
C. Scott Ananian: Efficient Transactions in Software and Hardware

1

Efficient Transactions
in Hardware and Software

C. Scott Ananian

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

April 11, 2007

thesis committee

Martin Rinard, Charles Leiserson, Bradley Kuszmaul

C. Scott Ananian: Efficient Transactions in Software and Hardware

2

Outline

● Why Transactions?
● An efficient software transactional

memory.
● How close are we to the performance we

want?
● Transactions in hardware: LTM & UTM.
● Combining software and hardware.
● Future directions.

C. Scott Ananian: Efficient Transactions in Software and Hardware

3

The Age of Parallel Computers

● Parallel computers are here.
– multicore, etc

● We want to write software for them
● Standard approaches:

– multiple threads
– shared address space
– locks for coordination

● Standard way to use locks
– associate locks with data
– acquire lock before touching the data
– release lock when we're done

● Desired result: no undesirable
interleavings

C. Scott Ananian: Efficient Transactions in Software and Hardware

4

void pushFlow(Vertex v1, Vertex v2, int flow) {
 lock_t lock1, lock2;
 if (v1.id < v2.id) { /* avoid deadlock */
 lock1 = v1.lock; lock2 = v2.lock;
 } else {
 lock1 = v2.lock; lock2 = v1.lock;
 }
 lock(lock1);
 lock(lock2);
 if (v2.excess > f) {
 /* move excess flow */

 v1.excess += f;
 v2.excess -= f;
 }
 unlock(lock2);
 unlock(lock1);
}

Locks are not our friends

● Deadlocks/ordering
● Multi-object operations
● Priority inversion
● Faults in critical regions
● Inefficient

C. Scott Ananian: Efficient Transactions in Software and Hardware

5

void pushFlow(Vertex v1, Vertex v2, double flow) {

 atomic {
 if (v2.excess > f) {
 /* move excess flow */

 v1.excess += f;
 v2.excess -= f;
 }
 }

}

Locks are not our friends

● Use an atomic region
– implement using a

non-blocking
transaction

C. Scott Ananian: Efficient Transactions in Software and Hardware

6

What am I really trying to accomplish?

● I want to perform atomic operations
– as if there was no interleaving at all

● We propose to let people write it just like
that!

void pushFlow(Vertex v1, Vertex v2, int flow) {
 atomic {
 if (v2.excess > f) {
 /* move excess flow */

 v1.excess += f;
 v2.excess -= f;
 }
 }
}

C. Scott Ananian: Efficient Transactions in Software and Hardware

7

Transactional Memory
(definition)

● A transaction is a sequence of memory loads and
stores that either commits or aborts

● If a transaction commits, all the loads and stores
appear to have executed atomically

● If a transaction aborts, none of its stores take
effect

● Transaction operations aren't visible until they
commit or abort

● Simplified version of traditional ACID database
transactions (no durability, for example)

● For this talk, we assume no I/O within transactions

C. Scott Ananian: Efficient Transactions in Software and Hardware

8

Non-blocking synchronization
● Although transactions can be implemented with mutual

exclusion (locks), we are interested only in non-blocking
implementations.

● In a non-blocking implementation, the failure of one
process cannot prevent other processes from making
progress. This leads to:
– Scalable parallelism
– Fault-tolerance
– Safety: freedom from some problems which require careful

bookkeeping with locks, including priority inversion and
deadlocks

● Little known requirement: limits on trans. suicide

C. Scott Ananian: Efficient Transactions in Software and Hardware

9

Transactions: Philosophy
● Transactions will be large & small, short & long

– Mechanisms should be unbounded
● They will be frequent and visible in user code

– Easy to use
– Not hidden in libraries

● Implemented with general-purpose mechanisms
– In addition to synchronization, useful for fault

tolerance, exception handling, backtracking, priority
scheduling...

● Object-based transactions
– Expose a richer abstraction
– Move beyond emulating an unavailable HTM

C. Scott Ananian: Efficient Transactions in Software and Hardware

10

Making things practical:
 Things to keep in mind

● There is both transactional and non-
transaction code in real systems

– A robust mechanism won't allow violations of
transactional atomicity (strong atomicity)

● Non-transactional code should be fast!

● Transaction duration may reach 100M
memory operations

● Transactional reads out-number
transactional writes 3 to 1

C. Scott Ananian: Efficient Transactions in Software and Hardware

11

APEX: Efficient Transactions in
Software

● Design space for this implementation:
– Pure software system

● but requires load-linked and store-conditional
operations on the processor.

– Strongly atomic
● but at low cost for non-transactional code

– Object-based

C. Scott Ananian: Efficient Transactions in Software and Hardware

12

Why object-based transactions?
● Synchronization abstraction matches

programming abstraction
– No false sharing due to variables incidentally

colocated in same word/cache line/page.
Possible deadlock!

● Matching the programming abstraction
allows better compiler analysis and
optimization of transactional code
– For example, escape analysis

● Potential performance benefits for long-
running transactions
– Pay cloning costs up-front, then run at full-

speed in own copy of the object graph

C. Scott Ananian: Efficient Transactions in Software and Hardware

13

APEX Software Transactions
● Goals:

– Non-transactional operations should be fast
– Reads should be faster than writes
– Minimal amount of object bloat

● Solution:
– Use special FLAG value to indicate “location

involved in a transaction”
– Object points to a linked list of versions,

containing values written by (in-progress,
committed, or aborted) transactions

– Semantic value of FLAGged field is: “value of the
first version owned by a committed transaction on
the version list”

– Values which are “really” FLAG are handled with an
escape mechanism (we call these “false flags”)

C. Scott Ananian: Efficient Transactions in Software and Hardware

14

How do we maintain atomicity?

