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Our Goal

Reduce the memory consumption of object-oriented
programs

By

Using program analysis to identify opportunities to
reduce the space required to store objects,

Then

Applying transformations to reduce the memory
consumption of the program.
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Structure of a Java Object
 Typical of many O-O languages.

object reference

V object class description:

hashcode/lock inheritance information
method dispatch tables
etc.

field slot O

optional object info:

persistent hashcode
monitor locks
"native” data
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Strategy
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Strategy

Push hard on all the bits.

claz pointer

hashcode/lock
field slot O
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How to compress objects

Three broad technigues:

claz pointer

hashcode/lock
field slot O
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How to compress objects

Three broad technigues:

e Field compression claz pofnter

hashcode/lock

ot O e
d siot 1 ]
lield siot 2 s

00
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How to compress objects

Three broad technigues:

Field compression

« Mostly-constant field *m loto B

fiald clant 4
field siot 1

elimination
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How to compress objects

Three broad technigues:

Field compression

- Mostly-constant field =~ TN —~-

PR PR S |
field siot 1

elimination
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How to compress objects

Three broad technigues:

e Field compression claz pofnter

hashcode/lock

« Mostly-constant field 1t el
.. . dslot1 B o
elimination icld slot 2 s

 Header optimizations

o
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Field Compression

Reduce the space taken up by an object’s fields.

class Car {

Int color:;
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Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

class Car {

Int color:;

Size Optimizations for Java Programs -



Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

class Car {

Int color:

} BLACK=0
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Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

 Bitwidth analysis to discover tight upper bounds
on field size.

class Car {

Int color:

} BLACK=0
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Field Compression

Reduce the space taken up by an object

's flelds.

o Sparse Predicated Typed Constant analysis to

discover unread/unused/constant fie

ds.

 Bitwidth analysis to discover tight up
on field size.

ner bounds

class Car {

Int color:

} BLACK=0
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Field Compression

Reduce the space taken up by an object’s fields.

o Sparse Predicated Typed Constant analysis to
discover unread/unused/constant fields.

 Bitwidth analysis to discover tight upper bounds
on field size.

« Field packing into bytes or bits.

class Car {

Int color:

} BLACK=0
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How are these analyses
performed?
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Intraprocedural Analysis

Int foo() {
if (...)
=
else
1=2;
if (i>0)
}
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Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///
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Intraprocedural Analysis

Int foo() {
if (...) -
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Intraprocedural Analysis

Int foo() {
if (...) -
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Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///

| = 1111
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Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///

L

| =1

[Because L. C 1 and 1 C 1]
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Intraprocedural Analysis

Int foo() {
if (...) -
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Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \\ ///

| =1712
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Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \N\ ///

L

| =11M12=T

[Because 1C T and 2 C T]
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Intraprocedural Analysis

Int foo() {
if (...) T

=2 -1 0 1 2 ..

I (i>(i:;2; . \N\ ///

L

| =17112=T

[Because 1C T and 2 C T]
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A signed integer lattice

T
(MZP)

MZ) (M_P) ( ZP)

(-_P)

N/\

An integer lattice for signed integers. A classification into nega-
tive (M), positive (P), or zero (Z) is grafted onto the standard flat
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A signed integer lattice

T
(MZP)

MZ) (M_P) ( ZP)

(-_P)

N/\

An integer lattice for signed integers. A classification into nega-
tive (M), positive (P), or zero (Z) is grafted onto the standard flat
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Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) ( ZP)
else (M) (—P)
=2 7N SN
’ 92 1 (Z) 1 2
e NN
5 (=)
1
}
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Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) ( ZP)
else (M) (—P)
=2 7N SN
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5 (=)
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Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) ( ZP)
else (M) (—P)
=2 7N SN
’ 92 1 (Z) 1 2
e NN
5 (=)
1
}
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Example, redux

Int foo() { -
it (...) L),
=1; (MZ) (M_P) ( ZP)
else (M) (—P)
=2 7N SN
’ 92 1 (Z) 1 2
e NN
5 (=)
1
}
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Example, redux

Int foo() { -
it (...) L),
I=1; (MZ) (M_P) ( -ZP)
else (M) (—P)
=k /\ 0 /\
’ 92 1 (Z) 1 2
e NN
5 ()
A1
}
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Example, redux

Int foo() { -
it (...) L),
I=1; (MZ) (M_P) ( -ZP)
else (M) (—P)
=k /\ 0 /\
’ 92 1 (Z) 1 2
e NN
5 ()
A1
}

| =1712
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Example, redux

Int foo() {
if (...)
1=1:
else
1=2;
if (i>0)
}

(MZP)

T

MZ) (MP) ( ZP)

<o g
/2\1 0 1/2\

(-Z)

[z

(-

i —1M12=(_P)

L

)
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Example, redux

Int foo() {
if (...)
1=1:
else
1=2;
if (i>0)
}

(MZP)

T

MZ) (MP) ( ZP)

<o g
/2\1 0 1/2\

(-Z)

[z

(-

i —1r2=(_P)

L

)
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Extending the lattice

Replace Mand P in previous lattice entries with
positive integers m and p. Encode zero as m = p = 0.
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Extending the lattice

Replace Mand P in previous lattice entries with
positive integers m and p. Encode zero as m = p = 0.

