Size Optimizations for Java
Programs

C. Scott Ananian

cananian@Ics.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Size Optimizations for Java Programs -

Our Goal

Reduce the memory consumption of object-oriented
programs

By

Using program analysis to identify opportunities to
reduce the space required to store objects,

Then

Applying transformations to reduce the memory
consumption of the program.

Size Optimizations for Java Programs -

Structure of a Java Object
 Typical of many O-O languages.

object reference

V object class description:

hashcode/lock inheritance information
method dispatch tables
etc.

field slot O

optional object info:

persistent hashcode
monitor locks
"native” data

Size Optimizations for Java Programs -

Strategy

Size Optimizations for Java Programs -

Strategy

Push hard on all the bits.

claz pointer

hashcode/lock
field slot O

Size Optimizations for Java Programs -

How to compress objects

Three broad technigues:

claz pointer

hashcode/lock
field slot O

Size Optimizations for Java Programs

How to compress objects

Three broad technigues:

e Field compression claz pofnter

hashcode/lock

ot O e
d siot 1]
lield siot 2 s

00

Size Optimizations for Java Programs

How to compress objects

Three broad technigues:

Field compression

« Mostly-constant field *m loto B

fiald clant 4
field siot 1

elimination

Size Optimizations for Java Programs

How to compress objects

Three broad technigues:

Field compression

- Mostly-constant field =~ TN —~-

PR PR S |
field siot 1

elimination

Size Optimizations for Java Programs

How to compress objects

Three broad technigues:

e Field compression claz pofnter

hashcode/lock

« Mostly-constant field 1t el
.. . dslot1 B o
elimination icld slot 2 s

 Header optimizations

o

Size Optimizations for Java Programs A

Field Compression

Reduce the space taken up by an object’s fields.

class Car {

Int color:;

Size Optimizations for Java Programs -

Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

class Car {

Int color:;

Size Optimizations for Java Programs -

Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

class Car {

Int color:

} BLACK=0

Size Optimizations for Java Programs -

Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

 Bitwidth analysis to discover tight upper bounds
on field size.

class Car {

Int color:

} BLACK=0

Size Optimizations for Java Programs -

Field Compression

Reduce the space taken up by an object

's flelds.

o Sparse Predicated Typed Constant analysis to

discover unread/unused/constant fie

ds.

 Bitwidth analysis to discover tight up
on field size.

ner bounds

class Car {

Int color:

} BLACK=0

Size Optimizations for Java Programs -

Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

 Bitwidth analysis to discover tight upper bounds
on field size.

« Field packing into bytes or bits.

class Car {

Int color:

} BLACK=0

Size Optimizations for Java Programs -

How are these analyses
performed?

Size Optimizations for Java Programs -

Intraprocedural Analysis

Int foo() {
if (...)
=
else
1=2;
if (i>0)
}

Size Optimizations

for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///

Size Optimizations for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) -

Size Optimizations for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) -

Size Optimizations for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///

| = 1111

Size Optimizations for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///

L

| =1

[Because L. C 1 and 1 C 1]

Size Optimizations for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) -

Size Optimizations for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///

| =1712

Size Optimizations for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \N\ ///

L

| =11M12=T

[Because 1C T and 2 C T]

Size Optimizations

for Java Programs ¢

Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \N\ ///

L

| =17112=T

[Because 1C T and 2 C T]

Size Optimizations

for Java Programs ¢

A signed integer lattice

T
(MZP)

MZ) (M_P) (ZP)

(-_P)

N/\

An integer lattice for signed integers. A classification into nega-
tive (M), positive (P), or zero (Z) is grafted onto the standard flat

i nteg er CO nStant d O m al n . Size Optimizations for Java Programs —

A signed integer lattice

T
(MZP)

MZ) (M_P) (ZP)

(-_P)

N/\

An integer lattice for signed integers. A classification into nega-
tive (M), positive (P), or zero (Z) is grafted onto the standard flat

i nteg er CO nStant d O m al n . Size Optimizations for Java Programs —

A signed integer lattice

T
(MZP)