● Allow multiple readers, but a single writer

● If you write a field, you must ensure that
all prior readers and writers are committed
or aborted.

● If you read a field, you must ensure that all
prior writers are committed or aborted.

C. Scott Ananian: Efficient Transactions in Software and Hardware

15

Transactions using version lists

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'
. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

C. Scott Ananian: Efficient Transactions in Software and Hardware

16

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field.

● If value is not
FLAG, we're
done!

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'
. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

C. Scott Ananian: Efficient Transactions in Software and Hardware

17

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● Otherwise:
– kill writers

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'
. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

C. Scott Ananian: Efficient Transactions in Software and Hardware

18

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● Otherwise:
– kill writers
– copy back field

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'
. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTED

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

'B'

ABORTED

C. Scott Ananian: Efficient Transactions in Software and Hardware

19

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● Otherwise:
– kill writers
– copy back field

(requires LL/SC)
– restart

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'
. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTED

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

'B'

ABORTED

C. Scott Ananian: Efficient Transactions in Software and Hardware

20

Non-transactional Read (ReadNT)

● Begins with a
normal read of
the field...

● “False flags”
are discovered
during copy-
back; the read
value is FLAG in
this case.

type

type

Version

Transaction ID #23

Object #2

Version

Object #1

Version Version

Transaction ID #56Transaction ID #68

'B'

.

'A'
. . .

2.71828

{TID25}

OtherClass

MyClass

{TID68}

3.14159
23

.

COMMITTED

. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

status

field2

field1

next

ownerowner

next

field1

field2
field2

field1

readers

versions

field2

FLAG

FLAG

FLAG FLAG

FLAG FLAG

field1
FLAG

C. Scott Ananian: Efficient Transactions in Software and Hardware

21

Non-transactional Write (WriteNT)

● If value-to-write
is not FLAG:

– LL(readers)

– check that it's
empty

– SC(field)

type

type

Version

Transaction ID #23

Object #2

Object #1

Version

Transaction ID #56

'B'

. . .
. . .

2.71828

OtherClass

MyClass

3.14159

. . .

COMMITTED

. . .

COMMITTED

next

owner

field2

field1

readers

versions

status

status

field2

field1

next

owner

field2

field1

readers

versions

field2

FLAG

FLAG

FLAG

field1
FLAG

'B'

{TID25}

C. Scott Ananian: Efficient Transactions in Software and Hardware

22

Non-transactional Write (WriteNT)

● If value-to-write
is not FLAG:

– LL(readers)

– check that it's
empty

– SC(field)

● If unsuccessful
– kill readers and

writers
– repeat

type

type

Version

Transaction ID #23

Object #2

Object #1

Version

Transaction ID #56

'B'

. . .
. . .

2.71828

OtherClass

MyClass

3.14159

. . .

COMMITTED

. . .

COMMITTED

next

owner

field2

field1

readers

versions

status

status

field2

field1

next

owner

field2

field1

readers

versions

field2

FLAG

FLAG

FLAG

field1
FLAG

'B'

{TID25}

C. Scott Ananian: Efficient Transactions in Software and Hardware

23

Non-transactional Write (WriteNT)

● If value-to-write
is FLAG...

– make this a
short
transactional
write (WriteT)

type

type

Version

Transaction ID #23

Object #2

Object #1

Version

Transaction ID #56

'B'

. . .
. . .

2.71828

OtherClass

MyClass

3.14159

. . .

COMMITTED

. . .

COMMITTED

next

owner

field2

field1

readers

versions

status

status

field2

field1

next

owner

field2

field1

readers

versions

field2

FLAG

FLAG

FLAG

field1
FLAG

'B'

{TID25}

C. Scott Ananian: Efficient Transactions in Software and Hardware

24

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version...

type

Object #1
MyClass

3.14159

. . .
field2

field1

readers

23

versions

C. Scott Ananian: Efficient Transactions in Software and Hardware

25

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version
– create (by cloning)

if necessary

type

Object #1

Version Version

Transaction ID #56Transaction ID #68

MyClass

3.14159

.
. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

field2

field1
232323

C. Scott Ananian: Efficient Transactions in Software and Hardware

26

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version
– create (by cloning)

if necessary
● Once per field

written:
– ensure field is

FLAG

type

Object #1

Version Version

Transaction ID #56Transaction ID #68

MyClass

3.14159

.
. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

field2

field1
23

FLAG
23

C. Scott Ananian: Efficient Transactions in Software and Hardware

27

Transactional Write (WriteT)

● Once per object
written in this
transaction:
– find writable

version
– create (by cloning)

if necessary
● Once per field

written:
– ensure field is

FLAG
● Then, just write to

the version.

type

Object #1

Version Version

Transaction ID #56Transaction ID #68

MyClass

3.14159

.
. . .

COMMITTEDWAITING

next

ownerowner

next

field1

field2
field2

field1

readers

versions

status status

field2

field1
23

FLAG
5

Opportunity for
program analysis and

transformation!

C. Scott Ananian: Efficient Transactions in Software and Hardware

28

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

Version

Transaction ID #56

. . .

COMMITTED

next

owner

status

field2

field1
23

type

Object #1
MyClass

3.14159

. . .
field2

field1

readers

versions

FLAG

C. Scott Ananian: Efficient Transactions in Software and Hardware

29

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

type

Object #1
MyClass

3.14159

. . .
field2

field1

readers

versions

FLAG

Version

Transaction ID #56

. . .

COMMITTED

next

owner

status

field2

field1
23

{TID18}

C. Scott Ananian: Efficient Transactions in Software and Hardware

30

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

● Read field of
object

● If this is not FLAG,
you're done!

type

Object #1
MyClass

3.14159

. . .
field2

field1

readers

versions

FLAG

Version

Transaction ID #56

. . .