(--P) =(0,p)
(M_) = (m,0)
(.Z) = (0,0)
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Extending the lattice

Replace Mand P in previous lattice entries with
positive integers m and p. Encode zero as m = p = 0.

(--P) =(0,p)
(M_) = (m,0)
(.Z) = (0,0)

(0,31)

In lattice context: (_P) = (0, 3)

<O ] 1 > Size Optimizations for Java Programs —.



Bitwidth lattice detall

(0,31)

<\
N\

1 23 ... 2321

<O,\%



Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M-P) ( ZP)
else (M2) (—P)
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Example, redux redux
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Example, redux redux

Int foo() {
if (...)
1=1;
else
1=2;
if (i>0)
}

.
(MZP)

MZ) (MP) ( ZP)

| = 1111
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Example, redux redux

Int foo() {

_
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Example, redux redux

Int foo() {
if (...)
=
else
1=2;
if (i>0)
}

.
(MZP)

MZ) (MP) ( ZP)

| =1712
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Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M-P) ( ZP)
else (M2) (—P)
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Example, redux redux

Int foo() {

_
it (...) D7)

I=1; (MZ) (M-P) ( ZP)
else (M2) (—P)
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Bitwidth combination rules

(my, pr) + (M, pr) = <1 + max(my, m,), 1 + max(p;, pr))
mMax{my; +— Py, Pi + m?“)a
mp, X rylMr] —
(my, pi) X {my, pr) <maxmzmr,pz+pr) >
(0,p1) A {0, p,) = (0, min(p;, pr))
(my,p1) N\ {my,pr) = (max(my,m,), max(py,py))

Some combination rules for bit-width analysis.
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Interprocedural analysis

Int foo() {
if (...)
=i
else
=2,
if (i>0)
}
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Interprocedural analysis

Int foo() {
if (...)
this.f=1;
else
this.f=2;
if (this.f>0)
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Interprocedural analysis

iInt foo() {
Int foo() { this.f=1;
if (...) }
this.f=1; int bar() {
else this.f=2;
this.f=2; }
if (this.f>0) int bar() {
; If (this.f>0)

Size Optimizations
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All cars are black

void paint(int color) {
If (this.model == FORD)
color = BLACK;
this.color = color;
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Field compression using bitwidths

hashcode/lock hashcode/lock

field slot O
field slot 1
field slot 2
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Fleld packing

Standard packing word-aligns the object and aligns each field to the width of its type (4-byte data is 4-byte aligned):

urm sad unusad unusad urm sad
1 (24 bits) w o (Sbitsy = (1 hbit)

“Byte” alignment byte-aligns the object and all fields:

urmead unusead

| ox 0 e |
fnt %3 /v actusl videh 24 bivs 4/

x (24 bits) = byte y; /* actual width 6 bits */
. . . Gbitsy (1B ) boolean z; /* actual width 1 bit */
“Bit” alignment requires no alignment of objects or fields:

[ x [yl

x 24 bitg)

(5 bits) (1 bit)

Object header omitted.
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How to compress objects

Three broad technigues:

Field compression

« Mostly-constant field *m loto B

fiald clant 4
field siot 1

elimination
 Header optimizations
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Mostly-constant field elimination

o It’s easy to remove constant fields.
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Mostly-constant field elimination

o It’s easy to remove constant fields.
« Key idea: remove mostly constant fields.
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Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value
“most of the time.”
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Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value

“most of the time.”
e Static analysis/profiling.
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Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value

“most of the time.”
e Static analysis/profiling.

« Transform objects to remove fields w/ the
common value.
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Mostly-constant field elimination

o It’s easy to remove constant fields.

« Key idea: remove mostly constant fields.

o |dentify fields which have a certain value
“most of the time.”
e Static analysis/profiling.