(MZ) (M_P) (ZP)

(-_P)

N/\

An integer lattice for signed integers. A classification into nega-
tive (M), positive (P), or zero (Z) is grafted onto the standard flat

i nteg er CO nStant d O m al n . Size Optimizations for Java Programs —

A signed integer lattice

T
(MZP)

MZ) (M_P) (ZP)

(-_P)

N/\

An integer lattice for signed integers. A classification into nega-
tive (M), positive (P), or zero (Z) is grafted onto the standard flat

i nteg er CO nStant d O m al n . Size Optimizations for Java Programs —

Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) (ZP)
else (M) (—P)
=2 7N SN
’ 92 1 (Z) 1 2
e NN
5 (=)
1
}

Size Optimizations for Java Programs —:

Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) (ZP)
else (M) (—P)
=2 7N SN
’ 92 1 (Z) 1 2
e NN
5 (=)
1
}

Size Optimizations for Java Programs —:

Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) (ZP)
else (M) (—P)
=2 7N SN
’ 92 1 (Z) 1 2
e NN
5 (=)
1
}

| = 1111

Size Optimizations for Java Programs —:

Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) (ZP)
else (M) (—P)
=2 7N SN
’ 92 1 (Z) 1 2
e NN
5 (=)
1
}

Size Optimizations for Java Programs —:

Example, redux

Int foo() { -
it (...) L),
I=1; (MZ) (M_P) (-ZP)
else (M) (—P)
=k /\ 0 /\
’ 92 1 (Z) 1 2
e NN
5 ()
A1
}

Size Optimizations for Java Programs —:

Example, redux

Int foo() { -
it (...) L),
I=1; (MZ) (M_P) (-ZP)
else (M) (—P)
=k /\ 0 /\
’ 92 1 (Z) 1 2
e NN
5 ()
A1
}

| =1712

Size Optimizations for Java Programs —:

Example, redux

Int foo() {
if (...)
1=1:
else
1=2;
if (i>0)
}

(MZP)

T

MZ) (MP) (ZP)

<o g
/2\1 0 1/2\

(-Z)

[z

(-

i —1M12=(_P)

L

)

Size Optimizations for Java Programs —:

Example, redux

Int foo() {
if (...)
1=1:
else
1=2;
if (i>0)
}

(MZP)

T

MZ) (MP) (ZP)

<o g
/2\1 0 1/2\

(-Z)

[z

(-

i —1r2=(_P)

L

)

Size Optimizations for Java Programs —:

Extending the lattice

Replace Mand P in previous lattice entries with
positive integers m and p. Encode zero as m = p = 0.

Size Optimizations for Java Programs —.

Extending the lattice

Replace Mand P in previous lattice entries with
positive integers m and p. Encode zero as m = p = 0.

(--P) =(0,p)
(M_) = (m,0)
(.Z) = (0,0)

Size Optimizations for Java Programs —.

Extending the lattice

Replace Mand P in previous lattice entries with
positive integers m and p. Encode zero as m = p = 0.

(--P) =(0,p)
(M_) = (m,0)
(.Z) = (0,0)

(0,31)

In lattice context: (_P) = (0, 3)

<O] 1 > Size Optimizations for Java Programs —.

Bitwidth lattice detall

(0,31)

<\
N\

1 23 ... 2321

<O,\%

Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M-P) (ZP)
else (M2) (—P)

Size Optimizations

for Java Programs —

Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M_P) (ZP)
else (M2) (—P)

Size Optimizations

for Java Programs —

Example, redux redux

Int foo() {
if (...)
1=1;
else
1=2;
if (i>0)
}

.
(MZP)

MZ) (MP) (ZP)

| = 1111

Size Optimizations

for Java Programs —

Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M_P) (ZP)
else (M2) (—P)

