
Data Size Optimizations for Java Programs

C. Scott Ananian
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

cananian@lcs.mit.edu

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

rinard@lcs.mit.edu

ABSTRACT
We present a set of techniques for reducing the memory
consumption of object-oriented programs. These techniques
include analysis algorithms and optimizations that use the
results of these analyses to eliminate fields with constant
values, reduce the sizes of fields based on the range of val-
ues that can appear in each field, and eliminate fields with
common default values or usage patterns. We apply these
optimizations both to fields declared by the programmer and
to implicit fields in the runtime object header. Although it
is possible to apply these techniques to any object-oriented
program, we expect they will be particularly appropriate for
memory-limited embedded systems.

We have implemented these techniques in the MIT FLEX
compiler system and applied them to the programs in the
SPECjvm98 benchmark suite. Our experimental results show
that our combined techniques can reduce the maximum live
heap size required for the programs in our benchmark suite
by as much as 40%. Some of the optimizations reduce the
overall execution time; others may impose modest perfor-
mance penalties.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems; D.3.2 [Programming Languages]: Language Clas-
sifications—Object-oriented languages, Java; D.3.4 [Program-
ming Languages]: Processors—Compilers ; D.3.4 [Program-
ming Languages]: Processors—Optimization; E.2 [Data
Storage Representations]: Object representation

General Terms
Languages, Performance, Experimentation, Algorithms

This research was supported by DARPA/AFRL Con-
tract F33615-00-C-1692, NSF Grant CCR-0086154, NSF
Grant CCR-0073513, NSF Grant CCR-0209075, and the
Singapore-MIT Alliance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00.

Keywords
Embedded systems, size optimizations, static specialization,
field externalization, field packing, bitwidth analysis

1. INTRODUCTION
We present a set of techniques for reducing the amount of

data space required to represent objects in object-oriented
programs. Our techniques optimize the representation of
both the programmer-defined fields within each object and
the header information used by the run-time system:

• Field Reduction: Our flow-sensitive, interprocedu-
ral bitwidth analysis computes the range of values that
the program may assign to each field. The compiler
then transforms the program to reduce the size of the
field to the smallest type capable of storing that range
of values.

• Unread and Constant Field Elimination: If the
bitwidth analysis finds that a field always holds the
same constant value, the compiler eliminates the field.
It removes each write to the field, and replaces each
read with the constant value. Fields without exe-
cutable reads are also removed.

• Static Specialization: Our analysis finds classes with
fields whose values do not change after initialization,
even though different instances of the object may have
different values for these fields. It then generates spe-
cialized versions of each class which omit these fields,
substituting accessor methods which return constant
values.

• Field Externalization: Our analysis uses profiling
to find fields that almost always have the same default
value. It then removes these fields from their enclosing
class, using a hash table to store only values of the field
that differ from the default value. It replaces writes to
the field with an insertion into the hash table (if the
written value is not the default value) or a removal
from the hash table (if the written value is the default
value). It replaces reads with hash table lookups; if
the object is not present in the hash table, the lookup
simply returns the default value.

• Class Pointer Compression: We use rapid type
analysis to compute an upper bound on the number
of classes that the program may instantiate. Objects
in standard Java implementations have a header field,

commonly called claz, which contains a pointer to the
class data for that object, such as inheritance informa-
tion and method dispatch tables. Our compiler uses
the results of the analysis to replace the reference with
a smaller offset into a table of pointers to the class
data.

• Byte Packing: All of the above transformations may
reduce or eliminate the amount of space required to
store each field in the object or object header. Our
byte packing algorithm arranges the fields in the object
to minimize the object size.

All of these transformations reduce the space required to
store objects, but some potentially increase the running time
of the program. Our experimental results show that, for our
set of benchmark programs, all of our techniques combined
can reduce the peak amount of memory required to run the
program by as much as 40%, although the running time
may increase. In a memory-limited embedded system where
performance is not critical, cost savings may directly result
from the reduced minimum heap size.

1.1 Contributions
This paper makes the following contributions:

• Space Reduction Transformations: It presents a
set of novel transformations for reducing the memory
required to represent objects in object-oriented pro-
grams.

• Analysis Algorithms: It presents a set of analysis
algorithms that automatically extract the information
required to apply the space reduction transformations.

• Implementation: We have fully implemented all of
the analyses and techniques presented in the paper.
Our experience with this implementation enables us to
discuss the pragmatic details necessary for an effective
implementation of our techniques.

• Experimental Results: This paper presents a set
of experimental results that characterize the impact of
our transformations, revealing the extent of the savings
available and the performance cost of attaining them.

2. EXAMPLES
We next present a pair of examples that illustrate the

kinds of analyses and transformations that our compiler per-
forms.

2.1 Field Reduction and Constant Field
Elimination

Figure 1 presents the JValue class, which is a wrapper
around either an Integer object or a Float object. The
type field indicates which kind of object is stored in the
value field of the class, essentially implementing a tagged
union.1 The class also maintains the positive field, which
is 1 if the wrapped number is positive and 0 otherwise.

