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Outline

● Why Transactions?
● An efficient software transactional 

memory.
● How close are we to the performance we 

want?
● Transactions in hardware: LTM & UTM.
● Combining software and hardware.
● Future directions.



C. Scott Ananian: Efficient Transactions in Software and Hardware

3 

The Age of Parallel Computers

● Parallel computers are here.
– multicore, etc

● We want to write software for them
● Standard approaches:

– multiple threads
– shared address space
– locks for coordination

● Standard way to use locks
– associate locks with data
– acquire lock before touching the data
– release lock when we're done

● Desired result: no undesirable 
interleavings
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void pushFlow(Vertex v1, Vertex v2, int flow) {
  lock_t lock1, lock2;
  if (v1.id < v2.id) { /* avoid deadlock */
    lock1 = v1.lock; lock2 = v2.lock;
  } else {
    lock1 = v2.lock; lock2 = v1.lock;
  }
  lock(lock1);
  lock(lock2);
  if (v2.excess > f) {
      /* move excess flow */

    v1.excess += f;
    v2.excess -= f;
  }
  unlock(lock2);
  unlock(lock1);
}

Locks are not our friends

● Deadlocks/ordering
● Multi-object operations
● Priority inversion
● Faults in critical regions
● Inefficient
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void pushFlow(Vertex v1, Vertex v2, double flow) {
   
   
  
  
  
  
 
 atomic {
  if (v2.excess > f) {
      /* move excess flow */

    v1.excess += f;
    v2.excess -= f;
  }
 }

}

Locks are not our friends

● Use an atomic region
– implement using a 

non-blocking 
transaction
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What am I really trying to accomplish?

● I want to perform atomic operations
– as if there was no interleaving at all

● We propose to let people write it just like 
that!

void pushFlow(Vertex v1, Vertex v2, int flow) {
  atomic { 
    if (v2.excess > f) {
          /* move excess flow */

      v1.excess += f;
      v2.excess -= f;
    }
  }  
}
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Transactional Memory
(definition)

● A transaction is a sequence of memory loads and 
stores that either commits or aborts

● If a transaction commits, all the loads and stores 
appear to have executed atomically

● If a transaction aborts, none of its stores take 
effect

● Transaction operations aren't visible until they 
commit or abort

● Simplified version of traditional ACID database 
transactions (no durability, for example)

● For this talk, we assume no I/O within transactions
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Non-blocking synchronization
● Although transactions can be implemented with mutual 

exclusion (locks), we are interested only in non-blocking 
implementations.

● In a non-blocking implementation, the failure of one 
process cannot prevent other processes from making 
progress.  This leads to:
– Scalable parallelism
– Fault-tolerance
– Safety: freedom from some problems which require careful 

bookkeeping with locks, including priority inversion and 
deadlocks

● Little known requirement: limits on trans. suicide



C. Scott Ananian: Efficient Transactions in Software and Hardware

9 

Transactions: Philosophy
● Transactions will be large & small, short & long

– Mechanisms should be unbounded
● They will be frequent and visible in user code

– Easy to use
– Not hidden in libraries

● Implemented with general-purpose mechanisms
– In addition to synchronization, useful for fault 

tolerance, exception handling, backtracking, priority 
scheduling...

● Object-based transactions
– Expose a richer abstraction
– Move beyond emulating an unavailable HTM
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Making things practical:
 Things to keep in mind

● There is both transactional and non-
transaction code in real systems

– A robust mechanism won't allow violations of 
transactional atomicity (strong atomicity)

● Non-transactional code should be fast!

● Transaction duration may reach 100M 
memory operations

● Transactional reads out-number 
transactional writes 3 to 1
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APEX: Efficient Transactions in 
Software

● Design space for this implementation:
– Pure software system

● but requires load-linked and store-conditional 
operations on the processor.

– Strongly atomic
● but at low cost for non-transactional code

– Object-based



C. Scott Ananian: Efficient Transactions in Software and Hardware

12 

Why object-based transactions?
● Synchronization abstraction matches 

programming abstraction
– No false sharing due to variables incidentally 

colocated in same word/cache line/page.  
Possible deadlock!