Size Optimizations

for Java Programs —

Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M-P) (ZP)
else (M2) (—P)

Size Optimizations

for Java Programs —

Example, redux redux

Int foo() {
if (...)
=
else
1=2;
if (i>0)
}

.
(MZP)

MZ) (MP) (ZP)

| =1712

Size Optimizations

for Java Programs —

Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M-P) (ZP)
else (M2) (—P)

Size Optimizations

for Java Programs —

Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M-P) (ZP)
else (M2) (—P)

Size Optimizations

for Java Programs —

Bitwidth combination rules

(my, pr) + (M, pr) = <1 + max(my, m,), 1 + max(p;, pr))
mMax{my; +— Py, Pi + m?“)a
mp, X rylMr] —
(my, pi) X {my, pr) <maxmzmr,pz+pr) >
(0,p1) A {0, p,) = (0, min(p;, pr))
(my,p1) N\ {my,pr) = (max(my,m,), max(py,py))

Some combination rules for bit-width analysis.

Size Optimizations for Java Programs —!

Interprocedural analysis

Int foo() {
if (...)
=i
else
=2,
if (i>0)
}

Size Optimizations

for Java Programs —¢

Interprocedural analysis

Int foo() {
if (...)
this.f=1;
else
this.f=2;
if (this.f>0)

Size Optimizations

for Java Programs —¢

Interprocedural analysis

iInt foo() {
Int foo() { this.f=1;
if (...) }
this.f=1; int bar() {
else this.f=2;
this.f=2; }
if (this.f>0) int bar() {
; If (this.f>0)

Size Optimizations

for Java Programs —¢

All cars are black

void paint(int color) {
If (this.model == FORD)
color = BLACK;
this.color = color;

Size Optimizations for Java Programs —

Field compression using bitwidths

hashcode/lock hashcode/lock

field slot O
field slot 1
field slot 2

Size Optimizations for Java Programs —

Fleld packing

Standard packing word-aligns the object and aligns each field to the width of its type (4-byte data is 4-byte aligned):

urm sad unusad unusad urm sad
1 (24 bits) w o (Sbitsy = (1 hbit)

“Byte” alignment byte-aligns the object and all fields:

urmead unusead

| ox 0 e |
fnt %3 /v actusl videh 24 bivs 4/

x (24 bits) = byte y; /* actual width 6 bits */
. . . Gbitsy (1B) boolean z; /* actual width 1 bit */
“Bit” alignment requires no alignment of objects or fields:

[x [yl

x 24 bitg)

(5 bits) (1 bit)

Object header omitted.

Size Optimizations for Java Programs —

How to compress objects

Three broad technigues:

Field compression

« Mostly-constant field *m loto B

fiald clant 4
field siot 1

elimination
 Header optimizations

Size Optimizations for Java Programs —

Mostly-constant field elimination

o It’s easy to remove constant fields.

Size Optimizations

for Java Programs

Mostly-constant field elimination

o It’s easy to remove constant fields.
« Key idea: remove mostly constant fields.

Size Optimizations for Java Programs —:

Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value
“most of the time.”

Size Optimizations for Java Programs —:

Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value

“most of the time.”
e Static analysis/profiling.

Size Optimizations for Java Programs —:

Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value

“most of the time.”
e Static analysis/profiling.

« Transform objects to remove fields w/ the
common value.

Size Optimizations for Java Programs —:

Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value
“most of the time.”
e Static analysis/profiling.

« Transform objects to remove fields w/ the
common value.
o Static specialization/externalization.

Size Optimizations for Java Programs —:

Specialization example:

java.lang.String

public final class String {
private final char valuef];
private final int offset;
private final int count;

public char charAt(int 1) {
return value[offset+1];
}
public String substring(int start) {
Int noff = offset + start;
int ncnt = count - start;
return new String(value, noff, ncnt);

Size Optimizations for Java Programs —.

Key properties

To use static specialization we need:

A field with a frequently-occuring value.
e String.offset IS almost always zero.