Our bitwidth analysis uses an interprocedural value-flow
algorithm to compute upper and lower bounds for the values

1This class is a simplified version of similar classes that
appear in some of our benchmarks. See for example the
jess.Value class in SPECjvm98 benchmark jess.

public class JValue {
int integerType = 0;
int floatType = 1;
int type, positive;
Object value;
void setInteger(Integer i) {

type = integerType; value = i;
positive = (i.intValue() > 0) ? 1 : 0;

}
void setFloat(Float f) {

type = floatType; value = f;
positive = (f.floatValue() > 0) ? 1 : 0;

}
}

Figure 1: The JValue class.

that can appear in each variable. This analysis tracks the
flow of values across procedure boundaries via parameters,
into and out of the heap via instance variables of classes,
and through intermediate temporaries and local variables in
the program. It also reasons about the semantics of arith-
metic operators such as + and * to obtain bounds for the
values computed by arithmetic expressions. Assume that
the analysis examines the rest of the program (not shown)
and discovers the following facts about how the program uses
this class: a) the integerType field always has the value 0,
b) the floatType field always has the value 1, c) the type

field always has a value between 0 and 1 (inclusive), and d)
the positive field always has a value between 0 and 1 (also
inclusive).

Our compiler uses this information to remove all occur-
rences of the integerType and floatType fields from the
program. It replaces each read of the integerType field
with the constant 0, and each read of the floatType field
with the constant 1. It also uses the bounds on the values
of the type and positive variables to reduce the size of the
corresponding fields. Our currently implemented compiler
rounds field sizes to the nearest byte required to hold the
range of values that can occur. Our byte packing algorithm
then generates a dense packing of the values, attempting to
preserve the alignment of the variables if possible. In this
case, the algorithm can reduce the field sizes by six bytes
and the overall size of the object by one four-byte word. If
the runtime can support unaligned objects without external
fragmentation, we can reduce the size of all allocated JValue

objects by the full six bytes.

2.2 Static Specialization
Figure 2 presents portions of the implementation of the

java.lang.String class from the Java standard class li-
brary. The value field in this class refers to a character
array that holds the characters in the string; the count field
holds the length of the string. In some cases, instances of
the String class are derived substrings of other instances
(see the substring method in Figure 2), in which case the
offset field provides the offset of the starting point of the
string within a shared value character array. Note that the
value, offset, and count fields are all initialized when the
string is constructed and do not change during the lifetime
of the string.

In practice, most strings are not created as explicit sub-
strings of other strings, so the offset field in most strings
is zero. In fact, all of the public String constructors create
strings with offset zero; only the substring method cre-
ates strings with a nonzero offset. And even at calls to the
private String(int, int, char[]) constructor inside the

public final class String {
private final char value[];
private final int offset;
private final int count;
...
public char charAt(int i) {

return value[offset+i];
}
public String substring(int start)
{

int noff = offset + start;
int ncnt = count - start;
return new String(noff, ncnt, value);

}
}

Figure 2: Portions of the java.lang.String class.

substring method, it is possible to dynamically test the
values of the parameters at the allocation site to determine
if the newly constructed string will have a zero or nonzero
offset.

Our analysis exploits this fact by splitting the String

class into two classes: a superclass SmallString that omits
the offset field, and a subclass BigString that extends
SmallString and includes the offset field. Each of these
two new classes implements a getOffset() method to re-
place the field: the getOffset() method in the SmallString
class simply returns zero; but the getOffset() method in
the BigString class returns the value of the offset field in
BigString. Figure 3 illustrates this transformation.

At every allocation site except the one inside the substring
method, the transformed program allocates a SmallString

object. Inside the substring method, the program gener-
ates code that dynamically tests if the offset in the substring
will be zero. If so, it allocates a SmallString object; if not, it
allocates a BigString object. (See Figure 4.) This transfor-
mation therefore eliminates the offset field in the majority
of strings.

The analysis required to support this transformation takes
place in two phases. The first phase scans the program to
identify fields that are amenable to transformation.2 In our
example, the analysis determines that the offset field is
never written after it is initialized. In the next phase, we
determine if the initialized value of the field can be deter-
mined before the object is created, by examining the specific
constructor invoked and its parameters. In our example, the
analysis determines that the offset field is zero for all con-
structors except the private constructor invoked within the
substring method. It also determines that, for objects cre-
ated within substring, the value of the offset field is simply
the value of the noff parameter to this constructor.

This analysis identifies a set of candidate fields. The anal-
ysis chooses one of the candidate fields, then splits the class
along the possible values that can appear in the field. Our
current implementation uses profiling to select the field that
will provide the largest space savings; our policy takes both
the size of the field and the percentage of objects that have
the same value for that field. In our example, the analysis
identifies the offset field as the best candidate and splits
the class on that field. We can apply this idea recursively
to the new program to obtain the benefits of splitting on
multiple fields.

In this example all of the relevant fields are private,
which would, in principle, enable an implementation to ap-

2See Section 3.5 for a precise definition.

public final class SmallString {
private final char value[];
private final int count;
int getOffset() { return 0; }
...
public char charAt(int i) {

return value[getOffset()+i];
}

}
public final class BigString extends SmallString {

private final int offset;
int getOffset() { return offset; }

}

Figure 3: Static specialization of java.lang.String.

public SmallString substring(int start)
{

int noff = offset + start;
int ncnt = count - start;
if (noff==0)

return new SmallString(value, noff, ncnt);
else

return new BigString(value, noff, ncnt);
}

Figure 4: Dynamic selection among specialized
classes in a method from java.lang.String.

ply the optimization with an analysis of only the String

class. Our analysis, however, is powerful enough to examine
the rest of the program and discover the facts required to
apply the optimization in the absence of private or final

declarations and even for fields accessed outside their declar-
ing class.

2.3 Field Externalization
In the string example discussed above, it was possible to

determine which version of the specialized class to use at
object allocation time. In some cases, however, a given field
may almost always have a given value, even though it is not
possible to statically determine when the value might be
changed or which objects will contain fields of that value.
In such cases we apply another optimization, field external-
ization. This optimization removes the field from the class,
replacing fields whose values differ from the default value
with hash table entries that map objects to values. If an
object/value mapping is present in the hash table, that en-
try provides the value of the removed field. If there is no
mapping for a given object, the field is assumed to have
the default value. In our current implementation, we use
profiling to identify the default value.