COMMITTED

next

owner

status

field2

field1
23

{TID18}

C. Scott Ananian: Efficient Transactions in Software and Hardware

31

type

Object #1
MyClass

3.14159

. . .
field2

field1

readers

versions

FLAG

Version

. . .

next

owner

field2

field1
5

WAITING
status

{TID18}

Version

. . .

COMMITTED

next

owner

status

field2

field1
23

Transaction ID #18 Transaction ID #56

Transactional Read (ReadT)

● Once per object
read in this
transaction:
– ensure we're on

list of readers
– kill any writers

● Read field of
object

● If this is FLAG,
then read field
from version
– remember version

for next time!

C. Scott Ananian: Efficient Transactions in Software and Hardware

32

Performance
● Non-transactional code only needs to check

whether a memory operand is FLAG before
continuing.
– On superscalar processors, there are plenty of

extra functional units to do the check
– The branch is extremely predictable

● Once FLAGged, transactional code operates
mostly on the object’s “version”
– if we know it's been written once
– and we keep forgetting

● Creating versions can be an issue for large
arrays; “functional arrays” are one approach

C. Scott Ananian: Efficient Transactions in Software and Hardware

33

● Hand-tuned test code shows that the read
check is fast, but writes can be slow

Read/Write Check Overheads
Counter Microbenchmark

C. Scott Ananian: Efficient Transactions in Software and Hardware

34

● Strip all synchronization; just perform readNT/writeNT
protocols
– mpegaudio is an outlier

Non-transactional Check Overhead
SPECjvm98

C. Scott Ananian: Efficient Transactions in Software and Hardware

35

Transaction Overhead
Transactified SPECjvm98 benchmarks

C. Scott Ananian: Efficient Transactions in Software and Hardware

36

Transactional-write distribution
SPECjvm98 benchmarks

C. Scott Ananian: Efficient Transactions in Software and Hardware

37

Can we do better?

● What if you want better performance?
– recode parts of your application
– fast allocation of transaction objects
– chunk large objects
– aggressively (and interprocedurally) hoist

transaction checks

● Or we can use hardware support...

C. Scott Ananian: Efficient Transactions in Software and Hardware

38

LTM: Visible, Large, Frequent, Scalable

● “Large Transactional Memory”
– large bounded xactions, but simple and cheap

● Minimal architectural changes, high
performance
– Small mods to cache and processor core
– No changes to main memory, cache

coherence protocols or messages
– Can be pin-compatible with conventional proc

● Design presented here based on SGI
Origin 3000 shared-memory multi-proc
– distributed memory
– directory-based write-invalidate coherency

protocol

C. Scott Ananian: Efficient Transactions in Software and Hardware

39

Two new instructions
● XBEGIN pc

– Begin a new transaction. Entry point
to an abort handler specified by pc.

– If transaction must fail, roll back processor
and memory state to what it was when
XBEGIN was executed, and jump to pc.

● Think of this as a mispredicted branch.
● XEND

– End the current transaction. If XEND
completes, the xaction is committed and
appeared atomic.

C. Scott Ananian: Efficient Transactions in Software and Hardware

40

Transaction Semantics

● Two transactions
– “A” has an abort handler at L1
– “B” has an abort handler at L2

● Here, very simplistic retry. Other choices!

● Always need “current” and “rollback”
values for both registers and memory

XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND

L2: XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

A

 B

C. Scott Ananian: Efficient Transactions in Software and Hardware

41

Handling conflicts

● We need to track locations read/written by
transactional and non-transactional code

● When we find a conflict, transaction(s)
must be aborted
– We always “kill the other guy”
– This leads to non-blocking systems

Processor 1 Processor 2
XBEGIN L1 ST 1000, 65
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

L2:

C. Scott Ananian: Efficient Transactions in Software and Hardware

42

Restoring register state

● Minimally invasive changes; build on
existing rename mechanism

● Both “current” and “rollback” architectural
register values stored in physical registers

● In conventional speculation, “rollback”
values stored until the speculative
instruction graduates (order 100 instrs)

● Here, we keep these until the transaction
commits or aborts (unbounded # of instrs)

● But we only need one copy!
– only one transaction in the memory system

per processor

C. Scott Ananian: Efficient Transactions in Software and Hardware

43

LTM implementation, cont.

● Info about pending transactions stored in
the cache
– No special fully-associative cache needed
– Main memory contains “committed” data

● Conflicts among pending transactions
detected using existing cache-coherency
mechanisms
– Request from another proc for cache line with

transactional data indicates conflict
● Overflow mechanism allows large

transactions to spill from the cache into
main memory

C. Scott Ananian: Efficient Transactions in Software and Hardware

44

LTM pipeline modifications

● Register snapshot
stored with
rename
mechanism

● Limited # of regs
reserved even if
multiple xactions
are in-flight

● Architectural
changes are kept
small

commit

free

Reorder Buffer

active
working

XB
EG

IN
 c

om
m

itt
ed

XB
EG

IN
 d

ec
od

ed

FIFO

Physical RegistersRename Table

1
0

FIFO

To Register Renaming Table

Register
Free List

P56

..

..

..

..
S

S

S

S

Register Reserved
List

R31

R0

snapshots

LPR

saved?
snapshots

active

P56

P127

P56

P2

P56

P0

S

S

C. Scott Ananian: Efficient Transactions in Software and Hardware

45

LTM cache modifications

● O bit per cache set
– indicates if set has overflowed

● T bit per cache line
– set if accessed during current transaction

● Overflow storage in uncached DRAM
– maintained by hardware
– OS sets size/location via OBR, etc

Overflow
Handler

index offset

datatagdatatag

Overflow Storage
Uncached DRAM

tag
Address

Way 0 Way 1

Overflow
base register

T TO . . .

