val==FLAG) ->

break; /* done! */

:: else

fi;

/* okay, need to set write flag. */

moveVersion(_rr, object[o].version);

moveVersion(_r, _rr);

assert (_r!=NIL);

do

:: (_r==NIL) -> break /* done */

:: else ->

object[o].fieldLock[f] = _thread_id;

if

/* this next check ensures that concurrent copythroughs don’t stomp

* on each other’s versions, because the field will become FLAG

* before any other version will be written. */

:: (object[o].field[f]==_val) ->

if

:: (object[o].version==_rr) ->

atomic {

if

:: (object[o].fieldLock[f]==_thread_id) ->

version[_r].field[f] = _val;

:: else -> break /* abort */

fi

}

:: else -> break /* abort */

fi

:: else -> break /* abort */

fi;

moveVersion(_r, version[_r].next) /* on to next */

od;

if

:: (_r==NIL) ->

/* field has been successfully copied to all versions */

atomic {

if

:: (object[o].version==_rr) ->

assert(object[o].field[f]==_val ||

/* we can race with another copythrough and that’s okay;

* the locking strategy above ensures that we’re all

* writing the same values to all the versions and not

* overwriting anything. */

object[o].field[f]==FLAG);

object[o].fieldLock[f]=_thread_id;

object[o].field[f] = FLAG;

break; /* success! done! */

:: else

fi

}

:: else

fi

/* retry */

od;

/* clean up */

moveVersion(_r, NIL);

moveVersion(_rr, NIL);

}

Figure 10: The per-field copy-through routine for
transactional writes.

Transactional−write distribution for SPECjvm98

P
er

ce
nt

ag
e

of
 T

ra
ns

ac
tio

na
l W

rit
es

to
 o

bj
ec

ts
 la

rg
er

 th
an

 g
iv

en
 s

iz
e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Object size (bytes)
10 100 1k 10k 100k

201_compress

202_jess

205_raytrace

209_db

213_javac

222_mpegaudio

228_jack

Figure 11: Proportion of transactional writes to ob-
jects equal to or smaller than a given size.

• FA-Create(n): Return an array of size n. The con-
tents of the array are initialized to zero.

• FA-Update(Aj , i, v): Return an array Aj′ that is func-
tionally identical to array Aj except that Aj′(i) = v.
Array Aj is not destroyed and can be accessed further.

• FA-Read(Aj , i): Return Aj(i).

We are interested in lock-free implementations, thus we al-
low any of these operations to fail. Failed operations can be
safely retried, as all operations are idempotent by definition.

For the moment, consider the following näıve implemen-
tation:

• FA-Createso(n): Return an ordinary imperative ar-
ray of size n.

• FA-Updateso(Aj , i, v): Create a new imperative array
Aj′ and atomically copy the contents of Aj to Aj′ .
Return Aj′ .

• FA-Readso(Aj , i): Return Aj [i].

This implementation has O(1) read and O(n) update, so
it matches the performance of imperative arrays only when
n = O(1), where n is the size of the array (read, object).
We will therefore call these small object functional arrays.
We can view the version objects we have so far described as
implementations of such an algorithm, where FA-Updateso

takes an object and returns a version (slightly abusing the
types). This is implemented within ensureWriter, Figure 9.

To handle large objects, we replace this näıve implemen-
tation in order to scale better with large n. We would like
to prevent small changes to a large object from taking a
large amount of time. We could consider using a functional
array implementation based on functional balanced trees.
However, this yields O(lg n) access or update, which is not
as good as the O(1) element access and update characteris-
tic of imperative arrays. Instead, we’ve chosen Tyng-Ruey
Chuang’s version [6] of shallow binding, which gives O(1)
cost for FA-Update and for single-threaded FA-Read. Our
use of functional arrays is single-threaded in the common
case, when transactions do not abort. Chuang’s scheme
uses randomized cuts to the version tree to limit the ex-
pected per-write overhead to O(n) in the worst case (that