In this scheme, writes to the field are converted into a
check to see if the new value of the field is the default value.
If so, the generated code simply removes any old mappings
for that object from the hash table. If not, the generated
code replaces any old mapping with a new mapping record-
ing the new value.

2.4 Hash/Lock Externalization
Our currently implemented system applies field external-

ization in a general way to any field in the object. We would,
however, like to highlight an especially useful extension of
the basic technique. Java implementations typically store an
object hash code and lock information in the object header.
For many objects, however, the program never actually uses
the hash code or lock information. Our implemented sys-
tem therefore uses a variant of field externalization called
hash/lock externalization. This variant allocates all objects

without the hash code and lock information fields in the
header, then lazily creates the fields when necessary. Specif-
ically, if the program ever uses the hash code or lock infor-
mation, the generated code creates the hash code or lock
information for the object, then stores this information in a
table mapping objects to their hash code or lock informa-
tion.3

Note that, in general, this transformation (as well as field
externalization) may actually increase space usage. But in
practice, we have found that our set of benchmark programs
rarely uses these fields. The overall result is a substantial
space savings. The combination of class pointer compres-
sion and hash/lock elimination can produce a common-case
object header size of one byte—one byte for a class index
and no space at all for hash code or lock.

3. ANALYSIS ALGORITHMS
In this section we will present details of the analyses that

enable our transformations.

3.1 Rapid Type Analysis
We start with a rapid type analysis [8] to collect the set

of instantiated classes and callable methods. This analy-
sis allows us to generate a conservative call graph for the
program, using the known receiver type at the call-site and
its set of instantiated subclasses in the hierarchy. Based
on the class hierarchy, we can also tag all leaf classes as
final, regardless of whether the source code contained this
modifier. Methods which are not overridden, based on the
hierarchy, are also marked final, and calls with a single re-
ceiver method are devirtualized. We also remove uncallable
methods and assign non-conflicting slots to interface meth-
ods using a graph-coloring algorithm. The results of some
class casts and instanceof operations can also be deter-
mined statically using these results.

Our analysis keeps separate the set of mentioned and in-
stantiated classes. Although the program can contain type-
checks on and method-invocations of abstract, interface, or
otherwise uninstantiated classes, every object in the heap
must belong to one of the instantiated class types. The
size of the set of instantiated classes is quite small for a
typical Java program, and over half of the benchmarks in
SPECjvm98 have less than 256 instantiated class types.4

We use this information to replace the class pointer in the
object header, which identifies the type of the object, with a
one-byte index into a small lookup table. The jess, javac,
and jack benchmarks require more than one byte of index,
but a two byte index amply suffices in these three cases.

3.2 Bitwidth Analysis
We use a flow-sensitive interprocedural combined value-

propagation and bitwidth analysis to find constant values,
unread and constant fields, and to reduce field sizes where
possible. Since almost all types in Java are signed (with the
exception of the 16-bit char), we must be able to describe
bitwidths of both negative and positive numbers, which we
do by splitting the set of values into negative, zero, and pos-
itive parts, and describing the bitwidth of each individually.

3The object’s address is used as its key when field exter-
nalization is done. The garbage collector is responsible for
updating the field entries if it moves objects, by rehashing
on the new address.
4Note that all have more than 256 total class types.

−〈m, p〉 = 〈p, m〉

〈ml, pl〉 + 〈mr, pr〉 = 〈1 + max(ml, mr), 1 + max(pl, pr)〉

〈ml, pl〉 × 〈mr, pr〉 =

fi

max(ml + pr, pl + mr),
max(ml + mr, pl + pr)

fl

〈0, pl〉 ∧ 〈0, pr〉 = 〈0, min(pl, pr)〉

〈ml, pl〉 ∧ 〈mr, pr〉 = 〈max(ml, mr), max(pl, pr)〉

Figure 5: Some combination rules for bitwidth
analysis of arithmetic and bitwise-logical operators.
Note that the penultimate entry is a special-case
rule that only applies if the neither of the arguments
can be negative.

We abstract non-singleton sets of integer values into a
tuple 〈m, p〉 where m ≥ 1 + blog

2
Nc for all negative N

in the set, and p ≥ 1 + blog
2
Nc for positive N . We use

m = p = 0 to represent the constant zero. Some combina-
tion rules for arithmetic operations are shown in Figure 5.
The rules for simple arithmetic operators should be self-
evident upon examination (adding two N bit integers yields
at most an N + 1-bit integer, for example) although care
must be taken to ensure that combinations of negative and
positive integers are handled correctly. Our implementa-
tion contains additional rules giving it greater precision for
common special cases, such as multiplication by a one-bit
quantity, division by a constant, and (as the figure shows)
bitwise operations on positive numbers.

3.2.1 Treatment of Fields
Dataflow on this bitwidth lattice is performed on the en-

tire Java program interprocedurally. The analysis is field-
based [13]: for each field f in class X, the analysis uses the
abstract analysis value X.f to represent all of the values in
the f field of instances of X. The analysis therefore models
an assignment to f in any instance of X as an assignment
to the corresponding analysis value X.f .5 The result of the
analysis is a bitwidth specification for each variable and field
in the program. We also identify constant variables and
fields; we replace reads of constant fields with their constant
value and eliminate the field. Fields for which no reads are
found (even if writes are present) are also eliminated.6

3.2.2 Other Details
Our analysis handles method calls by merging the lat-

tice values of the method parameters at the call site with
the formal parameters of the method. Similarly, the return
value of the method is propagated back to all call-sites. Our
compiler’s intermediate representation handles thrown ex-
ceptions by treating the method return value as a tuple,
and the call site as a conditional branch. The “normal re-
turn value” is assigned and the first branch taken on a nor-
mal method return, and the “exceptional return value” is
assigned and the second branch taken when an exception is
thrown from the method.