● Matching the programming abstraction 
allows better compiler analysis and 
optimization of transactional code
– For example, escape analysis

● Potential performance benefits for long-
running transactions
– Pay cloning costs up-front, then run at full-

speed in own copy of the object graph
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APEX Software Transactions
● Goals:

– Non-transactional operations should be fast
– Reads should be faster than writes
– Minimal amount of object bloat

● Solution:
– Use special FLAG value to indicate “location 

involved in a transaction”
– Object points to a linked list of versions, 

containing values written by (in-progress, 
committed, or aborted) transactions

– Semantic value of FLAGged field is: “value of the 
first version owned by a committed transaction on 
the version list”

– Values which are “really” FLAG are handled with an 
escape mechanism (we call these “false flags”)
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How do we maintain atomicity?

● Allow multiple readers, but a single writer

● If you write a field, you must ensure that 
all prior readers and writers are committed 
or aborted.

● If you read a field, you must ensure that all 
prior writers are committed or aborted.
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Transactions using version lists
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Non-transactional Read (ReadNT)

● Begins with a 
normal read of 
the field.

● If value is not 
FLAG, we're 
done!
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Non-transactional Read (ReadNT)

● Begins with a 
normal read of 
the field...

● Otherwise:
– kill writers

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

. . .. . .

'A'
. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

. . . . . .

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG



C. Scott Ananian: Efficient Transactions in Software and Hardware

18 

Non-transactional Read (ReadNT)

● Begins with a 
normal read of 
the field...

● Otherwise:
– kill writers
– copy back field
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Non-transactional Read (ReadNT)

● Begins with a 
normal read of 
the field...

● Otherwise:
– kill writers
– copy back field 

(requires LL/SC)
– restart
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Non-transactional Read (ReadNT)

● Begins with a 
normal read of 
the field...

● “False flags” 
are discovered 
during copy-
back; the read 
value is FLAG in 
this case.
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Non-transactional Write (WriteNT)

● If value-to-write 
is not FLAG:

– LL(readers)

– check that it's 
empty

– SC(field)
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Non-transactional Write (WriteNT)

● If value-to-write 
is not FLAG:

– LL(readers)

– check that it's 
empty

– SC(field)

● If unsuccessful
– kill readers and 

writers
– repeat
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Non-transactional Write (WriteNT)

● If value-to-write 
is FLAG...

– make this a 
short 
transactional 
write (WriteT)
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Transactional Write (WriteT)

● Once per object 
written in this 
transaction:
– find writable 

version...

type

Object #1
MyClass

3.14159

. . .
field2

field1

readers

23

versions
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Transactional Write (WriteT)

● Once per object 
written in this 
transaction:
– find writable 

version
– create (by cloning) 

if necessary

type

Object #1

Version Version
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Transactional Write (WriteT)

● Once per object 
written in this 
transaction:
– find writable 

version
– create (by cloning) 

if necessary
● Once per field 

written:
– ensure field is 

FLAG

type
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Transactional Write (WriteT)

● Once per object 
written in this 
transaction:
– find writable 

version
– create (by cloning) 

if necessary
● Once per field 

written:
– ensure field is 

FLAG
● Then, just write to 

the version.

type

Object #1

Version Version
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5

Opportunity for 
program analysis and 

transformation!
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Transactional Read (ReadT)

● Once per object 
read in this 
transaction:
– ensure we're on 

list of readers
– kill any writers

Version

Transaction ID #56

. . .

COMMITTED

next

owner

status

field2

field1
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Transactional Read (ReadT)

● Once per object 
read in this 
transaction:
– ensure we're on 

list of readers
– kill any writers

type

Object #1
MyClass
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. . .
field2

field1

readers

versions
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Version
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Transactional Read (ReadT)

● Once per object 
read in this 
transaction:
– ensure we're on 

list of readers
– kill any writers

● Read field of 
object

● If this is not FLAG, 
you're done!

type
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type

Object #1
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Transaction ID #18 Transaction ID #56

Transactional Read (ReadT)

● Once per object 
read in this 
transaction:
– ensure we're on 

list of readers
– kill any writers

● Read field of 
object

● If this is FLAG, 
then read field 
from version
– remember version 

for next time!
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Performance
● Non-transactional code only needs to check 

whether a memory operand is FLAG before 
continuing.
– On superscalar processors, there are plenty of 

extra functional units to do the check
– The branch is extremely predictable

● Once FLAGged, transactional code operates 
mostly on the object’s “version”
– if we know it's been written once
– and we keep forgetting

● Creating versions can be an issue for large 
arrays; “functional arrays” are one approach
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● Hand-tuned test code shows that the read 
check is fast, but writes can be slow

Read/Write Check Overheads
Counter Microbenchmark



C. Scott Ananian: Efficient Transactions in Software and Hardware

34 

● Strip all synchronization; just perform readNT/writeNT 
protocols
– mpegaudio is an outlier

Non-transactional Check Overhead
SPECjvm98
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Transaction Overhead
Transactified SPECjvm98 benchmarks
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Transactional-write distribution
SPECjvm98 benchmarks
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Can we do better?