« Transform objects to remove fields w/ the
common value.
o Static specialization/externalization.
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Specialization example:

java.lang.String

public final class String {
private final char valuef];
private final int offset;
private final int count;

public char charAt(int 1) {
return value[offset+1];
}
public String substring(int start) {
Int noff = offset + start;
int ncnt = count - start;
return new String(value, noff, ncnt);
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Key properties

To use static specialization we need:

A field with a frequently-occuring value.
e String.offset IS almost always zero.

 The value of the field must never be modified
after the object Is created.
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Transforming the class

We will split String into two classes:

« SmallString  without the field.
e BigString  with the field.

We will use SmallString  for all instances where the
offset field is zero (our “mostly-constant” value).

Size Optimizations for Java Programs —



Transforming the class

We will split String into two classes:

« SmallString  without the field.
e BigString  with the field.

We will use SmallString  for all instances where the
offset field is zero (our “mostly-constant” value).

Problems:
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Transforming the class

We will split String into two classes:
« SmallString  without the field.
e BigString  with the field.

We will use SmallString  for all instances where the
offset field is zero (our “mostly-constant” value).

Problems:

e The code could directly access the
to-be-removed field.
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Transforming the class

We will split String into two classes:
« SmallString  without the field.
e BigString  with the field.

We will use SmallString  for all instances where the
offset field is zero (our “mostly-constant” value).

Problems:

e The code could directly access the
to-be-removed field.

 Allocation sites directly instantiate the old class.
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Specialization example:

java.lang.String

public final class String {
private final char valuef];
private final int offset;
private final int count;

public char charAt(int i) {
return value[offset+1];
}
public String substring(int start) {
int noff = offset + start;
int ncnt = count - start;
return new String(value, noff, ncnt);

Size Optimizations for Java Programs —!



Specialization example:

java.lang.String

public final class SmallString {
private final char valuef];

nrivate final int offset:

private final int count;

public char charAt(int i) {
return value[offset+1];
}
public String substring(int start) {
int noff = offset + start;
int ncnt = count - start;
return new String(value, noff, ncnt);
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Specialization example:

java.lang.String

public final class SmallString {
private final char valuel];
nrivate final int offset:
private final int count;
protected int getOffset() { return O; }

public char charAt(int i) {
return value[ getOffset() +1];

}
public String substring(int start) {
int noff = getOffset() + start;
int ncnt = count - start;
return new String(value, noff, ncnt);
}
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Specialization example:

java.lang.String

public final class SmallString {
private final char valuel];

private final int count;
protected int getOffset() { return O; }

public char charAt(int i) {
return value[getOffset()+i];

}

}

public final class BigString extends SmallString {
private final int offset ;
protected int getOffset() { return offset; }

}
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Transforming allocation sites

Case 1: field 1s constant in constructor.
String s = new String (new char[] {a’, 'b’, 'c’});

String (char[] val) {

this.value (char[]) val.clone();
this.offset 0)

this.count = val.length;
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Transforming allocation sites

Case 1: field 1s constant in constructor.
SmallString s = new SmallString  (new char[] {a’, 'b’, 'c’});

SmallString  (char[] val) {

this.value = (char[]) val.clone();
this offset = 0O
this.count = val.length;
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Transforming allocation sites

Case 2: field i1s simple function of constructor

parameter.

String s = new String(new char[] {'a’, 'b’

String(char[] val, int offset, int length) {

this.value
this.offset
this.count

X, 1);

(char[]) val.clone();
offset;

length;

, 'C'},
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Transforming allocation sites

Case 2: field i1s simple function of constructor
parameter.

SmallString s;

If (x==0)

s = new SmallString (new char[] {'a’, 'b’, 'c’}, x, 1);
else

s = new BigString (new char[] {a’, 'b’, 'c’}, x, 1);

Size Optimizations for Java Programs —



Transforming allocation sites

Case 3: assignment to field is unknown.

String S = new String (s, o, I);

String (char[] val, int offset, int length) {
this.value = (char[]) val.clone();
while (length>0 && value[offset]=="") {
offset++; length-;
}
this.offset = offset;
this.count = length;
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Transforming allocation sites

Case 3: assignment to field is unknown.
BigString s = new BigString (s, o, |);

BigString  (char[] val, int offset, int length) {
this.value = (char[]) val.clone();
while (length>0 && value[offset]==" ") {
offset++; length-;
}
this.offset = offset;
this.count = length;
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Static specialization

Split class implementations into “field-less” and
“field-ful” versions.

Use virtual accessor functions to hide this split
from users of the class.

Done at compile time, on fields which can be
shown to be compile-time constants, thus “static.”

 Fields can not be mutated after the
constructor completes.

Can be done recursively on multiple fields.