Our implementation of this analysis is actually context-
sensitive, with a user-defined context length. All results

5An obvious extension is to use pointer analysis to discrim-
inate between fields allocated at different program points.
6Note that checks which may throw exceptions on reads and
writes are preserved.

total % alloc’ed
Benchmark fields unread constant space saved
compress 298 75 31 2.5%
jess 485 91 43 9.9%
raytrace 341 75 30 0.0%
db 286 75 35 0.0%
javac 531 85 34 0.6%
mpegaudio 286 75 35 1.4%
mtrt 341 75 30 0.0%
jack 378 77 31 10.2%

Table 1: Number of unused and constant fields in
SPEC benchmarks, and the savings realized (in %
of total dynamic allocated bytes) by removing them.

presented here were obtained with the context set to zero;
we saw no clear benefit from 1- or 2-deep calling contexts,
and the increase in analysis time was considerable.

Space does not permit us to describe the remaining de-
tails of the full analysis, including the extension of the value
lattice to handle the full range of Java types, the class hier-
archy, null and String constants, and fixed-length arrays.
We refer the interested reader to [5] for an exhaustive de-
scription of the intraprocedural analysis.

In Table 1 we show the number of unread and constant
fields found by this analysis in our benchmark set. Table 2
shows the space reductions due to bitwidth analysis and field
reduction using our byte packing strategy.

3.3 Definite Initialization Analysis
Java field semantics dictate that uninitialized fields must

have the value zero (or null, for pointer fields). It may seem,
then, that the starting lattice value for every integer field
should be 0. This starting value, however, prevents us from
finding nonzero field constants in the program: a simple
initialization statement like x=5 will assign x the value 0u5,
which is not equal to 5!7

We perform a definite initialization analysis to remedy
this problem and restore precision to our analysis. For ex-
ample, with only constructor A1 in the following code, field
f will get the lattice value 5:

public class A {
int f;
A1(...) { f = 5; }
A2(...) { /* no assignment to f */ }

}

Without constructor A2 in the class, we say that field f is
definitely initialized because every constructor of A assigns
a value to f before returning or calling an unsafe method.
Adding constructor A2 allows the default 0 value of f to be
seen; f is then no longer definitely initialized.

We actually allow the constructor great flexibility with
regard to definite initialization; it is free to call any method
which does not read A.f before finally executing a definite
initializer. We construct a mapping from methods to all
fields which they may read, in a flow-insensitive manner, and
compute a transitive closure of this map over the call graph
to determine a “safe set” of methods which the constructor
may call before a definite initialization of f. As long as
control flow may not pass to a method not in the safe set
before f is written, then f is definitely initialized.

7On the SCC lattice of [22], 0u 5 = > (but see footnote 8).

static field bits % alloc’ed
Benchmark before after space saved
compress 7591 5430 3.0%
jess 13349 10634 30.1%
raytrace 7467 5296 0.9%
db 6777 4983 0.3%
javac 11560 8161 5.4%
mpegaudio 6777 4983 1.5%
mtrt 7467 5296 0.9%
jack 8356 6037 17.2%

Table 2: Number of field bits in SPEC benchmarks
statically removed due to bitwidth analysis, and the
dynamic savings (in % of total allocated bytes) of
field bitwidth reduction using byte packing.

When performing bitwidth analysis, definitely-initialized
fields are allowed to start at ⊥ in the dataflow lattice.8 All
other fields must start at value 0, which will make it impossi-
ble for the field to represent a nonzero constant value. The
results of the definite initialization analysis are also used
when profiling mostly-constant fields, as described in the
next section.

3.4 Profiling Mostly-Constant Fields
To inform the static specialization and field externaliza-

tion transformations, we instrument a profiling build of the
code to determine which fields are mostly-constant. Our im-
plementation builds one binary per examined constant, that
is, one binary to look for “mostly-zero” fields, a separate
binary to look for fields which are usually “one”, a third
binary to look for fields commonly “two”, and so forth. We
built eleven binaries for each benchmark, looking for field
default values in the interval [−5, 5]. For pointer fields, we
only look for null as a default value. It should be stressed
that our use of multiple separate binaries was solely for ease
of implementation, and is not an inherent limitation of the
technique.

Our instrumentation pass starts by adding a counter per
class to record the number of times each exact class type is
instantiated. We also add per-field counters which are incre-
mented the first time a non-N value is stored into a certain
field.9 By comparing the number of times the class (thus
field) is instantiated and the number of times the field is set
to a non-N value, we can determine the amount of mem-
ory recoverable by applying a “mostly-N” transformation
to the field, whether static specialization or field external-
ization. We use this potential savings to guide our selection
of fields for static specialization, using the field and default
value which the profile indicates will yield the largest gain.
If static specialization isn’t an option, the proportion of non-
N fields helps indicate whether externalization is likely to
result in a net savings; see Section 4.2 for further discussion.