● What if you want better performance?
– recode parts of your application
– fast allocation of transaction objects
– chunk large objects
– aggressively (and interprocedurally) hoist 

transaction checks

● Or we can use hardware support...
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LTM: Visible, Large, Frequent, Scalable

● “Large Transactional Memory”
– large bounded xactions, but simple and cheap

● Minimal architectural changes, high 
performance
– Small mods to cache and processor core
– No changes to main memory, cache 

coherence protocols or messages
– Can be pin-compatible with conventional proc

● Design presented here based on SGI 
Origin 3000 shared-memory multi-proc
– distributed memory
– directory-based write-invalidate coherency 

protocol
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Two new instructions
● XBEGIN pc

– Begin a new transaction.  Entry point
to an abort handler specified by pc.

– If transaction must fail, roll back processor 
and memory state to what it was when
XBEGIN was executed, and jump to pc.

● Think of this as a mispredicted branch.
● XEND

– End the current transaction.  If XEND 
completes, the xaction is committed and 
appeared atomic.
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Transaction Semantics

● Two transactions
– “A” has an abort handler at L1
– “B” has an abort handler at L2

● Here, very simplistic retry.  Other choices!

● Always need “current” and “rollback” 
values for both registers and memory

XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND

L2: XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

A

 B
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Handling conflicts

● We need to track locations read/written by 
transactional and non-transactional code

● When we find a conflict, transaction(s) 
must be aborted
– We always “kill the other guy”
– This leads to non-blocking systems

Processor 1 Processor 2
XBEGIN L1 ST 1000, 65
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

L2:
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Restoring register state

● Minimally invasive changes; build on 
existing rename mechanism

● Both “current” and “rollback” architectural 
register values stored in physical registers

● In conventional speculation, “rollback” 
values stored until the speculative 
instruction graduates (order 100 instrs)

● Here, we keep these until the transaction 
commits or aborts (unbounded # of instrs)

● But we only need one copy!
– only one transaction in the memory system 

per processor
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LTM implementation, cont.

● Info about pending transactions stored in 
the cache
– No special fully-associative cache needed
– Main memory contains “committed” data

● Conflicts among pending transactions 
detected using existing cache-coherency 
mechanisms
– Request from another proc for cache line with 

transactional data indicates conflict
● Overflow mechanism allows large 

transactions to spill from the cache into 
main memory
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LTM pipeline modifications

● Register snapshot 
stored with 
rename 
mechanism

● Limited # of regs 
reserved even if 
multiple xactions 
are in-flight

● Architectural 
changes are kept 
small
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LTM cache modifications

● O bit per cache set
– indicates if set has overflowed

● T bit per cache line
– set if accessed during current transaction

● Overflow storage in uncached DRAM
– maintained by hardware
– OS sets size/location via OBR, etc

Overflow
Handler

index offset

datatagdatatag

Overflow Storage
Uncached DRAM

tag
Address

Way 0 Way 1

Overflow
base register

T TO . . .

. . .
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Cycle-level LTM simulation

● LTM implemented on top of UVSIM (itself 
built on RSIM)
– shared-memory multiprocessor model
– directory-based write-invalidate coherence

● Contention behavior:
– C microbenchmarks w/ inline assembly
– Up to 32 processors

● Overhead measurements:
– Modified MIT FLEX Java compiler
– Compared no-sync, spin-lock, and LTM xaction
– Single-threaded, single processor
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Contention behavior

● Contention microbenchmark: 'Counter'
– 1 shared variable; each processor repeatedly adds
– locking version uses global LLSC spinlock
– Small xactions commit even with high contention
– Spin-lock causes lots of cache interventions even 

when it can't be taken (standard SGI library impl)
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SPECjvm98 LTM benchmarks

● Compiled three versions of each 
benchmark using modified FLEX compiler
– Base with no synchronization
– Locks with spinlocks
– Trans with LTM xactions for synchronization

● Run on one processor of UVSIM
– Looking at overhead, not contention
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LTM Overhead: SPECjvm98
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Is this good enough?