����������	
�����

�
����

������
���

�������

�

��

���

���

���

���

���

� � � �� �� �� �� �� �� �� �� �� ��

���������	�
���
������
	�
�	��
�
����

�
�
�
�
�

�

�

�
	
�

	
�

�
�

	�
�

Figure 12: Performance (in cycles per node push
on a simple queue benchmark) of a simple bounded
hardware transactional memory (HTM), the object-
based system presented in this paper (STM) and a
hybrid scheme (HSTM).

is, the expected cost C(l, m) of l updates and m reads obeys
C(l, m) ≤ l + m + 2nl). So with little complexity we can
get worst case expected performance for aborts equivalent
to the näıve implementation, while obtaining “imperative-
speed” common-case (commit) accesses.

Of course, Chuang’s published algorithm is not lock free.
The crucial operation is a rotation of a difference node with
the main body of the array. Elsewhere we present a lock-
free version of Chuang’s algorithm [2]; for the purposes of
the present paper we can trivially make Chuang’s published
algorithm lock-free by implementing the rotation using some
existing small-transaction HTM.

5.4 Hybrid STM/HTM
It is worth considering if a low-level HTM can yield bene-

fits other than efficient implementations of large-object op-
erations. In fact, Figure 12 presents research showing that
we can combine the strengths of our object-based software
transaction system with a fast bounded-size HTM. The num-
bers presented are cycle counts from a cycle accurate mul-
tiprocessor simulator (UVSIM [26]), extended to implement
a HTM for [3]. More details are available in [20].

In the figure, combining the systems is done in the most
simple-minded way: all transactions are begun in the hard-
ware transactional memory, and after any abort the trans-
action is restarted in the object-based software system. The
field flag mechanism described in Section 4.1 ensures that
software transactions properly abort conflicting hardware
transactions — when the software scribbles FLAG over the
original field the hardware will detect the conflict. Hard-
ware transactions must perform the ReadNT and WriteNT

algorithms to ensure they interact properly with concurrent
software transactions, although these checks can be done in
software (they do not need to be part of the hardware HTM
mechanism). In the figure, the read barriers were done in
software, and caused a 2.2x slowdown for the (very small)
hardware transactions. This is a pessimistic figure: no spe-
cial effort was made to tune code or otherwise minimize
slowdown, and the processor simulated had limited ability
to exploit ILP (2 ALUs and 4-instruction issue width). Even
so, the read barriers might be a worthwhile target for hard-
ware support [7].

As a fortuitous synergy, hardware support for small trans-
actions may also be used to implement the software trans-
action implementation’s Load Linked/Store Conditional se-
quences, which may not otherwise be available on a target
processor.

6. VERIFICATION
The Promela model of this software transaction system

was model-checked with Spin version 4.1.0 and verified to
operate correctly and without races in the scenarios de-
scribed below. The verification was done on an SGI 64-
processor MIPS machine with 16G of memory.

Sequences of transactional and non-transactional load and
store operations were checked using two concurrent pro-
cesses,7 and all possible interleavings were found to produce
results consistent with the semantic atomicity of the transac-
tions. Several test scripts were run against the model using
separate processors of the verification machine (Spin cannot
otherwise exploit SMP). Some representative costs include:

• testing two concurrent writeT operations (including
“false flag” conditions) against a single object required
3.8 × 106 states and 170M memory;

• testing sequences of transactional and non-transactional
reads and writes against two objects (checking that
all views of the two objects were consistent) required
4.6 × 106 states and 207M memory; and

• testing a pair of concurrent increments at values brack-
eting the FLAG value to 99.8% coverage of the state
space required 7.6 × 107 states and 4.3G memory. Si-
multaneously model-checking a range of values caused
the state space explosion in this case.

Spin’s unreachable code reporting was used to ensure that
our test cases exercised every code path, although this doesn’t
guarantee that every interesting interaction is checked.