* Profiling guides splitting order if there are
multiple candidates.
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Key properties (revisited)

To use static specialization we need:

A field with a frequently-occuring value.
e String.offset IS almost always zero.

 The value of the field must never be modified
after the object Is created.
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Key properties (revisited)

To use static specialization we need:

A field with a frequently-occuring value.
e String.offset IS almost always zero.

« The value of the field must never be modified
after the opjeci s created
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Creating external fields

e Sometimes fields are run-time constants (or
nearly so) but not compile-time constants.
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Creating external fields

e Sometimes fields are run-time constants (or
nearly so) but not compile-time constants.

 Examples: sparse matrices, “two-input nodes”
In Jess expert system, the “next” field in short
linked lists.
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Creating external fields

e Sometimes fields are run-time constants (or
nearly so) but not compile-time constants.

 Examples: sparse matrices, “two-input nodes”

In Jess expert system, the “next” field in short
linked lists.

o Exploit fleld—map duality to reduce memory
overhead in the common case.
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Fields and Maps

* Accessing an object field a.b (where a is the
object reference and b is the field name) is

equivalent to evaluating a map from (a, b) to the
value type.
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Fields and Maps

* Accessing an object field a.b (where a is the
object reference and b is the field name) is

equivalent to evaluating a map from (a, b) to the
value type.

 The mapping we will implement will be
iIncomplete. We define the result of accessing a
non-existing mapping to be 1.
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Fields and Maps

* Accessing an object field a.b (where a is the
object reference and b is the field name) is

equivalent to evaluating a map from (a, b) to the
value type.

 The mapping we will implement will be
iIncomplete. We define the result of accessing a
non-existing mapping to be 1.

e To achieve our storage savings, we map L to the
frequent “mostly-constant” value.
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EXternalization exampie:

java.lang.String

public final class String {

private final char valuef];

private final int offset;

private final int count;

public char charAt(int 1) {
return value[offset+1];

}

public String substring(int start) {
int noff = offset + start;
Int ncnt = count - start;
return new String(value, noff, ncnt);
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EXternalization exampie:

java.lang.String

public final class String {

private final char valuef];

nrivate final int offset:

private final int count;

public char charAt(int 1) {
return value[offset+1];

}

public String substring(int start) {
int noff = offset + start;
Int ncnt = count - start;
return new String(value, noff, ncnt);
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EXternalization exampie:

java.lang.String

public final class String {
private final char valuel];
nrivate final int offset:
private final int count;
public char charAt(int i) {
return value| getOffset() +1];

}
public String substring(int start) {
int noff = getOffset() + start;
Int ncnt = count - start;
return new String(value, noff, ncnt);
}
protected int getOffset() {
Intege r | = External.map.get(this, "offset");
if (i==null) return O;
else return iintValue();
}
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External map implementation

Open —addressed Hashtable

e “open addressed” for low
Value overhead.
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External map implementation

Open—addressed Hashtable

e “open addressed” for low
overhead.

e |oad-factor of 2/3

Object  Field
 Object | Field

iect ' Field |Vvalu

Key Value
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External map implementation

Open—addressed Hashtable

e “open addressed” for low
overhead.

N0 zzz

» load-factor of 2/3

At 5 . two-word key and one-word
values means break-even
point Is 82%

Key Value
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External map implementation

Open—addressed Hashtable

e “open addressed” for low
overhead.

e |oad-factor of 2/3

* two-word key and one-word
values means break-even
point iIs 82%

(i.e. field may not differ from the “mostly-constant”

value in more than 18% of objects.)

Key Value
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We can do better!

* Use small integers to enumerate
fields.

Open—addressed Hashtable

Object + Field
Object+F|eId

Object + Field

Object + Field
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We can do better!

* Use small integers to enumerate
Open—addressed Hashtable :
fields.

Object + Field

* Offset the object pointer by the
field index to get a 1-word key.
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We can do better!

* Use small integers to enumerate
Open—addressed Hashtable :
fields.

 Object + Field_| Value _

e Offset the object pointer by the
field index to get a 1-word key.

 Object + Field

ARCUC AN NGIEN * Limits the number of fields which
Object + Field may be externalized, based on

| .
N the size of the object.

Key Value
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We can do better!

* Use small integers to enumerate
Open—addressed Hashtable :
fields.

 Object + Field_| Value _

e Offset the object pointer by the
field index to get a 1-word key.

 Object + Field

ARCUC AN NGIEN * Limits the number of fields which
Object + Field may be externalized, based on

| .
N the size of the object.

* One-word key and one-word
value lowers break-even point to
66%.