● Problems solved:
– Xactions as large as physical memory
– Scalable overflow and commit
– Easy to implement!
– Low overhead
– May speed up Linux!

● Open Problems...
– Is “physical memory” large enough?
– What about duration?

● Time-slice interrupts!
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Beyond LTM: UTM

● We can do better!
● The UTM architecture

allows transactions as large as virtual 
memory, of unlimited duration, which can 
migrate without restart

● Same XBEGIN pc/XEND ISA; same register 
rollback mechanism

● Canonical transaction info is now stored in 
single xstate data struct in main memory
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Commit Log Entry Transaction Log Log Entry
record Rollback values Next Reader

P 44 ∅ ...
Blk Ptr

xstate data structure

● Transaction log in DRAM for each active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “rollback” values 

● each corresponds to a block in main memory
● Log ptr & RW bit for each application memory block

– Log ptr/next reader form linked list of all log entries for 
a given block

Application Memory
RW bit Memory Block

⋮ ⋮

W 32
⋮ ⋮

Log Ptr
⋮ 

⋮ 
Current values



C. Scott Ananian: Efficient Transactions in Software and Hardware

53 

Caching in UTM

● Most log entries don't need to be created
● Transaction state stored in cache/overflow 

DRAM and monitored using cache-
coherence, as in LTM

● Only create transaction log when thread is 
descheduled, or run out of physical mem.

● Can discard all log entries when xaction 
commits or aborts
– Commit – block left in X state in cache
– Abort – use old value in main memory

● In-cache representation need not match 
xstate representation
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Performance/Limits of UTM

● Limits:
– More-complicated implementation

● Best way to create xstate from LTM state?
– Performance impact of swapping.

● When should we abort rather than swap?
● Benefits:

– Unlimited footprint
– Unlimited duration
– Migration and paging possible
– Performance may be as fast as LTM in the 

common case
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Hybrid Hardware/Software Implementation
● Hardware transaction implementation is very fast!  

But it is limited:
– Slow once you exceed cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited 
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware abort, 

execute transaction in software
– Need to ensure that the two algorithms play 

nicely with each other (consistent views)
     see next slide...
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Cooperation

● Software transaction mechanism writing 
FLAG over object fields is sufficient to 
abort conflict transaction in LTM

● LTM must execute ReadNT/WriteNT 
algorithms (read barrier) to cooperate with 
the software mechanism
– no extra silicon needed!
– can still leverage compiler analysis

● Other synergies:
– non-blocking functional array implementation
– LL/SC sequences
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Hardware/Software Implementation
● Hardware transaction implementation is very 

fast!  But it is limited:
– Slow once you exceed cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited 
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware 

abort, execute transaction in software
– Need to ensure that the two algorithms play 

nicely with each other (consistent views)
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Leveraging hardware for speed
● Simple node-push benchmark [Lie '04]
● As xaction size increases, we eventually run out 

of cache space in the HW transaction scheme
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Leveraging hardware for speed
● Simple node-push benchmark [Lie '04]
● Hybrid scheme best of both worlds!
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Related Work

● HTM work
– Knight, Herlihy&Moss, BBN Pluribus
– Oklahoma Update (Stone et al)

● Speculative Lock Elision/Transactional Lock 
Removal (Rajwar & Goodman)
– Use “locks” as the API, dynamically translate to 

transactional regions
● Speculative Synchronization (Martinez & Torrellas)

– Speculatively execute locking code
● TM Coherency and Consistency (Hammond et al)

– Relies on broadcast for large transactions
● Software Transactional Memory

– Harris&Fraser, Shavit&Touitou, Herlihy et al
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Conclusions

● Transactional/non-transactional 
cooperation is really a lot like STM/HTM 
cooperation
– same mechanism can be used!

● The Large Object Problem can be solved!
– Good news for object-based transactions

– Compiler and analysis benefits to reap

● Writing correct transaction protocols is 
hard
– Model checking can help
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Conclusions

● Transactional Memory systems should 
support unbounded transactions in 
hardware

● Both fully-scalable (UTM) and easily-
implemented (LTM) systems are possible

● Big step towards making parallel 
computing practical and ubiquitous! 
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Conclusions
● First look at xaction properties of Linux:

– 99.9% of xactions touch ≤ 54 cache lines
– but may touch > 8000 cache lines
– 4x concurrency?

● Unbounded, scalable, and efficient 
Transactional Memory systems can be built.
– Support large, frequent, and concurrent xactions
– What could software for these look like?