In the process one bug in Spin was discovered8 and a num-
ber of subtle race conditions in the model were discovered
and corrected. These included a number of modelling ar-
tifacts: in particular, we were extremely aggressive about
reference-counting and deallocating objects in order to con-
trol the size of the state space, and this proved difficult to
do correctly. We also discovered some subtle-but-legitimate
race conditions in the transactions algorithm. For example:

• A race allowed conflicting readers to be created while a
writer was inside ensureWriter creating a new version
object.

• Allowing already-committed version objects to be mu-
tated when writeT or writeNT was asked to store a
“false flag” produced races between ensureWriter and
copyBackField. The code that was expected to man-
age these races had unexpected corner cases.

7
Spin is not particularly suited to checking models with dy-

namic allocation and deallocation. In particular, the order
of allocation artificially enlarges the state space. A great
deal of effort was expended tweaking the model to approach
a canonical allocation ordering. A better solution to this
problem would allow larger model instances to be checked.
8Breadth-first search of atomic regions was performed in-
correctly in Spin 4.0.7; this was fixed in Spin 4.1.0.

• Using a bitmask to provide per-field granularity to
the list of readers proved unmanageable as there were
three-way races between the bitmask, the readers list,
and the version tree.

In addition, the model-in-progress proved a valuable design
tool, as portions of the algorithm could readily be mechan-
ically checked to validate (or discredit) the designer’s rea-
soning about the concurrent system. Humans do not excel
at exhaustive state space exploration.

7. CONCLUSIONS
We have described an efficient object-based implementa-

tion of non-blocking software transactions, along with em-
pirical data backing its design and extensions for large ob-
jects and HTM hybridization. The design has been model-
checked with the Spin model checker, and implemented in
the FLEX Java compiler.

Spin model for Software Transactions
The complete Spin 4.1.0 model for the FLEX software trans-
action system is available for download at http://flex-master.
csail.mit.edu/Harpoon/swx.pml.

Acknowledgments
The work described in Section 5.4 was joint with Sean Lie,
who provided Figure 12. Some additional details are in [20].

8. REFERENCES
[1] C. S. Ananian. The FLEX compiler project.

http://flex-compiler.csail.mit.edu/.

[2] C. S. Ananian. Non-blocking synchronization and
object-oriented operating system design. Technical
Report MIT-LCS-TR-928, MIT LCS, 2005.

[3] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie. Unbounded transactional
memory. In HPCA-11, pages 316–327, San Francisco,
California, Feb. 2005.

[4] D. F. Bacon, S. J. Fink, and D. Grove. Space- and
time-efficient implementation of the Java object
model. In B. Magnusson, editor, Proceedings of the
16th European Conference on Object-Oriented
Programming, volume 2374 of Lecture Notes in
Computer Science, pages 111–132, Málaga, Spain,
June 2002.

[5] C. Blundell, E. C. Lewis, and M. M. K. Martin.
Deconstructing transactional semantics: The
subtleties of atomicity. In Fourth Annual Workshop on
Duplicating, Deconstructing, and Debunking, Madison,
Wisconsin, June 2005.

[6] T.-R. Chuang. A randomized implementation of
multiple functional arrays. In LFP, pages 173–184,
June 1994.

[7] C. Click, G. Tene, and M. Wolf. The pauseless gc
algorithm. In Proceedings of the 1st ACM/USENIX
international conference on Virtual Execution
Environments, pages 46–56, Chicago, Illinois, June
2005.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional

memory coherence and consistency. In ISCA 31, pages
102–113, München, Germany, June 2004.

[9] T. Harris and K. Fraser. Language support for
lightweight transactions. In OOPSLA ’03, pages
388–402, Anaheim, California, Oct. 2003.

[10] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 2 edition, 1996.

[11] M. Herlihy. A methodology for implementing highly
concurrent data objects. ACM TOPLAS,
15(5):745–770, Nov. 1993.