 The value of the field must never be modified
after the object Is created.

Size Optimizations for Java Programs —.

Transforming the class

We will split String into two classes:

« SmallString without the field.
e BigString with the field.

We will use SmallString for all instances where the
offset field is zero (our “mostly-constant” value).

Size Optimizations for Java Programs —

Transforming the class

We will split String into two classes:

« SmallString without the field.
e BigString with the field.

We will use SmallString for all instances where the
offset field is zero (our “mostly-constant” value).

Problems:

Size Optimizations for Java Programs —

Transforming the class

We will split String into two classes:
« SmallString without the field.
e BigString with the field.

We will use SmallString for all instances where the
offset field is zero (our “mostly-constant” value).

Problems:

e The code could directly access the
to-be-removed field.

Size Optimizations for Java Programs —

Transforming the class

We will split String into two classes:
« SmallString without the field.
e BigString with the field.

We will use SmallString for all instances where the
offset field is zero (our “mostly-constant” value).

Problems:

e The code could directly access the
to-be-removed field.

 Allocation sites directly instantiate the old class.

Size Optimizations for Java Programs —

Specialization example:

java.lang.String

public final class String {
private final char valuef];
private final int offset;
private final int count;

public char charAt(int i) {
return value[offset+1];
}
public String substring(int start) {
int noff = offset + start;
int ncnt = count - start;
return new String(value, noff, ncnt);

Size Optimizations for Java Programs —!

Specialization example:

java.lang.String

public final class SmallString {
private final char valuef];

nrivate final int offset:

private final int count;

public char charAt(int i) {
return value[offset+1];
}
public String substring(int start) {
int noff = offset + start;
int ncnt = count - start;
return new String(value, noff, ncnt);

Size Optimizations for Java Programs —!

Specialization example:

java.lang.String

public final class SmallString {
private final char valuel];
nrivate final int offset:
private final int count;
protected int getOffset() { return O; }

public char charAt(int i) {
return value[getOffset() +1];

}
public String substring(int start) {
int noff = getOffset() + start;
int ncnt = count - start;
return new String(value, noff, ncnt);
}

Size Optimizations for Java Programs —!

Specialization example:

java.lang.String

public final class SmallString {
private final char valuel];

private final int count;
protected int getOffset() { return O; }

public char charAt(int i) {
return value[getOffset()+i];

}

}

public final class BigString extends SmallString {
private final int offset ;
protected int getOffset() { return offset; }

}

Size Optimizations for Java Programs —

Transforming allocation sites

Case 1: field 1s constant in constructor.
String s = new String (new char[] {a’, 'b’, 'c’});

String (char[] val) {

this.value (char[]) val.clone();
this.offset 0)

this.count = val.length;

Size Optimizations for Java Programs —

Transforming allocation sites

Case 1: field 1s constant in constructor.
SmallString s = new SmallString (new char[] {a’, 'b’, 'c’});

SmallString (char[] val) {

this.value = (char[]) val.clone();
this offset = 0O
this.count = val.length;

Size Optimizations for Java Programs —

Transforming allocation sites

Case 2: field i1s simple function of constructor

parameter.

String s = new String(new char[] {'a’, 'b’

String(char[] val, int offset, int length) {

this.value
this.offset
this.count

X, 1);

(char[]) val.clone();
offset;

length;

, 'C'},

Size Optimizations for Java Programs —

Transforming allocation sites

Case 2: field i1s simple function of constructor
parameter.

SmallString s;

If (x==0)

s = new SmallString (new char[] {'a’, 'b’, 'c’}, x, 1);
else

s = new BigString (new char[] {a’, 'b’, 'c’}, x, 1);

Size Optimizations for Java Programs —

Transforming allocation sites

Case 3: assignment to field is unknown.