● Allow programmers to (finally!) use our parallel 
systems!

● Two implementable architectures:
– LTM: easy to realize, almost unbounded
– UTM: truly unbounded
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Open questions

● I/O interface?
● Transaction ordering?

– Sequential threads provide inherent ordering
● Programming model?
● Conflict resolution strategies
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Graveyard of Unused slides
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Multi-object atomic update

● Programmer's mental model of locks can 
be faulty

● Monitor synchronization: associates locks 
with objects

● Promises modularity: locking code stays 
with encapsulated object implementation

● Often breaks down for multiple-object 
scenarios

● End result: unreliable software, broken 
modularity
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A problem with multiple objects
public final class StringBuffer ... {
  private char value[ ];
  private int count;
  ...
  public synchronized StringBuffer append(StringBuffer sb) {
    ...
A:int len = sb.length();
    int newcount = count + len;
    if (newcount > value.length)
      expandCapacity(newcount);
    // next statement may use state len
B:sb.getChars(0, len, value, count);
    count = newcount;
    return this;
  }
  public synchronized int length() { return count; }
  public synchronized void getChars(...) { ... }
}
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Why Transactions?

● Concurrency control
– Locking discliplines are awkward, error-prone, 

and limit concurrency
● Especially with multiple objects!

– Nonblocking transaction primitives can 
express optimistic concurrency more simply

● Focus on “performance” instead of “correctness”
● Fault-tolerance

– Locks are irreversible; semantics for 
exceptions/crashes unclear

● Also: “priority inversion”
– Programming languages in general are 

irreversible
– Transactions allow clean “undo”
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Conventional Locking: Ordering

● When more than one object is involved in 
a critical region, deadlocks may occur!
– Thread 1 grabs A then tries to grab B
– Thread 2 grabs B then tries to grab A
– No progress possible!

● Solution: all locks ordered
– A before B
– Thread 1 grabs A then B
– Thread 2 grabs A then B
– No deadlock
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Conventional Locking: Ordering
● Maintaining lock order is a lot of work!
● Programmer must choose, document, and 

rigorously adhere to a global locking protocol for 
each object type
–  development overhead!

● All symmetric locked objects must include lock 
order field, which must be assigned uniquely
– space overhead!

● Every multi-object lock operation must include 
proper conditionals
– which lock do I take first?  which do I take 

next?
– execution-time overhead!

● No exceptions!
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Fault-tolerance

● Locks are irreversible
● When a thread fails holding a lock, the 

system will crash
– it's only a matter of time before someone else 

attempts to grab that lock
● What are the proper semantics for 

exceptions thrown within a critical region?
– data structure consistency not guaranteed

● Asynchronous exceptions?



C. Scott Ananian: Efficient Transactions in Software and Hardware

72 

Priority Inversion

● Well-known problem with locks
● Described by Lampson/Redell in 1980 (Mesa)
● Mars Pathfinder in 1997, etc, etc, etc
● Low-priority task takes a lock needed by a high-

priority task -> the high priority task must wait!
● Clumsy solution: the low priority task must 

become high priority
● What if the low priority task takes a long time?
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Invisible transactions?
● Rajwar & Goodman: Speculative Lock 

Elision and Transactional Lock Removal
– speculatively identify locks; make xactions

● Martinez & Torrellas: Speculative 
Synchronization
– guarantee fwd progress w/ non-speculative 

thread

Keep 
transactions 
visible
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Infrequent, Small, Mostly-Serial?

To date, xactions assumed to be:
● Small

– BBN Pluribus (~1975): 16 clock-
cycle bus-locked “transaction”

– Knight; Herlihy & Moss:
transactions which fit in cache

● Infrequent
– Software Transactional Memory (Shavit & 

Touitou; Harris & Fraser; Herlihy et al)
● Mostly-serial

– Transactional Coherence & Consistency 
(Hammond, Wong, et al)
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May Be Large, Frequent, and 
Concurrent

● Lots of small xactions
– Millions of xactions in these benchmarks
– Problem for software-only schemes

● Significant tail: large xactions are few, but very 
large
– Thousands of cache lines touched
– Problem for bounded transactional schemes

● Potential for additional concurrency
– Distribution of hot cache lines suggest that 4x 

more concurrency may be possible on our 
Linux benchmarks

Programmers want unbounded xactions…
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Transactional Programming
● Locks: the devil we know
● Complex sync techniques: library-only

– Nonblocking synchronization
– Bounded transactions

● Compilers don't expose memory references
(Indirect dispatch, optimizations, constants)

● Not portable! Changing cache-size breaks apps.