. . .

C. Scott Ananian: Efficient Transactions in Software and Hardware

46

Cycle-level LTM simulation

● LTM implemented on top of UVSIM (itself
built on RSIM)
– shared-memory multiprocessor model
– directory-based write-invalidate coherence

● Contention behavior:
– C microbenchmarks w/ inline assembly
– Up to 32 processors

● Overhead measurements:
– Modified MIT FLEX Java compiler
– Compared no-sync, spin-lock, and LTM xaction
– Single-threaded, single processor

C. Scott Ananian: Efficient Transactions in Software and Hardware

47

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

Av
g.

 c
yc

le
s

pe
r i

te
ra

tio
n

Number of processors

locks
transactions

Contention behavior

● Contention microbenchmark: 'Counter'
– 1 shared variable; each processor repeatedly adds
– locking version uses global LLSC spinlock
– Small xactions commit even with high contention
– Spin-lock causes lots of cache interventions even

when it can't be taken (standard SGI library impl)

C. Scott Ananian: Efficient Transactions in Software and Hardware

48

SPECjvm98 LTM benchmarks

● Compiled three versions of each
benchmark using modified FLEX compiler
– Base with no synchronization
– Locks with spinlocks
– Trans with LTM xactions for synchronization

● Run on one processor of UVSIM
– Looking at overhead, not contention

C. Scott Ananian: Efficient Transactions in Software and Hardware

49

LTM Overhead: SPECjvm98

check c
om-

jess db javac mpeg-
audio

jack
0%

100%

With Locks

Other

In Xaction

Overflow

Benchmark application

R
un

 t
im

e,
 %

 o
f n

o-
sy

nc
 ti

m
e

C. Scott Ananian: Efficient Transactions in Software and Hardware

50

Is this good enough?

● Problems solved:
– Xactions as large as physical memory
– Scalable overflow and commit
– Easy to implement!
– Low overhead
– May speed up Linux!

● Open Problems...
– Is “physical memory” large enough?
– What about duration?

● Time-slice interrupts!

C. Scott Ananian: Efficient Transactions in Software and Hardware

51

Beyond LTM: UTM

● We can do better!
● The UTM architecture

allows transactions as large as virtual
memory, of unlimited duration, which can
migrate without restart

● Same XBEGIN pc/XEND ISA; same register
rollback mechanism

● Canonical transaction info is now stored in
single xstate data struct in main memory

C. Scott Ananian: Efficient Transactions in Software and Hardware

52

Commit Log Entry Transaction Log Log Entry
record Rollback values Next Reader

P 44 ∅ ...
Blk Ptr

xstate data structure

● Transaction log in DRAM for each active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “rollback” values

● each corresponds to a block in main memory
● Log ptr & RW bit for each application memory block

– Log ptr/next reader form linked list of all log entries for
a given block

Application Memory
RW bit Memory Block

⋮ ⋮

W 32
⋮ ⋮

Log Ptr
⋮

⋮
Current values

C. Scott Ananian: Efficient Transactions in Software and Hardware

53

Caching in UTM

● Most log entries don't need to be created
● Transaction state stored in cache/overflow

DRAM and monitored using cache-
coherence, as in LTM

● Only create transaction log when thread is
descheduled, or run out of physical mem.

● Can discard all log entries when xaction
commits or aborts
– Commit – block left in X state in cache
– Abort – use old value in main memory

● In-cache representation need not match
xstate representation

C. Scott Ananian: Efficient Transactions in Software and Hardware

54

Performance/Limits of UTM

● Limits:
– More-complicated implementation

● Best way to create xstate from LTM state?
– Performance impact of swapping.

● When should we abort rather than swap?
● Benefits:

– Unlimited footprint
– Unlimited duration
– Migration and paging possible
– Performance may be as fast as LTM in the

common case

C. Scott Ananian: Efficient Transactions in Software and Hardware

55

Hybrid Hardware/Software Implementation
● Hardware transaction implementation is very fast!

But it is limited:
– Slow once you exceed cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware abort,

execute transaction in software
– Need to ensure that the two algorithms play

nicely with each other (consistent views)
 see next slide...

C. Scott Ananian: Efficient Transactions in Software and Hardware

56

Cooperation

● Software transaction mechanism writing
FLAG over object fields is sufficient to
abort conflict transaction in LTM

● LTM must execute ReadNT/WriteNT
algorithms (read barrier) to cooperate with
the software mechanism
– no extra silicon needed!
– can still leverage compiler analysis

● Other synergies:
– non-blocking functional array implementation
– LL/SC sequences

C. Scott Ananian: Efficient Transactions in Software and Hardware

57

Hardware/Software Implementation
● Hardware transaction implementation is very

fast! But it is limited:
– Slow once you exceed cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware

abort, execute transaction in software
– Need to ensure that the two algorithms play

nicely with each other (consistent views)

C. Scott Ananian: Efficient Transactions in Software and Hardware

58

Leveraging hardware for speed
● Simple node-push benchmark [Lie '04]
● As xaction size increases, we eventually run out

of cache space in the HW transaction scheme

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HTM Transactions
stop fitting after
this point

C. Scott Ananian: Efficient Transactions in Software and Hardware

59

Leveraging hardware for speed
● Simple node-push benchmark [Lie '04]
● Hybrid scheme best of both worlds!