String S = new String (s, o, I);

String (char[] val, int offset, int length) {
this.value = (char[]) val.clone();
while (length>0 && value[offset]=="") {
offset++; length-;
}
this.offset = offset;
this.count = length;

Size Optimizations for Java Programs —

Transforming allocation sites

Case 3: assignment to field is unknown.
BigString s = new BigString (s, o, |);

BigString (char[] val, int offset, int length) {
this.value = (char[]) val.clone();
while (length>0 && value[offset]==" ") {
offset++; length-;
}
this.offset = offset;
this.count = length;

Size Optimizations for Java Programs —

Static specialization

Split class implementations into “field-less” and
“field-ful” versions.

Use virtual accessor functions to hide this split
from users of the class.

Done at compile time, on fields which can be
shown to be compile-time constants, thus “static.”

 Fields can not be mutated after the
constructor completes.

Can be done recursively on multiple fields.

* Profiling guides splitting order if there are
multiple candidates.

Size Optimizations for Java Programs —

Key properties (revisited)

To use static specialization we need:

A field with a frequently-occuring value.
e String.offset IS almost always zero.

 The value of the field must never be modified
after the object Is created.

Size Optimizations for Java Programs —:

Key properties (revisited)

To use static specialization we need:

A field with a frequently-occuring value.
e String.offset IS almost always zero.

« The value of the field must never be modified
after the opjeci s created

Size Optimizations for Java Programs —:

Creating external fields

e Sometimes fields are run-time constants (or
nearly so) but not compile-time constants.

Size Optimizations for Java Programs —.

Creating external fields

e Sometimes fields are run-time constants (or
nearly so) but not compile-time constants.

 Examples: sparse matrices, “two-input nodes”
In Jess expert system, the “next” field in short
linked lists.

Size Optimizations for Java Programs —.

Creating external fields

e Sometimes fields are run-time constants (or
nearly so) but not compile-time constants.

 Examples: sparse matrices, “two-input nodes”

In Jess expert system, the “next” field in short
linked lists.

o Exploit fleld—map duality to reduce memory
overhead in the common case.

Size Optimizations for Java Programs —.

Fields and Maps

* Accessing an object field a.b (where a is the
object reference and b is the field name) is

equivalent to evaluating a map from (a, b) to the
value type.

Size Optimizations for Java Programs —.

Fields and Maps

* Accessing an object field a.b (where a is the
object reference and b is the field name) is

equivalent to evaluating a map from (a, b) to the
value type.

 The mapping we will implement will be
iIncomplete. We define the result of accessing a
non-existing mapping to be 1.

Size Optimizations for Java Programs —.

Fields and Maps

* Accessing an object field a.b (where a is the
object reference and b is the field name) is

equivalent to evaluating a map from (a, b) to the
value type.

 The mapping we will implement will be
iIncomplete. We define the result of accessing a
non-existing mapping to be 1.

e To achieve our storage savings, we map L to the
frequent “mostly-constant” value.

Size Optimizations for Java Programs —.

EXternalization exampie:

java.lang.String

public final class String {

private final char valuef];

private final int offset;

private final int count;

public char charAt(int 1) {
return value[offset+1];

}

public String substring(int start) {
int noff = offset + start;
Int ncnt = count - start;
return new String(value, noff, ncnt);

Size Optimizations for Java Programs —

EXternalization exampie:

java.lang.String

public final class String {

private final char valuef];

nrivate final int offset:

private final int count;

public char charAt(int 1) {
return value[offset+1];

}

public String substring(int start) {
int noff = offset + start;
Int ncnt = count - start;
return new String(value, noff, ncnt);

Size Optimizations for Java Programs —

EXternalization exampie:

java.lang.String

public final class String {
private final char valuel];
nrivate final int offset:
private final int count;
public char charAt(int i) {
return value| getOffset() +1];

}
public String substring(int start) {
int noff = getOffset() + start;
Int ncnt = count - start;
return new String(value, noff, ncnt);
}
protected int getOffset() {
Intege r | = External.map.get(this, "offset");
if (i==null) return O;
else return iintValue();
}

Size Optimizations for Java Programs —

External map implementation

Open —addressed Hashtable

e “open addressed” for low
Value overhead.