There is one last detail to attend to: when looking for
nonzero N values, the default zero value of uninitialized
fields becomes a problem. For these cases, we use the definite-
initialization analysis described in the previous section to

8We use ⊥ for “nothing known” and > for “under-
constrained”; another segment of the compiler community
commonly reverses these definitions.
9Note that implementing this counter requires storing an
additional bit per field during profiling to record whether a
non-N value has been seen previously.

always-zero field bytes zero benchmark
Benchmark Field bytes dyn. alloc’d % total dyn. alloc’n
compress Hashtable$Entry.next 3,552 / 7,148 49.7% 105MB

String.offset 3,180 / 3,500 90.9%
jess jess.Token.negcnt 7,573,616 / 7,573,616 100.0% 252MB

jess.Value.floatval 5,688,080 / 10,170,640 55.9%
raytrace Point.z 4,101,328 / 17,464,188 23.5% 126MB

Point.x 3,291,076 / 17,464,188 18.8%
db String.offset 508,204 / 508,524 99.9% 73MB

Vector.capacityIncrement 62,548 / 62,548 100.0%
javac String.offset 3,735,388 / 3,847,816 97.1% 161MB

Statement.labels 578,608 / 578,688 100.0%
mpegaudio Hashtable$Entry.next 3,616 / 7,336 49.3% 666kB

String.offset 2,352 / 2,672 88.0%
jack String.offset 7,442,956 / 7,443,276 100.0% 178MB

Hashtable$Enumerator.type 5,288,364 / 5,288,364 100.0%

Table 3: Representative “mostly-zero” fields found in SPEC benchmarks.

increment the “non-N” counter on any path where the field
in question is not definitely initialized.

Table 3 presents some representative “mostly-zero” fields
which our profiling technique identifies in the SPEC bench-
marks.

3.5 Finding Subclass-Final Fields
Our static specialization transformation can only be ap-

plied to what we call subclass-final fields. Subclass-finality is
a less strict but similar constraint to Java’s final modifier.
We do a single-pass analysis to determine subclass-finality,
using the results from the bitwidth analysis to improve our
precision.10

A subclass-final field f of a class A can be written to from
any method of a subclass of A, as well as in any constructor
of A. In each write, the receiver’s type must be a subtype
of A, except inside A’s constructors, where the receiver may
also be the method’s this parameter. Other writes are dis-
allowed. Unlike fields marked with Java’s final modifier,
multiple writes to f are permitted, as long as each write
satisfies the above constraints.

Subclass-finality matches the requirements of the static
specialization transformation. Since we always insert a “big”
version of the class between the specialized class and its
children, subclasses can write to the field present in objects
of the “big” type without restriction. We need only restrict
writes which occur in the class proper.

Our analysis constructs the set of subclass-final fields by
finding its dual, the set of non-subclass-final fields. We scan
every method and collect all fields with illegal writes; all
fields found are added to the set of non-subclass-final fields.

3.6 Constructor Classification
The final requirement to enable static specialization is to

identify constructors which always initialize certain fields
in a given way. In particular, we wish to find constructors
which always give fields statically–known-constant values, as
well as constructors which initialize fields with simple func-
tions of their input parameters. The first case enables us to
unconditionally replace an instantiated class with a smaller
split version; the second case allows us to wrap the construc-
tor in an appropriate conditional to enable the creation of

10By using analysis rather than relying on programmer spec-
ification, the author need not restrict all users of their code
in order to obtain maximum efficiency for some constrained
uses of it.

the small version when dynamically possible.
This analysis builds upon our previous results. In a single

pass over the constructor, we merge the values written to a
selected subclass-final field, treating ParamN as an abstract
value for the Nth constructor parameter. We treat any call
to a this() constructor as if it were inlined. By the prop-
erties of subclass-final fields, we know that all writes to the
field are to the this object and that there are no bad writes
to the field outside of the constructor. If the merged value
at the end of the pass is a Param value or a constant equal
to the desired “default” value of the selected field, then we
can statically specialize on the field for calls to this partic-
ular constructor. Further, we rule out specialization on any
otherwise-suitable fields for which there is not at least one
callable constructor amenable to static specialization.

4. IMPLEMENTATION ISSUES
In this section we will talk briefly about some of the prac-

tical issues arising in an implementation of our space-saving
techniques.

4.1 Byte Packing
A typical Java implementation may waste large amounts

of space by aligning fields for the most efficient memory ac-
cess. Fields are often aligned to their widths (a 4-byte field
will be placed at an address which is an even multiple of
4, for example), and the object as a whole is often placed
on a double-word boundary. Our implementation places ob-
ject fields at the nearest byte boundary, although the in-
formation provided by our bitwidth analysis is sufficient to
bit-pack the fields in the object when space is truly at a pre-
mium. Preliminary investigation indicated that the amount
of additional space gained by bit-packing is typically only a
few percent, because there aren’t enough sub-byte fields to
fill the space “wasted” by byte alignment.11

Some architectures penalize unaligned accesses to fields.
It is worthwhile to attempt to align fields to their preferred
alignment while not allowing this alignment to cause the
object size to grow. Further, there are often forced alignment

11Note also that “bit-packing” may lead to the loss of atom-
icity on concurrent writes to adjacent fields packed within
a byte, typically the processor’s smallest atomic write size.
An escape analysis would be sufficient to ensure that fields
accessed from differing threads are not packed within the
same atomic unit.

constraints on (for example) pointers. Our Java runtime
uses a conservative garbage collector; its efficiency decreases
markedly if pointers are not word-aligned.12

Our “byte-packing” heuristic achieves tight packing of
fields while respecting forced alignments. Packing proceeds
recursively through superclasses, and returns a list of free-
space intervals available between the fields of the superclass.
The algorithm first places all forced-alignment fields in the
class, from largest to smallest. The aim is for the alignment-
induced spaces left by the large fields to be fillable by the
following smaller fields.