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HSTM

C. Scott Ananian: Efficient Transactions in Software and Hardware

60

Related Work

● HTM work
– Knight, Herlihy&Moss, BBN Pluribus
– Oklahoma Update (Stone et al)

● Speculative Lock Elision/Transactional Lock
Removal (Rajwar & Goodman)
– Use “locks” as the API, dynamically translate to

transactional regions
● Speculative Synchronization (Martinez & Torrellas)

– Speculatively execute locking code
● TM Coherency and Consistency (Hammond et al)

– Relies on broadcast for large transactions
● Software Transactional Memory

– Harris&Fraser, Shavit&Touitou, Herlihy et al

C. Scott Ananian: Efficient Transactions in Software and Hardware

61

Conclusions

● Transactional/non-transactional
cooperation is really a lot like STM/HTM
cooperation
– same mechanism can be used!

● The Large Object Problem can be solved!
– Good news for object-based transactions

– Compiler and analysis benefits to reap

● Writing correct transaction protocols is
hard
– Model checking can help

C. Scott Ananian: Efficient Transactions in Software and Hardware

62

Conclusions

● Transactional Memory systems should
support unbounded transactions in
hardware

● Both fully-scalable (UTM) and easily-
implemented (LTM) systems are possible

● Big step towards making parallel
computing practical and ubiquitous!

C. Scott Ananian: Efficient Transactions in Software and Hardware

63

Conclusions
● First look at xaction properties of Linux:

– 99.9% of xactions touch ≤ 54 cache lines
– but may touch > 8000 cache lines
– 4x concurrency?

● Unbounded, scalable, and efficient
Transactional Memory systems can be built.
– Support large, frequent, and concurrent xactions
– What could software for these look like?

● Allow programmers to (finally!) use our parallel
systems!

● Two implementable architectures:
– LTM: easy to realize, almost unbounded
– UTM: truly unbounded

C. Scott Ananian: Efficient Transactions in Software and Hardware

64

Open questions

● I/O interface?
● Transaction ordering?

– Sequential threads provide inherent ordering
● Programming model?
● Conflict resolution strategies

C. Scott Ananian: Efficient Transactions in Software and Hardware

65

Graveyard of Unused slides

C. Scott Ananian: Efficient Transactions in Software and Hardware

66

Multi-object atomic update

● Programmer's mental model of locks can
be faulty

● Monitor synchronization: associates locks
with objects

● Promises modularity: locking code stays
with encapsulated object implementation

● Often breaks down for multiple-object
scenarios

● End result: unreliable software, broken
modularity

C. Scott Ananian: Efficient Transactions in Software and Hardware

67

A problem with multiple objects
public final class StringBuffer ... {
 private char value[];
 private int count;
 ...
 public synchronized StringBuffer append(StringBuffer sb) {
 ...
A:int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity(newcount);
 // next statement may use state len
B:sb.getChars(0, len, value, count);
 count = newcount;
 return this;
 }
 public synchronized int length() { return count; }
 public synchronized void getChars(...) { ... }
}

C. Scott Ananian: Efficient Transactions in Software and Hardware

68

Why Transactions?

● Concurrency control
– Locking discliplines are awkward, error-prone,

and limit concurrency
● Especially with multiple objects!

– Nonblocking transaction primitives can
express optimistic concurrency more simply

● Focus on “performance” instead of “correctness”
● Fault-tolerance

– Locks are irreversible; semantics for
exceptions/crashes unclear

● Also: “priority inversion”
– Programming languages in general are

irreversible
– Transactions allow clean “undo”

C. Scott Ananian: Efficient Transactions in Software and Hardware

69

Conventional Locking: Ordering

● When more than one object is involved in
a critical region, deadlocks may occur!
– Thread 1 grabs A then tries to grab B
– Thread 2 grabs B then tries to grab A
– No progress possible!

● Solution: all locks ordered
– A before B
– Thread 1 grabs A then B
– Thread 2 grabs A then B
– No deadlock

C. Scott Ananian: Efficient Transactions in Software and Hardware

70

Conventional Locking: Ordering
● Maintaining lock order is a lot of work!
● Programmer must choose, document, and

rigorously adhere to a global locking protocol for
each object type
– development overhead!

● All symmetric locked objects must include lock
order field, which must be assigned uniquely
– space overhead!

● Every multi-object lock operation must include
proper conditionals
– which lock do I take first? which do I take

next?
– execution-time overhead!

● No exceptions!

C. Scott Ananian: Efficient Transactions in Software and Hardware

71

Fault-tolerance

● Locks are irreversible
● When a thread fails holding a lock, the

system will crash
– it's only a matter of time before someone else

attempts to grab that lock
● What are the proper semantics for

exceptions thrown within a critical region?
– data structure consistency not guaranteed

● Asynchronous exceptions?

C. Scott Ananian: Efficient Transactions in Software and Hardware

72

Priority Inversion

● Well-known problem with locks
● Described by Lampson/Redell in 1980 (Mesa)
● Mars Pathfinder in 1997, etc, etc, etc
● Low-priority task takes a lock needed by a high-

priority task -> the high priority task must wait!
● Clumsy solution: the low priority task must

become high priority
● What if the low priority task takes a long time?

C. Scott Ananian: Efficient Transactions in Software and Hardware

73

Invisible transactions?
● Rajwar & Goodman: Speculative Lock

Elision and Transactional Lock Removal
– speculatively identify locks; make xactions

● Martinez & Torrellas: Speculative
Synchronization
– guarantee fwd progress w/ non-speculative

thread

Keep
transactions
visible

C. Scott Ananian: Efficient Transactions in Software and Hardware

74

Infrequent, Small, Mostly-Serial?