Size Optimizations for Java Programs —!

External map implementation

Open—addressed Hashtable

e “open addressed” for low
overhead.

e |oad-factor of 2/3

Object Field
 Object | Field

iect ' Field |Vvalu

Key Value

Size Optimizations for Java Programs —!

External map implementation

Open—addressed Hashtable

e “open addressed” for low
overhead.

N0 zzz

» load-factor of 2/3

At 5 . two-word key and one-word
values means break-even
point Is 82%

Key Value

Size Optimizations for Java Programs —!

External map implementation

Open—addressed Hashtable

e “open addressed” for low
overhead.

e |oad-factor of 2/3

* two-word key and one-word
values means break-even
point iIs 82%

(i.e. field may not differ from the “mostly-constant”

value in more than 18% of objects.)

Key Value

Size Optimizations for Java Programs —!

We can do better!

* Use small integers to enumerate
fields.

Open—addressed Hashtable

Object + Field
Object+F|eId

Object + Field

Object + Field

Size Optimizations for Java Programs —

We can do better!

* Use small integers to enumerate
Open—addressed Hashtable :
fields.

Object + Field

* Offset the object pointer by the
field index to get a 1-word key.

Size Optimizations for Java Programs —

We can do better!

* Use small integers to enumerate
Open—addressed Hashtable :
fields.

 Object + Field_| Value _

e Offset the object pointer by the
field index to get a 1-word key.

 Object + Field

ARCUC AN NGIEN * Limits the number of fields which
Object + Field may be externalized, based on

| .
N the size of the object.

Key Value

Size Optimizations for Java Programs —

We can do better!

* Use small integers to enumerate
Open—addressed Hashtable :
fields.

 Object + Field_| Value _

e Offset the object pointer by the
field index to get a 1-word key.

 Object + Field

ARCUC AN NGIEN * Limits the number of fields which
Object + Field may be externalized, based on

| .
N the size of the object.

* One-word key and one-word
value lowers break-even point to
66%.

Key Value

Size Optimizations for Java Programs —

Other detalls

» Use value profiling to identify classes where field
externalization will be worthwhile.

Size Optimizations for Java Programs —

Other detalls

» Use value profiling to identify classes where field
externalization will be worthwhile.

 In our experiments, looked for integer
“mostly-constant” values in the range |—5, 5] for
numeric types. Only looked at null as a
candidate for pointer types.

Size Optimizations for Java Programs —

Other detalls

» Use value profiling to identify classes where field
externalization will be worthwhile.

 In our experiments, looked for integer
“mostly-constant” values in the range |—5, 5] for
numeric types. Only looked at null as a
candidate for pointer types.

e 0 and 1 by far the most common.

Size Optimizations for Java Programs —

How to compress objects

Three broad technigues:

Field compression

- Mostly-constant field BTN —~-

PR PR S |
field siot 1

elimination ficld siot 2

Size Optimizations for Java Programs —

Header optimizations:

Hashcode/Lock compression

claz pointer
hashcode/lock
field slot O field slot O
field slot 1
field slot 2

Header optimizations:

Hashcode/Lock compression

* Implemented as a special case of field
externalization.

Size Optimizations for Java Programs —

Header optimizations:

Hashcode/Lock compression

* Implemented as a special case of field
externalization.
e The hashcode/lock field often unused because:

 Most objects do not use their built-in
hashcode.

* Most objects are not synchronization targets.

Size Optimizations for Java Programs —

Header optimizations:

Hashcode/Lock compression

* Implemented as a special case of field
externalization.
e The hashcode/lock field often unused because:

 Most objects do not use their built-in

hashcode.
* Most objects are not synchronization targets.

e Could also use a static pointer analysis.