Key Value
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Other detalls

» Use value profiling to identify classes where field
externalization will be worthwhile.
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Other detalls

» Use value profiling to identify classes where field
externalization will be worthwhile.

 In our experiments, looked for integer
“mostly-constant” values in the range |—5, 5] for
numeric types. Only looked at null as a
candidate for pointer types.
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Other detalls

» Use value profiling to identify classes where field
externalization will be worthwhile.

 In our experiments, looked for integer
“mostly-constant” values in the range |—5, 5] for
numeric types. Only looked at null as a
candidate for pointer types.

e 0 and 1 by far the most common.
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How to compress objects

Three broad technigues:

Field compression

- Mostly-constant field BTN —~-

PR PR S |
field siot 1

elimination ficld siot 2
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Header optimizations:

Hashcode/Lock compression

claz pointer
hashcode/lock
field slot O field slot O
field slot 1
field slot 2




Header optimizations:

Hashcode/Lock compression

* Implemented as a special case of field
externalization.
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Header optimizations:

Hashcode/Lock compression

* Implemented as a special case of field
externalization.
e The hashcode/lock field often unused because:

 Most objects do not use their built-in

hashcode.
* Most objects are not synchronization targets.

e Could also use a static pointer analysis.
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Header optimizations:

claz compression

claz pointer pointer

hashcode/lock hashcode/lock
field slot O field slot O
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Header optimizations:

claz compression

» replace claz pointer with a (smaller) table index.
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 With co-operation of GC, works in dynamic
environments.

Size Optimizations for Java Programs —.



Header optimizations:
claz compression
» replace claz pointer with a (smaller) table index.

 With co-operation of GC, works in dynamic
environments.

 Many applications use less than 256 object types.
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Class statistics

Class statistics for applications in SPECjvm98

benchmar
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suite:

200_check201_compress 202_jess205 raytrace 209_db 213 javac222_mpegaudio227_mtrt 228 jack

Benchmarks
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How well does it work?
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Reduction In total allocations

Percent of Total (Object and Array) Bytes Allocated
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Percent Reduction in Maximum Live Heap Size

Reduction In total live data
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Avallable reduction opportunities

Other object fields
BN Pointer fields :
[ 1 Array allocations |

100 l
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Reduction in object allocations
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Moderate performance impact

Claz Compression
add Field Reduction to previous -
add Byte Packing to previous

add Static Specialization to previous

add Field Externalization to previous

B add Hash/Lock Externalization to previous

201_compress 202_jess 205 raytrace 209 _db 213 javac 222 _mpegaudio 227_mtrt 228 jack

SPECjvm98 Benchmarks

Execution time, normalized to no-optimization case
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o Currently no array analysis/can’t distinguish
between different uses of a class.
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How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.
* Investigate region-based/enumerated approaches.

 The mostly-constant analysis requires profiling.
* |nvestigate heuristic methods.

« \WWe know nothing about “field-like” maps.
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How can we make this even better?

o Currently no array analysis/can’t distinguish
between different uses of a class.

* Use pointer analysis to discriminate among objects
from a certain allocation-site; optimize each alloc site.

 We don’t compress pointers at all.
* Investigate region-based/enumerated approaches.

 The mostly-constant analysis requires profiling.
* |nvestigate heuristic methods.

« \WWe know nothing about “field-like” maps.
e Enable internalization.
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Conclusions

* \WWe achieved substantial space savings on typical
object-oriented applications.

e In one case, over 40% reduction In total live
data.

e Even more space reduction is possible!
« Performance impact was acceptable.
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The Graveyard Of Unused Slides
follows this point.



Avallable reduction opportunities

300 M

Other object fields |

B Pointer fields |
1 Array allocations |

200_check 201 _compress 202_jess 205 _raytrace 209 db 213 javac 222 mpegaudlo 227 _mtrt 228 _jack

200 M

100 M

Total dynamic allocation (bytes)

Benchmarks
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Bitwidth analysis

Motivation:

« Tedious and error-prone for programmer to
manually specify widths.

struct foo {
Int x:24:
Int y:5;

int z:1;
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Bitwidth analysis

Motivation:

« Tedious and error-prone for programmer to
manually specify widths.

struct foo { void foo() {
Int x:24; Int x:24;
int y:5; int y:5;
int z:1; int z:1;
b
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Bitwidth analysis

Motivation:

« Tedious and error-prone for programmer to
manually specify widths.

struct foo { void foo() { void foo() {
nt x:24: Int x:274: int x, vy, z,
Int y:5; ait y:5;
int z:1; int z:1;
b }
}

e The compiler can do it for us!
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