When there are no more forced-alignment fields, we at-
tempt to allocate fields on their “preferred” alignment bound-
aries, largest first. At this stage fields are not allowed to in-
troduce an alignment gap at the end of the object. If their
preferred alignment does not allow them to be placed flush
against the last field of the object, they are skipped.

Finally, when there are no more fields satisfying preferred-
alignments, we allocate the smallest available field at the
lowest possible byte boundary. The aim is that the small
fields will fill space and nudge the end of the object out so
that a larger field may be allocated on its preferred align-
ment. After each field is placed, we begin again by attempt-
ing to place fields on preferred boundaries.

We have observed that this heuristic strategy works well
in practice, and the penalties for occasionally placing an
unaligned non-pointer field were not seen to have a material
adverse effect on performance (see Section 5.3).

4.2 External Hashtable Implementation
The implementation of the hashtable used for field and

hash/lock externalization can dramatically affect the space
savings possible with these transformations. The overhead
of dynamically-allocated buckets and the required next point-
ers makes separate chaining impractical as a hashtable im-
plementation technique. Open-addressing implementations
are preferable: in addition to the stored data, all that is nec-
essary is a key value and the empty space required to limit
the load factor. A load factor of two-thirds and one-word
keys and values yield an average space consumption of three
words per field. This implementation breaks even when the
mostly-zero fields identified are zero over 66% of the time.
This break-even point is compared to the profiling data to
allow our field externalization transformation to intelligently
choose targeted fields.

Key-size reduction is an important component of the im-
plementation: a näıve approach would combine a one-word
reference to the virtual-container object and a one-word field
identifier for a two-word key. The large key will shift the
break-even point up so that only fields which are 82% zero
will profit. Instead, we can offset the object reference (up
to the limit of its size) by small integers to discriminate the
externalized fields of the object, yielding a single-word key.

Our implementation puts a weak reference to the object
in the hashtable, enabling the garbage collector to remove
unneeded entries.

4.3 Class Loading and Reflection
We conducted this research using the MIT FLEX compiler

infrastructure,13 which is a whole-program static compiler.

12This pointer alignment restriction means that objects have
to be word-aligned as well.

13Available from http://flexc.lcs.mit.edu/.

Although the analyses as described reflect this compilation
model, it would be straightforward to use extant analysis
[18] to apply transformations to only the closed-world por-
tions of a program which used dynamic class loading. The
space allocated to the class index could be updated during
garbage collection as new classes are discovered. Concur-
rent profiling could actually expose more opportunities for
space compression in a JIT environment. Finally, our vari-
ous transformations need not be exposed to the program if
the reflection implementation is carefully written.

5. EXPERIMENTAL RESULTS
We have implemented all of the analyses and transfor-

mations described in this paper in FLEX. We measure the
effectiveness of our optimizations by using FLEX to analyze
the SPECjvm98 benchmarks and apply our transformations,
then measuring the resulting space savings and performance.
All benchmarks were run with the full input size on a dual-
processor 900 MHz Pentium III running Debian Linux.

5.1 Memory Savings
To evaluate the effectiveness of our technique at reducing

the amount of memory required to execute the program, we
first ran an instrumented version of each application with
no space optimizations. We used this instrumented version
to compute the maximum amount of live data on the heap
at any point during the execution. We then ran an instru-
mented version of our program after each stage of optimiza-
tion. These versions enabled us to calculate the amount
by which each technique reduced the size of the live heap
data.14

Figure 6a presents the total space savings. This figure
contains a bar for each application, with the bar broken
down into categories that indicate the percentage of live data
from the original unoptimized execution that we were able
to eliminate with each optimization. The black section of
each bar indicates the amount of live heap data remaining
after all optimizations. We obtain as much as 40% reduc-
tion in live data on the javac benchmark, with almost all of
this reduction coming from our bitwidth-driven field reduc-
tions and static specialization. In fact we obtain more than
15% reduction on all of the “object-oriented” benchmarks.
The compress benchmark allocates a small number of very
large arrays, limiting the optimization opportunities discov-
erable by our analysis. Likewise, the raytrace and mtrt

benchmarks make heavy use of floating-point numbers, lim-
iting the applicability of our integer bitwidth analysis. How-
ever, these raytracing benchmarks allocate a large number
of small arrays to represent vectors and matrices, and so our
header optimizations still allow us to reduce the maximum
live data size by over 20%.

We also used an instrumented executable to determine the
total amount of memory allocated during the entire execu-
tion of the program, in both the optimized and unoptimized
versions. Reducing this total allocation decreases the load
on the garbage collector. Figure 6b presents the space sav-
ings according to this metric. Comparison to the previous
figure reveals that long-lived objects provide proportionally
more opportunities for optimization.

14The instrumented versions collect all non-live data before
each allocation, so that our computed maximum heap sizes
are accurate.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100
Pe

rc
en

t R
ed

uc
tio

n
in

 M
ax

im
um

 L
iv

e
H

ea
p

Si
ze

Class Pointer Compression
Field Reduction
Static Specialization
Field Externalization
Hash/Lock Externalization
Other

(a) Reduction in the maximum live heap achieved with
our transformations.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100

Pe
rc

en
t o

f T
ot

al
 (O

bj
ec

t a
nd

 A
rr

ay
) B

yt
es

 A
llo

ca
te

d

Class Pointer Compression
Field Reduction
Static Specialization
Field Externalization
Hash/Lock Externalization
Other

(b) Cumulative reduction in dynamic allocation
achieved with our transformations.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100

Pe
rc

en
t o

f O
bj

ec
t B

yt
es

 A
llo

ca
te

d

Class Pointer Compression
Field Reduction
Static Specialization
Field Externalization
Hash/Lock Externalization
Other

(c) Reduction in non-array dynamic allocation achieved
with our transformations.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100

%
 T

ot
al

 D
yn

am
ic

 A
llo

ca
tio

n

Other object fields
Pointer fields
Array allocations

(d) Pre-transformation allocation breakdown between
arrays and objects, with allocations attributable to

fields of pointer type split out.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

1

E
xe

cu
tio

n
tim

e,
 n

or
m

al
iz

ed
 to

 n
o-

op
tim

iz
at

io
n

ca
se

Claz Compression
add Field Reduction to previous
add Byte Packing to previous
add Static Specialization to previous
add Field Externalization to previous
add Hash/Lock Externalization to previous

(e) Runtime performance of space optimizations.