● Unbounded Transactions:
– Can be thought about at high-level
– Match programmer's intuition about atomicity
– Allow black box code to be composed safely
– Promise future excitement!

● Fault-tolerance / exception-handling
● Speculation / search
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Transactional Memory Systems

● Hardware Transactional Memory (HTM)
– Knight, Herlihy & Moss, BBN Pluribus
– atomicity through architectural means

● Software Transactional Memory (STM)
– atomicity through languages, compiler, 

libraries
● Traditionally assume:

– Transactions are “small” and thus it is 
reasonable to bound their size (esp. HTM)

– Transactions are “infrequent” and thus 
overhead is acceptable (esp. STM)



C. Scott Ananian: Efficient Transactions in Software and Hardware

78 

Transaction Size Distribution

● Lots of small xactions
– Millions of xactions in these benchmarks
– Use hardware support to make these fast

● Significant tail: large xactions are few, but 
very large
– Thousands of cache lines touched
– Unbounded Transactional Memory makes 

these possible

Free the compiler/programmer/ISA from 
arbitrary limits on transaction size
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Our Thesis

Transactional memory should support 
transactions of arbitrary size and 
duration.  Such support should be 

provided with hardware assistance, and 
it should be made visible to the 
software through the machine's 
instruction-set architecture (ISA).

An unbounded TM can handle transactions of 
arbitrary duration with footprints comparable to 
its virtual memory space



C. Scott Ananian: Efficient Transactions in Software and Hardware

80 

Three Big Ideas

● Functional Arrays: A solution to the 
Large Object Problem

● Cooperating with FLAGs
– Non-transactional code interacting with 

transactions

– Software transactions interacting with a 
Hardware Transactional Memory

● Model-checking Software Transactions
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The Large Object Problem
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Single-Object Protocol

● Object representation contains a pointer to
object contents.

● Object mutation inside transaction creates 
new object contents.

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Object Contents

Object Contents
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Single-Object Protocol

● At start of transaction, load and remember 
fields pointer as prior state.

● To commit, compare-and-swap the result of 
operation for prior state.

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Object Contents

Object Contents
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Single-Object Protocol

● Large Object Problem: cloning prior state for 
result of operation is O(object size)

● Solution: use a data structure where cloning 
is cheap – O(1) would be nice!

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Functional Array

Functional Array
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Multiple-Object 
Protocol
● Objects point to lists 

of versions.

● Each version has an 
associated 
Transaction ID and 
field array reference.

● Transaction IDs are 
initialized to 
WAITING and are 
changed exactly 
once to COMMITTED 
or ABORTED.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus
WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array
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Multiple-Object 
Protocol
● At end of transaction, 

attempt to set 
Transaction ID to 
COMMITTED.

● Value of object is the 
value of the first 
committed version.

● ABORTED versions 
can be collected.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus
WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array
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Multiple-Object 
Protocol
● Only one WAITING 

version allowed on 
versions list, and it 
must be at the head.

● Before we can link a 
new version onto the 
versions list, we 
must ensure that 
every other version is 
either COMMITTED or 
ABORTED.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus
WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array
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Non-blocking concurrent algorithms 
are hard!

● In published work on Synthesis, a non-blocking 
operating system implementation, three separate 
races were found:
– One ABA problem in LIFO stack
– One likely race in MP-SC FIFO queue
– One interesting corner case in quaject 

callback handling
● It's hard to get these right!  Ad hoc reasoning 

doesn't cut it.
● Non-blocking algorithms are too hard for the 

programmer
● Let's get it right once (and verify this!)
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The Spin Model Checker
● Spin is a model checker for communicating 

concurrent processes.  It checks:
– Safety/termination properties
– Liveness/deadlock properties
– Path assertions (requirements/never claims)

● It works on finite models, written the Promela 
language, which describe infinite executions.

● Explores the entire state space of the model, 
including all possible concurrent executions, 
verifying that Bad Things don't happen.