[12] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, III. Software transactional memory for
dynamic-sized data structures. In PODC ’03, pages
92–101, Boston, Massachusetts, July 2003.

[13] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA 20, pages 289–300, San Diego, California, May
1993.

[14] M. P. Herlihy. Impossibility and universality results
for wait-free synchronization. In PODC ’88, pages
276–290, Toronto, Ontario, Canada, Aug. 1988.

[15] M. P. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In ICDCS, pages 522–529,
Providence, Rhode Island, May 2003.

[16] M. P. Herlihy and J. E. B. Moss. Transactional
support for lock-free data structures. Technical Report
92/07, Digital Cambridge Research Lab, Dec. 1992.

[17] G. J. Holzmann. The Spin Model Checker.
Addison-Wesley, 2003.

[18] R. L. Hudson, J. E. B. Moss, S. Subramoney, and
W. Washbur. Cycles to recycle: garbage collection to
the IA-64. In Proceedings of the 2nd International
Symposium on Memory Management, pages 101–110,
Minneapolis, Minnesota, Oct. 2000.

[19] T. Knight. An architecture for mostly functional
languages. In LFP, pages 105–112. ACM Press, 1986.

[20] S. Lie. Hardware support for unbounded transactional
memory. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, May 2004.

[21] J. Manson and W. Pugh. Semantics of multithreaded
Java. Technical Report UCMP-CS-4215, Department
of Computer Science, University of Maryland, College
Park, Jan. 2002.

[22] H. Massalin and C. Pu. A lock-free multiprocessor OS
kernel. Technical Report CUCS-005-91, Columbia
University, New York, NY 10027, June 1991.

[23] M. E. O’Neill and F. W. Burton. A new method for
functional arrays. J. Func. Prog., 7(5):487–514, Sept.
1997.

[24] D. J. Scales and K. Gharachorloo. Towards
transparent and efficient software distributed shared
memory. In SOSP ’97, pages 157–169, Oct. 1997.

[25] N. Shavit and D. Touitou. Software transactional
memory. In PODC ’95, pages 204–213, Ottawa,
Ontario, Canada, Aug. 1995.

[26] L. Zhang. UVSIM reference manual. Technical Report
UUCS-03-011, University of Utah, Mar. 2003.

APPENDIX

A. PROMELA PRIMER
A concise Promela reference is available at http://spinroot.

com/spin/Man/Quick.html; we will here attempt to summa-
rize just enough of the language to allow the model we’ve
presented in this paper to be understood.

Promela syntax is C-like, with the same lexical and com-
menting conventions. Statements are separated by either a
semi-colon, or, equivalently, an arrow. The arrow is typically
used to separate a guard expression from the statements it
is guarding.

The program counter moves past a statement only if the
statement is enabled. Most statements, including assign-
ments, are always enabled. A statement consisting only of
an expression is enabled iff the expression is true (non-zero).
Our model uses three basic Promela statements: selection,
repetition, and atomic.

The selection statement,

if
:: guard -> statements
...
:: guard -> statements
fi

selects one among its options and executes it. An option
can be selected iff its first statement (the guard) is enabled.
The special guard else is enabled iff all other guards are
not.

The repetition statement,

do
:: statements
...
:: statements
fi

is similar: one among its enabled statements is selected and
executed, and then the process is repeated (with a different
statement possibly being selected each time) until control is
explicitly transfered out of the loop with a break or goto.

Finally,

atomic { statements }

executes the given statements in one indivisible step. For the
purposes of this model, a d step block is functionally iden-
tical. Outside atomic or d step blocks, Promela allows in-
terleaving before and after every statement, but statements
are indivisible.

Functions as specified in this model are similar to C macros:
every parameter is potentially both an input and an output.
Calls to functions with names starting with move are sim-
ple assignments; they’ve been turned into macros so that
reference counting can be performed.