To date, xactions assumed to be:
● Small

– BBN Pluribus (~1975): 16 clock-
cycle bus-locked “transaction”

– Knight; Herlihy & Moss:
transactions which fit in cache

● Infrequent
– Software Transactional Memory (Shavit &

Touitou; Harris & Fraser; Herlihy et al)
● Mostly-serial

– Transactional Coherence & Consistency
(Hammond, Wong, et al)

C. Scott Ananian: Efficient Transactions in Software and Hardware

75

May Be Large, Frequent, and
Concurrent

● Lots of small xactions
– Millions of xactions in these benchmarks
– Problem for software-only schemes

● Significant tail: large xactions are few, but very
large
– Thousands of cache lines touched
– Problem for bounded transactional schemes

● Potential for additional concurrency
– Distribution of hot cache lines suggest that 4x

more concurrency may be possible on our
Linux benchmarks

Programmers want unbounded xactions…

C. Scott Ananian: Efficient Transactions in Software and Hardware

76

Transactional Programming
● Locks: the devil we know
● Complex sync techniques: library-only

– Nonblocking synchronization
– Bounded transactions

● Compilers don't expose memory references
(Indirect dispatch, optimizations, constants)

● Not portable! Changing cache-size breaks apps.

● Unbounded Transactions:
– Can be thought about at high-level
– Match programmer's intuition about atomicity
– Allow black box code to be composed safely
– Promise future excitement!

● Fault-tolerance / exception-handling
● Speculation / search

C. Scott Ananian: Efficient Transactions in Software and Hardware

77

Transactional Memory Systems

● Hardware Transactional Memory (HTM)
– Knight, Herlihy & Moss, BBN Pluribus
– atomicity through architectural means

● Software Transactional Memory (STM)
– atomicity through languages, compiler,

libraries
● Traditionally assume:

– Transactions are “small” and thus it is
reasonable to bound their size (esp. HTM)

– Transactions are “infrequent” and thus
overhead is acceptable (esp. STM)

C. Scott Ananian: Efficient Transactions in Software and Hardware

78

Transaction Size Distribution

● Lots of small xactions
– Millions of xactions in these benchmarks
– Use hardware support to make these fast

● Significant tail: large xactions are few, but
very large
– Thousands of cache lines touched
– Unbounded Transactional Memory makes

these possible

Free the compiler/programmer/ISA from
arbitrary limits on transaction size

C. Scott Ananian: Efficient Transactions in Software and Hardware

79

Our Thesis

Transactional memory should support
transactions of arbitrary size and
duration. Such support should be

provided with hardware assistance, and
it should be made visible to the
software through the machine's
instruction-set architecture (ISA).

An unbounded TM can handle transactions of
arbitrary duration with footprints comparable to
its virtual memory space

C. Scott Ananian: Efficient Transactions in Software and Hardware

80

Three Big Ideas

● Functional Arrays: A solution to the
Large Object Problem

● Cooperating with FLAGs
– Non-transactional code interacting with

transactions

– Software transactions interacting with a
Hardware Transactional Memory

● Model-checking Software Transactions

C. Scott Ananian: Efficient Transactions in Software and Hardware

81

The Large Object Problem

C. Scott Ananian: Efficient Transactions in Software and Hardware

82

Single-Object Protocol

● Object representation contains a pointer to
object contents.

● Object mutation inside transaction creates
new object contents.

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Object Contents

Object Contents

C. Scott Ananian: Efficient Transactions in Software and Hardware

83

Single-Object Protocol

● At start of transaction, load and remember
fields pointer as prior state.

● To commit, compare-and-swap the result of
operation for prior state.

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Object Contents

Object Contents

C. Scott Ananian: Efficient Transactions in Software and Hardware

84

Single-Object Protocol

● Large Object Problem: cloning prior state for
result of operation is O(object size)

● Solution: use a data structure where cloning
is cheap – O(1) would be nice!

Valid for operations on a single object only.

type

fields

Result of Operation

Prior State(atomic swap)

Object

Functional Array

Functional Array

C. Scott Ananian: Efficient Transactions in Software and Hardware

85

Multiple-Object
Protocol
● Objects point to lists

of versions.

● Each version has an
associated
Transaction ID and
field array reference.

● Transaction IDs are
initialized to
WAITING and are
changed exactly
once to COMMITTED
or ABORTED.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus
WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array

C. Scott Ananian: Efficient Transactions in Software and Hardware

86

Multiple-Object
Protocol
● At end of transaction,

attempt to set
Transaction ID to
COMMITTED.

● Value of object is the
value of the first
committed version.

● ABORTED versions
can be collected.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus
WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array

C. Scott Ananian: Efficient Transactions in Software and Hardware

87

Multiple-Object
Protocol
● Only one WAITING

version allowed on
versions list, and it
must be at the head.

● Before we can link a
new version onto the
versions list, we
must ensure that
every other version is
either COMMITTED or
ABORTED.

owner

fields

next

owner

fields

next

owner

fields

next

owner

fields

next

versions

type

versions

type

status

statusstatus
WAITING COMMITTED

COMMITTED

Object

Transaction ID Transaction ID

VersionVersion

Functional Array

Transaction ID

VersionVersion

Object

Functional ArrayFunctional Array

C. Scott Ananian: Efficient Transactions in Software and Hardware

88

Non-blocking concurrent algorithms
are hard!

● In published work on Synthesis, a non-blocking
operating system implementation, three separate
races were found:
– One ABA problem in LIFO stack
– One likely race in MP-SC FIFO queue
– One interesting corner case in quaject

callback handling
● It's hard to get these right! Ad hoc reasoning

doesn't cut it.
● Non-blocking algorithms are too hard for the

programmer
● Let's get it right once (and verify this!)

C. Scott Ananian: Efficient Transactions in Software and Hardware

89

The Spin Model Checker
● Spin is a model checker for communicating

concurrent processes. It checks:
– Safety/termination properties
– Liveness/deadlock properties
– Path assertions (requirements/never claims)

● It works on finite models, written the Promela
language, which describe infinite executions.