● Not an absolute proof – pretty useful in practice
● Make systems reliable by concentrating 

complexity in a verifiable component
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Spin theory
● Generates a Büchi Automaton from the Promela 

specification.
– Finite-state machine w/ special acceptance 

conditions
– Transitions correspond to executability of 

statements
● Depth-first search of state space, with each state 

stored in a hashtable to detect cycles and 
prevent duplication of work
– If x followed by y leads to the same state as y 

followed by x, will not re-traverse the succeeding 
steps

● If memory is not sufficient to hold all states, may 
ignore hashtable collisions: requires one bit per 
entry.  # collisions provides approximate 
coverage metric
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Verification with Spin

● Modeled the software transaction 
implementation in Promela

● Low-level model – every memory 
operation represented

– details in the paper

● Spin used 16G of memory to check the 
implementation within a 6-version 2-object 
scope.



C. Scott Ananian: Efficient Transactions in Software and Hardware

92 

Bugs Found

● Memory management

– reference counting, object recycling

● Read caching

– check freshness of copies in local variables

● “Big” bug

– missing abort of readers during a non-
transactional write (field copy back)
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Functional arrays
● Functional arrays are persistent: after an 

element is updated both the new and the 
old contents of the array are available for 
use.

● Fundamental operation:

● Arrays are just mappings from integer to 
value; any persistent map can be used as 
a functional array.

● A fast functional array will have O(1) 
access and update for the common cases.
– Variant of shallow binding due to [Chuang '94]

Update  A , i , v : AN 0V  A
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Functional Arrays using Shallow Binding

● A functional array is either a cache node...

A

1
2
3
4
5
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Functional Arrays using Shallow Binding

● A functional array is either a cache node 
or a difference node.

● A[1]=1  but   B[1]=5

B A
1
2
3
4
5

index
value 5

1
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Functional Arrays using Shallow Binding

● Changing one element is O(1)

C B A

1
2
3
4
5

index
value 5

1index
value 1

5
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Functional Arrays using Shallow Binding

● A[1] = D[1] = 1       C[1] = B[1] = 5
● C[5] = 1                  D[2] = 3

C B A D
1
2
3
4
5

index
value 3

2index
value 5

1index
value 1

5
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Functional Arrays using Shallow Binding

● We rotate the cache node on reads to keep 
access times fast.

● The bottom shows the graph after D is read.

C B A D
1
2
3
4
5

index
value 3

2index
value 5

1index
value 1

5

index
value 2

2 1
3
3
4
5

C B A D

index
value 5

1index
value 1

5
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Functional Arrays using Shallow Binding

● C is read.
● Ping-pong 

danger!

index
value 2

2 1
3
3
4
5

C B A D

index
value 5

1index
value 1

5

5
2
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1

C B A D
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C B A D
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Functional Arrays using Shallow Binding

● Split with 
1/N 
chance.

C B A D
1
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index
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Making a non-blocking algorithm

● Adding difference nodes is easy.
● Two hard operations:

– Rotation

– Splitting

● These can be made non-blocking
[Ananian '03]

● Can also use a small Hardware 
Transactional Memory to implement these 
operations.
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Transact-ifying Linux
● Experiment to discover xaction

properties of large real-world app.
– First complete OS investigated!

● User-Mode Linux 2.4.19
– instrumented every load and store, all locks
– locks→xactions; locks not held over I/O!
– run 2-way SMP (two processes; two processors)

● Two workloads
– Parallel make of Linux kernel ('make linux')
– dbench running three clients

● Run program to get a trace; run trace 
through Transactional Memory simulator
– 1MB 4-way set-associative 64-byte-line cache
– Paper also has simulation runs for SpecJVM98
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TM Cache-size requirements (Linux)

● # of overflowing xactions as a function of (fully-
associative) cache size for make_linux & dbench

● Almost all of the xactions require < 100 cache lines
– 99.9% need fewer than 54 cache lines

● There are, however, some very large transactions!
– >500k-byte fully-associative cache required

Note: log-log scale
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Multiple in-flight transactions
Original
XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

● This example has two transactions, with abort 
handlers at L1 and L2

● Assume instruction window of length 5
– allows us to speculate into next transaction(s)

A

 B

 Instruction Window
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

● During instruction decode:
– Maintain rename table and “saved” bits
– “Saved” bits track registers mentioned in current 

rename table
● Constant # of set bits: every time a register is added to 

“saved” set we also remove one

  

graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }

{ P2, ... }
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...
ADD P2, P1, P1 R1→P2, ...

● When XBEGIN is decoded:
– Snapshots taken of current Rename table and S-

bits.
– This snapshot is not active until XBEGIN 

graduates

  

graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1

{ P2, ... }
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

ST 1000, P2 R1→P2, ...