Figure 6: Experimental results of space optimization transformations.

5.2 Objects Versus Arrays
The majority of our optimizations are designed to op-

timize object fields rather than arrays. For context, we
present numbers that characterize the reductions in total
allocation for objects only, rather than for both objects and
arrays. Figure 6c presents space savings numbers for objects
alone, omitting any storage required for arrays. Figure 6d
explains the difference by showing how the total program al-
location for each benchmark is broken down into array and
object allocations. The reason for our poor performance on
compress is now obvious—a few large uncompressible inte-
ger arrays account for over 99% of the total space allocated.

5.3 Execution Times
We next evaluate the execution time impact of applying

our space optimizations. Figure 6e presents the normalized
execution times of each benchmark after the application of
our sequence of optimizations. These numbers show that the
first several optimizations (class pointer compression, field
reduction, and byte packing) typically reduce the execution
times, while the remainder (static specialization, field exter-
nalization, and hash/lock externalization) generate modest
increases in the execution times. The speedup is due to re-
duced GC times, despite the indirection and misalignment
costs. Static specialization’s virtualization of fields is re-
sponsible for its slowdown; it is likely that an optimized
speculatively-inlined implementation of the field accessors
which it adds to the program would improve its performance.
Field externalization (including hash/lock externalization)
causes the expected penalty for hashtable lookup; note that
synchronization elimination would greatly reduce the cost of
hash/lock externalization in the four cases where the over-
head is unreasonable.

6. RELATED WORK
Many researchers have focused on the problem of reduc-

ing the amount of header space required to represent Java
locks [7, 15, 1]. The vast majority of programs do not use
the lock associated with every object in its full generality,
so it is possible to develop improved algorithms optimized
for the common case. The idea is to represent the lock with
the minimum amount of state (typically a bit) required to
support the common usage pattern of an acquire followed by
a release, and to back off to a more elaborate scheme only
when the thread exhibits a more complex pattern such as
nested locking. The primary focus has been on improving
performance rather than on reducing space; however, many
of the algorithms also eliminate the need to store the com-
plicated locking objects required to support the most gen-
eral lock usage pattern possible in a Java program. These
techniques typically reduce the lock space overhead to 24
header bits [7]; Bacon et al. in [6] show speed improvements
from header-size reduction, in agreement with the results
presented here.

Research on escape analysis and related analyses can en-
able the compiler to find objects whose locks are never ac-
quired [3, 9, 23, 11, 16, 20]. This information can enable the
compiler to remove the space reserved for synchronization
support in these objects. Our hash/lock removal algorithm
uses a totally dynamic approach based on our field external-
ization mechanism.

Several researchers have used bitwidth analysis to reduce
the size of the generated circuits for compilers that gener-

ate hardware implementations of programs written in C or
similar programming languages [4, 5, 17, 19, 10].

Dieckmann and Hölzle have performed an in-depth analy-
sis of the memory allocation behavior of Java programs [12].
Although space is not their primary focus, their study does
quantify the space overhead associated with the use of a
two-word header and of 8-byte alignment. In general, our
measurements of the memory system behavior of Java pro-
grams broadly agree with their measurements.

Sweeney and Tip [21] did a study of dead members of
C++ programs, which is similar to the unread field elimi-
nation done by our bitwidth analysis. However, they fail to
identify constant members, as our analysis algorithm can.
Further, our results show that unread and constant field
elimination is very dependent on the coding style of a par-
ticular application. The collection of techniques we have
presented here gives much more consistent savings over a
wide range of benchmarks.

Aggarwal and Randall [2] described an array bounds check
removal method using related fields. This work attempted
to discover fields, such as Vector.size, which are guar-
anteed to be less than or equal to the length of some ar-
ray, for example, the backing array stored in Vector.data.
Tests against the related field could then provide informa-
tion about bounds checks on accesses to the array. This
technique could be used to infer additional bitwidth infor-
mation on related fields from our analysis.

Marinov and O’Callahan have presented Object Equal-
ity Profiling [14], a technique which identifies when several
instances of an object may be safely merged to a single rep-
resentative instance. The merging which is suggested is an
orthogonal memory-saving measure which could be used in
addition to the ones described here.

Zhang and Gupta describe a runtime technique that rec-
ognizes two special cases when an integer or a pointer field in
a designated C data structure may be compressed [24]. For
all but two of their benchmarks, their heap savings (on these
benchmarks, an average of 27%) are entirely due to a pointer
compression techique which is orthogonal to the transfor-
mations described in this paper. The techniques could be
combined for greater savings.

7. CONCLUSIONS
We have presented a set of techniques for reducing the

memory consumption of object-oriented programs. Our tech-
niques include program analyses to detect unused, constant,
or overly-wide fields, and transformations to eliminate fields
with common default values or usage patterns. These tech-
niques apply equally well to both user-defined fields and
fields implicit in the runtime’s object header, and can reduce
the maximum heap required for a program by as much as
40%. Our experimental results from our fully-implemented
system validate the opportunity for space savings on typical
object oriented programs.