● Explores the entire state space of the model,
including all possible concurrent executions,
verifying that Bad Things don't happen.

● Not an absolute proof – pretty useful in practice
● Make systems reliable by concentrating

complexity in a verifiable component

C. Scott Ananian: Efficient Transactions in Software and Hardware

90

Spin theory
● Generates a Büchi Automaton from the Promela

specification.
– Finite-state machine w/ special acceptance

conditions
– Transitions correspond to executability of

statements
● Depth-first search of state space, with each state

stored in a hashtable to detect cycles and
prevent duplication of work
– If x followed by y leads to the same state as y

followed by x, will not re-traverse the succeeding
steps

● If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate
coverage metric

C. Scott Ananian: Efficient Transactions in Software and Hardware

91

Verification with Spin

● Modeled the software transaction
implementation in Promela

● Low-level model – every memory
operation represented

– details in the paper

● Spin used 16G of memory to check the
implementation within a 6-version 2-object
scope.

C. Scott Ananian: Efficient Transactions in Software and Hardware

92

Bugs Found

● Memory management

– reference counting, object recycling

● Read caching

– check freshness of copies in local variables

● “Big” bug

– missing abort of readers during a non-
transactional write (field copy back)

C. Scott Ananian: Efficient Transactions in Software and Hardware

93

Functional arrays
● Functional arrays are persistent: after an

element is updated both the new and the
old contents of the array are available for
use.

● Fundamental operation:

● Arrays are just mappings from integer to
value; any persistent map can be used as
a functional array.

● A fast functional array will have O(1)
access and update for the common cases.
– Variant of shallow binding due to [Chuang '94]

Update A , i , v : AN 0V A

C. Scott Ananian: Efficient Transactions in Software and Hardware

94

Functional Arrays using Shallow Binding

● A functional array is either a cache node...

A

1
2
3
4
5

C. Scott Ananian: Efficient Transactions in Software and Hardware

95

Functional Arrays using Shallow Binding

● A functional array is either a cache node
or a difference node.

● A[1]=1 but B[1]=5

B A
1
2
3
4
5

index
value 5

1

C. Scott Ananian: Efficient Transactions in Software and Hardware

96

Functional Arrays using Shallow Binding

● Changing one element is O(1)

C B A

1
2
3
4
5

index
value 5

1index
value 1

5

C. Scott Ananian: Efficient Transactions in Software and Hardware

97

Functional Arrays using Shallow Binding

● A[1] = D[1] = 1 C[1] = B[1] = 5
● C[5] = 1 D[2] = 3

C B A D
1
2
3
4
5

index
value 3

2index
value 5

1index
value 1

5

C. Scott Ananian: Efficient Transactions in Software and Hardware

98

Functional Arrays using Shallow Binding

● We rotate the cache node on reads to keep
access times fast.

● The bottom shows the graph after D is read.

C B A D
1
2
3
4
5

index
value 3

2index
value 5

1index
value 1

5

index
value 2

2 1
3
3
4
5

C B A D

index
value 5

1index
value 1

5

C. Scott Ananian: Efficient Transactions in Software and Hardware

99

Functional Arrays using Shallow Binding

● C is read.
● Ping-pong

danger!

index
value 2

2 1
3
3
4
5

C B A D

index
value 5

1index
value 1

5

5
2
3
4
1

C B A D

index
value 3

2index
value 5

5 index
value 1

1

C B A D
1
2
3
4
5

index
value 3

2index
value 5

1index
value 1

5

C. Scott Ananian: Efficient Transactions in Software and Hardware

100

Functional Arrays using Shallow Binding

● Split with
1/N
chance.

C B A D
1
2
3
4
5

index
value 3

2index
value 5

1index
value 1

5

index
value 2

2 1
3
3
4
5

C B A D

index
value 5

1index
value 1

5

5
2
3
4
1

C B A D
index
value 3

2index
value 5

5 1
2
3
4
5

C. Scott Ananian: Efficient Transactions in Software and Hardware

101

Making a non-blocking algorithm

● Adding difference nodes is easy.
● Two hard operations:

– Rotation

– Splitting

● These can be made non-blocking
[Ananian '03]

● Can also use a small Hardware
Transactional Memory to implement these
operations.

C. Scott Ananian: Efficient Transactions in Software and Hardware

102

Transact-ifying Linux
● Experiment to discover xaction

properties of large real-world app.
– First complete OS investigated!

● User-Mode Linux 2.4.19
– instrumented every load and store, all locks
– locks→xactions; locks not held over I/O!
– run 2-way SMP (two processes; two processors)

● Two workloads
– Parallel make of Linux kernel ('make linux')
– dbench running three clients

● Run program to get a trace; run trace
through Transactional Memory simulator
– 1MB 4-way set-associative 64-byte-line cache
– Paper also has simulation runs for SpecJVM98

C. Scott Ananian: Efficient Transactions in Software and Hardware

103

9.355x10^6

10^6

10^4

10^2

 1
 8144 1000 100 10 1

Nu
m

be
r o

f o
ve

rfl
ow

in
g

tra
ns

ac
tio

ns

Fully associative cache size (64 byte lines)

make
dbench

TM Cache-size requirements (Linux)

● # of overflowing xactions as a function of (fully-
associative) cache size for make_linux & dbench

● Almost all of the xactions require < 100 cache lines
– 99.9% need fewer than 54 cache lines

● There are, however, some very large transactions!
– >500k-byte fully-associative cache required

Note: log-log scale

C. Scott Ananian: Efficient Transactions in Software and Hardware

104

Multiple in-flight transactions
Original
XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

● This example has two transactions, with abort
handlers at L1 and L2

● Assume instruction window of length 5
– allows us to speculate into next transaction(s)

A

 B

 Instruction Window

C. Scott Ananian: Efficient Transactions in Software and Hardware

105

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

● During instruction decode:
– Maintain rename table and “saved” bits
– “Saved” bits track registers mentioned in current

rename table
● Constant # of set bits: every time a register is added to

“saved” set we also remove one

graduate

decode

C. Scott Ananian: Efficient Transactions in Software and Hardware

106

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }

{ P2, ... }
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...
ADD P2, P1, P1 R1→P2, ...