Size Optimizations for Java Programs —

Header optimizations:

claz compression

claz pointer pointer

hashcode/lock hashcode/lock
field slot O field slot O

Size Optimizations for Java Programs —:

Header optimizations:

claz compression

» replace claz pointer with a (smaller) table index.

Size Optimizations for Java Programs —.

Header optimizations:

claz compression

» replace claz pointer with a (smaller) table index.

 With co-operation of GC, works in dynamic
environments.

Size Optimizations for Java Programs —.

Header optimizations:
claz compression
» replace claz pointer with a (smaller) table index.

 With co-operation of GC, works in dynamic
environments.

 Many applications use less than 256 object types.

Size Optimizations for Java Programs —.

Class statistics

Class statistics for applications in SPECjvm98

benchmar

400

350

w
)
o

N
al
(@)

Number of object classes
P [)
(@] (@)] (@]
(@] o (@]

A
o

o

K

suite:

200_check201_compress 202_jess205 raytrace 209_db 213 javac222_mpegaudio227_mtrt 228 jack

Benchmarks

Size Optimizations for Java Programs —.

How well does it work?

Size Optimizations

for Java Programs —

Reduction In total allocations

Percent of Total (Object and Array) Bytes Allocated

100

80

60

40

20

Claz compression
Field Reduction
Static Specialization

Field Externalization
Hash/Lock Externalization
Other i

=R Wl

201_compress

202_jess

205_raytrace 209 _db 213 javac 222 _mpegaudio 227_mtrt 228 jack

SPECjvm98 Benchmarks

Size Optimizations for Java Programs —!

Percent Reduction in Maximum Live Heap Size

Reduction In total live data

100

80

G10)

40

20

Claz compression
Field Reduction
Static Specialization

Field Externalization
Hash/Lock Externalization
Other i

=Rl

201 _compress

202_jess

205 _raytrace 209 _db 213 javac 222 _mpegaudio 227 _mtrt 228 jack

SPECjvm98 Benchmarks

Size Optimizations for Java Programs —

Avallable reduction opportunities

Other object fields
BN Pointer fields :
[1 Array allocations |

100 l
80
60
40
20 I I
0

201_compress 202_jess 205_raytrace 209 _db 213 javac 222 mpegaudio 227_mtrt 228 _jack

% Total Dynamic Allocation

IIIIIIIIII|IIIIIIIIII|IIIIIIIIII|IIIIIIIIL

Benchmarks

Size Optimizations for Java Programs —

Reduction in object allocations

100
= " e m
o 80 _
e
(4]
&)
O - i
<
w I PR—
O 60
]
>
m — -
e
&)
=
O 40— _
@)
5 Claz compression
= = Field Reduction
(<} Static Specialization
S 20— M Field Externalization I
S_) Hash/Lock Externalization
= Other f
201_compress 202_jess 205 _raytrace 209 _db 213 javac 222_mpegaudio 227_mtrt 228 jack

SPECjvm98 Benchmarks

Size Optimizations for Java Programs —

Moderate performance impact

Claz Compression
add Field Reduction to previous -
add Byte Packing to previous

add Static Specialization to previous

add Field Externalization to previous

B add Hash/Lock Externalization to previous

201_compress 202_jess 205 raytrace 209 _db 213 javac 222 _mpegaudio 227_mtrt 228 jack

SPECjvm98 Benchmarks

Execution time, normalized to no-optimization case

Size Optimizations for Java Programs —

How can we make this even better?

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

Size Optimizations for Java Programs —

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

Size Optimizations for Java Programs —

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.

Size Optimizations for Java Programs —

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.
* Investigate region-based/enumerated approaches.

Size Optimizations for Java Programs —

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.
* Investigate region-based/enumerated approaches.

 The mostly-constant analysis requires profiling.

Size Optimizations for Java Programs —

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.
* Investigate region-based/enumerated approaches.

 The mostly-constant analysis requires profiling.
* |nvestigate heuristic methods.