  

graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND { P2, ... }
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

R1→P2, ...

  

graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

R1→P2, ...

● When XBEGIN graduates:
– Snapshot taken at decode becomes active, which 

will prevent P1 from being reused
– 1st transaction queued to become active in memory
– To abort, we just restore the active snapshot's 

rename table

  

graduate

decode

active
snapshot
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }

{ P3, ... }
ST 2000, R1
XEND

R1→P1, ...

R1→P2, ...
ADD P3, P2, P2 R1→P3, ...

  

graduate

decode

● We're only reserving registers in the active set
– This implies that exactly #AR registers are saved
– This number is strictly limited, even as we 

speculatively execute through multiple xactions

active
snapshot

→
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2

{ P3, ... }
XEND

R1→P1, ...

R1→P2, ...

ST 2000, P3 R1→P3, ...

  

graduate

decode

● Normally, P1 would be freed here
● Since it's in the active snapshot's “saved” set, 

we put it on the register reserved list instead

active
snapshot
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND { P3, ... }

R1→P2, ...

R1→P3, ...

● When XEND graduates:
– Reserved physical registers (P1) are freed, and 

active snapshot is cleared.
– Store queue is empty

  

graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND

R1→P2, ...

● Second transaction becomes active in 
memory.

  

graduate

decode

active
snapshot
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Cache overflow mechanism

● Need to keep “current” values 
as well as “rollback” values
– Common-case is commit, so 

keep “current” in cache
– What if uncommitted “current” 

values don't all fit in cache?
● Use overflow hashtable as 

extension of cache
– Avoid looking here if we can!

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

key data
Overflow hashtable
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Cache overflow: miss handling
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Miss to an overflowed line 
checks overflow table

● If found, swap overflow and 
cache line; proceed as hit

● Else, proceed as miss.

key data
3000 77

Overflow hashtable
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Cache overflow: commit/abort
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Abort:
– invalidate all lines with T set
– discard overflow hashtable
– clear O and T bits

● Commit:
– write back hashtable; NACK 

interventions during this
– clear O and T bits

key data
3000 77

Overflow hashtable
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Cache overflow mechanism

● T bit per cache line
– set if accessed during xaction

● O bit per cache set
– indicates set overflow

● Overflow storage in physical 
DRAM
– allocated/resized by OS
– probe/miss: complexity of 

search ≈ page table walk

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

key data
Overflow hashtable
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Cache overflow mechanism

● Start with non-transactional 
data in the cache

Way 0 Way 1
O T tag data T tag data

1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

key data
Overflow hashtable
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Cache overflow: recording reads
Way 0 Way 1

O T tag data T tag data

T 1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Transactional read sets the 
T bit.

key data
Overflow hashtable
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Cache overflow: recording writes
Way 0 Way 1

O T tag data T tag data

T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Most transactional writes fit 
in the cache.

key data
Overflow hashtable
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Cache overflow: spilling
Way 0 Way 1

O T tag data T tag data

O T 3000 77 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Overflow sets O bit
● New data replaces LRU
● Old data spilled to DRAM

key data
1000 55

Overflow hashtable
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● Back of the envelope calculation: 26% 
reads and 9% writes = 15% slowdown

Check Overhead
as a component of the overall instruction mix

15%



C. Scott Ananian: Efficient Transactions in Software and Hardware

123 

xstate data structure

● Xaction log for each active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “old” values 

● each corresponds to a block in main memory
● Log ptr and RW bit for each memory block

– linked list of entries for each block

Old value

Reader list
Block Pointer

Block Pointer
Reader list8ab30000

8ab3ab00

Commit Record

43

42R

W

Application Memory xstate

Transaction log entry

Transaction log entry

Commit Record

Transaction log entry

Block

Log Pointer New value

Transaction log #2

Transaction log #1

42

32

42

8ab3ab00

8ab30000

8ab30000

Pending

Pending

RW Bit
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xstate data structure

● Xaction log for each 
active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “rollback” values 

● each corresponds to a block in main memory
● Log ptr and RW bit for each memory block

– Log ptr/next reader form linked list of all log entries for 
a given block

RW bit Application Memory Block
⋮ ⋮ ⋮

32
⋮ ⋮

Log Ptr

⋮ 

Transaction Log
COMMITTED Commit Record

44 Rollback values

∅ Next Reader
⋮ Log Entry

Block Ptr

Current values