● When XBEGIN is decoded:
– Snapshots taken of current Rename table and S-

bits.
– This snapshot is not active until XBEGIN

graduates

graduate

decode

C. Scott Ananian: Efficient Transactions in Software and Hardware

107

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1

{ P2, ... }
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

ST 1000, P2 R1→P2, ...

graduate

decode

C. Scott Ananian: Efficient Transactions in Software and Hardware

108

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND { P2, ... }
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

R1→P2, ...

graduate

decode

C. Scott Ananian: Efficient Transactions in Software and Hardware

109

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD R1, R1, R1
ST 2000, R1
XEND

R1→P1, ...

R1→P2, ...

● When XBEGIN graduates:
– Snapshot taken at decode becomes active, which

will prevent P1 from being reused
– 1st transaction queued to become active in memory
– To abort, we just restore the active snapshot's

rename table

graduate

decode

active
snapshot

C. Scott Ananian: Efficient Transactions in Software and Hardware

110

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }

{ P3, ... }
ST 2000, R1
XEND

R1→P1, ...

R1→P2, ...
ADD P3, P2, P2 R1→P3, ...

graduate

decode

● We're only reserving registers in the active set
– This implies that exactly #AR registers are saved
– This number is strictly limited, even as we

speculatively execute through multiple xactions

active
snapshot

→

C. Scott Ananian: Efficient Transactions in Software and Hardware

111

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2

{ P3, ... }
XEND

R1→P1, ...

R1→P2, ...

ST 2000, P3 R1→P3, ...

graduate

decode

● Normally, P1 would be freed here
● Since it's in the active snapshot's “saved” set,

we put it on the register reserved list instead

active
snapshot

C. Scott Ananian: Efficient Transactions in Software and Hardware

112

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND { P3, ... }

R1→P2, ...

R1→P3, ...

● When XEND graduates:
– Reserved physical registers (P1) are freed, and

active snapshot is cleared.
– Store queue is empty

graduate

decode

C. Scott Ananian: Efficient Transactions in Software and Hardware

113

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND

R1→P2, ...

● Second transaction becomes active in
memory.

graduate

decode

active
snapshot

C. Scott Ananian: Efficient Transactions in Software and Hardware

114

Cache overflow mechanism

● Need to keep “current” values
as well as “rollback” values
– Common-case is commit, so

keep “current” in cache
– What if uncommitted “current”

values don't all fit in cache?
● Use overflow hashtable as

extension of cache
– Avoid looking here if we can!

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

key data
Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

115

Cache overflow: miss handling
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Miss to an overflowed line
checks overflow table

● If found, swap overflow and
cache line; proceed as hit

● Else, proceed as miss.

key data
3000 77

Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

116

Cache overflow: commit/abort
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Abort:
– invalidate all lines with T set
– discard overflow hashtable
– clear O and T bits

● Commit:
– write back hashtable; NACK

interventions during this
– clear O and T bits

key data
3000 77

Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

117

Cache overflow mechanism

● T bit per cache line
– set if accessed during xaction

● O bit per cache set
– indicates set overflow

● Overflow storage in physical
DRAM
– allocated/resized by OS
– probe/miss: complexity of

search ≈ page table walk

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

key data
Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

118

Cache overflow mechanism

● Start with non-transactional
data in the cache

Way 0 Way 1
O T tag data T tag data

1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

key data
Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

119

Cache overflow: recording reads
Way 0 Way 1

O T tag data T tag data

T 1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Transactional read sets the
T bit.

key data
Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

120

Cache overflow: recording writes
Way 0 Way 1

O T tag data T tag data

T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Most transactional writes fit
in the cache.

key data
Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

121

Cache overflow: spilling
Way 0 Way 1

O T tag data T tag data

O T 3000 77 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Overflow sets O bit
● New data replaces LRU
● Old data spilled to DRAM

key data
1000 55

Overflow hashtable

C. Scott Ananian: Efficient Transactions in Software and Hardware

122

● Back of the envelope calculation: 26%
reads and 9% writes = 15% slowdown

Check Overhead
as a component of the overall instruction mix

15%

C. Scott Ananian: Efficient Transactions in Software and Hardware

123

xstate data structure

● Xaction log for each active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “old” values

● each corresponds to a block in main memory
● Log ptr and RW bit for each memory block

– linked list of entries for each block

Old value

Reader list
Block Pointer

Block Pointer
Reader list8ab30000

8ab3ab00

Commit Record

43

42R

W

Application Memory xstate

Transaction log entry

Transaction log entry

Commit Record

Transaction log entry

Block

Log Pointer New value

Transaction log #2

Transaction log #1

42

32

42

8ab3ab00

8ab30000

8ab30000

Pending

Pending

RW Bit

C. Scott Ananian: Efficient Transactions in Software and Hardware

124

xstate data structure

● Xaction log for each
active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “rollback” values

● each corresponds to a block in main memory
● Log ptr and RW bit for each memory block

– Log ptr/next reader form linked list of all log entries for
a given block

RW bit Application Memory Block
⋮ ⋮ ⋮

32
⋮ ⋮

Log Ptr

⋮

Transaction Log
COMMITTED Commit Record

44 Rollback values

∅ Next Reader
⋮ Log Entry

Block Ptr

Current values