8. REFERENCES
[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel,

Y. Ramakrishna, and D. White. An efficient meta-lock
for implementing ubiquitous synchronization. In
Proceedings of the 14th Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications, pages 207–222, Denver, Colorado,
November 1999.

[2] Aneesh Aggarwal and Keith H. Randall. Related field
analysis. In Proceedings of the ACM SIGPLAN ’01
Conference on Programming Language Design and
Implementation (PLDI), pages 214–220, Snowbird,
Utah, June 2001.

[3] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers.
Static analyses for eliminating unnecessary
synchronization from Java programs. In Proceedings of
the 6th International Static Analysis Symposium,
pages 19–38, September 1999.

[4] C. Scott Ananian. Silicon C: A hardware backend for
SUIF. Available from http://flexc.lcs.mit.edu/

SiliconC/paper.pdf, May 1998.

[5] C. Scott Ananian. The static single information form.
Technical Report MIT-LCS-TR-801, Massachusetts
Institute of Technology, 1999. Available from http://

www.lcs.mit.edu/publications/pubs/pdf/

MIT-LCS-TR-801.pdf.

[6] David F. Bacon, Stephen J. Fink, and David Grove.
Space- and time-efficient implementation of the Java
object model. In B. Magnusson, editor, Proceedings of
the 16th European Conference on Object-Oriented
Programming, volume 2374 of Lecture Notes in
Computer Science, pages 111–132, Málaga, Spain,
June 2002.

[7] David F. Bacon, Ravi Konuru, Chet Murthy, and
Mauricio Serrano. Thin locks: Featherweight
synchronization for Java. In Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language
Design and Implementation (PLDI), pages 258–268,
Montreal, Canada, 1998.

[8] David F. Bacon and Peter F. Sweeney. Fast static
analysis of C++ virtual function calls. In Proceedings
of the 11th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
pages 324–341, California, 1996.

[9] Jeff Bogda and Urs Hölzle. Removing unnecessary
synchronization in Java. In Proceedings of the 14th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 35–46,
Denver, Colorado, November 1999.

[10] Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen
Goldstein. BitValue inference: Detecting and
exploiting narrow bitwidth computations. In
Proceedings of the 2000 Europar Conference, volume
1900 of Lecture Notes in Computer Science, Munich,
Germany, August 2000. Springer Verlag.

[11] Jong-Deok Choi, Manish Gupta, Mauricio Serrano,
Vugranam C. Sreedhar, and Sam Midkiff. Escape
analysis for Java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 1–19, Denver,
Colorado, November 1999.

[12] Sylvia Dieckmann and Urs Hölzle. A study of the
allocation behavior of the SPECjvm98 Java
benchmarks. In Proceedings of the 13th European
Conference on Object-Oriented Programming, August
1999.

[13] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing
analysis using CLA: A million lines of C code

in a second. In Proceedings of the ACM SIGPLAN ’01
Conference on Programming Language Design and
Implementation (PLDI), pages 254–263, Snowbird,
Utah, June 2001.

[14] Darko Marinov and Robert O’Callahan. Object
equality profiling. Submitted to OOPSLA ’03, 2003.

[15] Tamiya Onodera and Kiyokuni Kawachiya. A study of
locking objects with bimodal fields. In Proceedings of
the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
pages 223–237, Denver, Colorado, November 1999.

[16] Erik Ruf. Effective synchronization removal for Java.
In Proceedings of the ACM SIGPLAN ’00 Conference
on Programming Language Design and
Implementation (PLDI), pages 208–218, Vancouver,
Canada, June 2000.

[17] Radu Rugină and Martin Rinard. Symbolic bounds
analysis of pointers, array indices, and accessed
memory regions. In Proceedings of the ACM
SIGPLAN ’00 Conference on Programming Language
Design and Implementation (PLDI), pages 182–195,
Vancouver, Canada, June 2000.

[18] Vugranam C. Sreedhar, Michael Burke, and
Jong-Deok Choi. A framework for interprocedural
optimization in the presence of dynamic class loading.
In Proceedings of the ACM SIGPLAN ’00 conference
on Programming language design and implementation,
pages 196–207. ACM Press, 2000.

[19] Mark Stephenson, Jonathan Babb, and Saman
Amarasinghe. Bitwidth analysis with application to
silicon compilation. In Proceedings of the ACM
SIGPLAN ’00 Conference on Programming Language
Design and Implementation (PLDI), pages 108–120,
Vancouver, Canada, June 2000.

[20] Alexandru Sălcianu and Martin Rinard. Pointer and
escape analysis for multithreaded programs. In
Proceedings of the 8th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 12–23, Snowbird, Utah, June 2001.

[21] Peter F. Sweeney and Frank Tip. A study of dead
data members in C++ applications. In Proceedings of
the ACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation (PLDI), pages
324–332, Montreal, Canada, 1998.

[22] Mark N. Wegman and F. Kenneth Zadeck. Constant
propagation with conditional branches. ACM
Transactions on Programming Languages and
Systems, 13(2):181–210, April 1991.

[23] John Whaley and Martin Rinard. Compositional
pointer and escape analysis for Java programs. In
Proceedings of the 14th Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications, pages 187–206, Denver, Colorado,
November 1999.

[24] Youtao Zhang and Rajiv Gupta. Data compression
transformations for dynamically allocated data
structures. In International Conference on Compiler
Construction, volume 2304 of Lecture Notes in
Computer Science, pages 14–28, Grenoble, France,
April 2002. Springer Verlag.