Size Optimizations for Java Programs —

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.
* Investigate region-based/enumerated approaches.

 The mostly-constant analysis requires profiling.
* |nvestigate heuristic methods.

« \WWe know nothing about “field-like” maps.

Size Optimizations for Java Programs —

How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.
* Investigate region-based/enumerated approaches.

 The mostly-constant analysis requires profiling.
* |nvestigate heuristic methods.

« \WWe know nothing about “field-like” maps.
e Enable internalization.

Size Optimizations for Java Programs —

Conclusions

Size Optimizations for Java Programs —:

Conclusions

* \WWe achieved substantial space savings on typical
object-oriented applications.

Size Optimizations for Java Programs —:

Conclusions

* \WWe achieved substantial space savings on typical
object-oriented applications.

e In one case, over 40% reduction In total live
data.

Size Optimizations for Java Programs —:

Conclusions

* \WWe achieved substantial space savings on typical
object-oriented applications.

e In one case, over 40% reduction In total live
data.

e Even more space reduction is possible!

Size Optimizations for Java Programs —:

Conclusions

* \WWe achieved substantial space savings on typical
object-oriented applications.

e In one case, over 40% reduction In total live
data.

e Even more space reduction is possible!
« Performance impact was acceptable.

Size Optimizations for Java Programs —:

The Graveyard Of Unused Slides
follows this point.

Avallable reduction opportunities

300 M

Other object fields |

B Pointer fields |
1 Array allocations |

200_check 201 _compress 202_jess 205 _raytrace 209 db 213 javac 222 mpegaudlo 227 _mtrt 228 _jack

200 M

100 M

Total dynamic allocation (bytes)

Benchmarks

Size Optimizations for Java Programs —.

Bitwidth analysis

Motivation:

« Tedious and error-prone for programmer to
manually specify widths.

struct foo {
Int x:24:
Int y:5;

int z:1;

Size Optimizations for Java Programs —

Bitwidth analysis

Motivation:

« Tedious and error-prone for programmer to
manually specify widths.

struct foo { void foo() {
Int x:24; Int x:24;
int y:5; int y:5;
int z:1; int z:1;
b

Size Optimizations for Java Programs —

Bitwidth analysis

Motivation:

« Tedious and error-prone for programmer to
manually specify widths.

struct foo { void foo() { void foo() {
nt x:24: Int x:274: int x, vy, z,
Int y:5; ait y:5;
int z:1; int z:1;
b }
}

e The compiler can do it for us!

Size Optimizations for Java Programs —

	Our Goal
	Structure of a Java Object
	Strategy
	How to compress objects
	How to compress objects
	Field Compression
	How are these analyses performed?
	Intraprocedural Analysis
	A signed integer lattice
	Example, redux
	Extending the lattice
	Bitwidth lattice detail
	Example, redux redux
	Bitwidth combination rules
	Interprocedural analysis
	All cars are black
	Field compression using bitwidths
	Field packing
	How to compress objects
	Mostly-constant field elimination
	Specialization example:\small java.lang.String
	Key properties
	Transforming the class
	Specialization example:\small java.lang.String
	Specialization example:\small java.lang.String
	Transforming allocation sites
	Transforming allocation sites
	Transforming allocation sites
	Static specialization
	Key properties (revisited)
	Creating external fields
	Fields and Maps
	Externalization example:\small java.lang.String
	External map implementation
	We can do better!
	Other details
	How to compress objects
	Header optimizations:\small Hashcode/Lock compression
	Header optimizations:\small Hashcode/Lock compression
	Header optimizations:\small claz compression
	Header optimizations:\small claz compression
	Class statistics
	How well does it work?
	Reduction in total allocations
	Reduction in total live data
	Available reduction opportunities
	Reduction in object allocations
	Moderate performance impact
	How can we make this even better?
	Conclusions
	The Graveyard Of Unused Slides follows this point.
	Available reduction opportunities
	Bitwidth analysis

