
590272-1732/06/$20.00 © 2006 IEEE Published by the IEEE computer Society

Researchers have proposed using
transactional memory as a flexible method by
which programs can read and modify dis-
parate primary memory locations atomically
in a single operation, much as a database
transaction can atomically modify many
records on disk.1-6 The basis of transactional
memory is atomic transactions, which offer a
method of providing mutual synchronization
without the protocol intricacies of conven-
tional synchronization methods such as locks.
We can think of a transaction as a sequence
of loads and stores performed as part of a pro-
gram. With transactional memory, unlike
databases, we need not concern ourselves with
failures, so we can arrange that transactions
either commit or abort. If a transaction com-
mits, all the loads and stores appear to have
run atomically with respect to other transac-
tions; that is, the transaction’s operations don’t
appear to have interleaved with those of other
transactions. If a transaction aborts, none of
its stores take effect and the transaction can
restart, using a back-off or priority mechanism
to guarantee forward progress. All the pro-
grammer must specify is where a transaction
begins and ends; the transactional support,
whether in hardware or software, handles all
the complexities.

Hardware transactional memory (HTM)

supports atomicity through architectural
means, whereas software transactional mem-
ory (STM) supports atomicity through lan-
guages, compilers, and libraries. Both HTM
and STM researchers say that transactions
need never touch many memory locations,
and hence it is reasonable to put a (small)
bound on their footprint, the set of memory
locations accessed by the transaction.

In contrast, this article advances the fol-
lowing thesis: Transactional memory should
be virtualized to support transactions of arbi-
trary footprint and duration. Such support
should be provided through hardware and be
made visible to software through the
machine’s instruction set architecture. We call
a transactional memory system unbounded if
the system can handle transactions of arbitrary
duration that have footprints nearly as big as
the system’s virtual memory.

The primary goal of unbounded transac-
tional memory is to make concurrent pro-
gramming easier without incurring much
implementation overhead. We are interested
in unbounded transactions because neither
programmers nor compilers can easily cope
with an architecturally imposed hard limit on
transaction size. An implementation might be
optimized for transactions below a certain size
but must still operate correctly for larger

C. Scott Ananian
Krste Asanović

Bradley C. Kuszmaul
Charles E. Leiserson

Massachusetts Institute of

Technology

Sean Lie
Advanced Micro Devices

TRANSACTIONAL MEMORY SHOULD BE VIRTUALIZED TO SUPPORT

TRANSACTIONS OF ARBITRARY FOOTPRINT AND DURATION. UNBOUNDED

TRANSACTIONAL-MEMORY ARCHITECTURES CAN ACHIEVE HIGH

PERFORMANCE IN THE COMMON CASE OF SMALL TRANSACTIONS, WITHOUT

SACRIFICING CORRECTNESS IN LARGE TRANSACTIONS.

UNBOUNDED TRANSACTIONAL
MEMORY

transactions. The transactional hardware’s size
should be an implementation parameter—
like cache size or memory size—that can vary
without affecting the portability of binaries.

In an earlier work,7 we proposed UTM, a
specific implementation of unbounded trans-
actional memory. UTM is a general and flex-
ible architecture. We also describe large
transactional memory (LTM), an evolutionary
step between today’s systems and truly
unbounded transactional memory. Whereas
UTM requires modifications to the memory
interface, an LTM processor is pin-compati-
ble with today’s processors.

UTM architecture
UTM virtualizes transactions, allowing

them to grow (nearly) as large as virtual mem-
ory. It also supports a semantics for nested
transactions, in which interior transactions are
subsumed into the atomic region represented
by the outer transaction. Unlike previous
schemes that tie a thread’s transactional state
to a particular processor, cache, or both, UTM
maintains bookkeeping information for a
transaction in a memory-resident data struc-
ture, the transaction log. This enables trans-
actions to survive time slice interrupts and
process migration from one processor to
another.

UTM adds two new instructions to a
processor’s instruction set architecture:

• XBEGIN pc, begin a new transaction.
The pc argument of XBEGIN specifies
the address of an abort handler (for
example, using a program-counter-
relative offset). If at any time during a
transaction’s execution, the hardware
determines that the transaction must fail,
it immediately rolls back the processor
and memory states to their states before
XBEGIN executed and then jumps to pc
to execute the abort handler.

• XEND, end the current transaction. If
XEND completes, the transaction is
committed, and all of its operations
appear to be atomic with respect to any
other transaction.

Semantically, we can think of an XBEGIN
instruction as a conditional branch to the
abort handler. The XBEGIN for a transaction

that fails has the behavior of a mispredicted
branch. Initially, the processor executes XBE-
GIN as a not-taken branch, entering the
transaction’s body instead of branching to the
handler. Eventually, the processor realizes that
the transaction cannot commit and then
reverts all processor and memory state back
to the misprediction point, and branches to
the abort handler.

UTM supports transaction nesting by sub-
suming the inner transaction. For example,
an outer transaction might call a subroutine
that contains an inner transaction. UTM sim-
ply treats the inner transaction as part of the
atomic region defined by the outer transac-
tion. This strategy is correct because it main-
tains the inner transaction’s atomic execution
property. We implement subsumed nested
transactions by using a counter to keep track
of nesting depth. If the nesting depth is pos-
itive, XBEGIN and XEND simply increment
and decrement the counter, respectively, and
perform no other transactional bookkeeping.

Rolling back processor state
If the processor determines that an XBE-

GIN instruction has “mispredicted” (its trans-
action must fail) while the instruction is still
in the reorder buffer, rolling back the proces-
sor state is easy. The hardware simply invokes
its mispredicted-branch mechanism. Unlike
normal mispredicted branches, however, an
XBEGIN instruction can require rolling back
the processor state after the instruction has
graduated from the reorder buffer. Handling
this case relies on a key observation: Although
the processor can internally execute ahead
speculatively through many transactions, only
one uncommitted, outermost XBEGIN
instruction can have graduated. Hence, the
processor must save only one additional copy
of the architectural state to handle transaction
failure, in addition to the copies implicitly
kept to handle regular mispredictions.

Figure 1 shows UTM’s modifications for
handling rollback. We assume that the
machine has a unified physical register file for
both committed and speculative values (with
no data in the reorder buffer), which takes
snapshots of the rename table at every branch
to recover mispredictions. When a regular
branch instruction graduates, the rename
table discards its snapshot. In contrast, when

60

MICRO TOP PICKS

IEEE MICRO

an XBEGIN graduates, the rename table
retains its snapshot until the corresponding
XEND graduates, committing the transac-
tion. The physical registers named in the extra
snapshot must not be reused until the trans-
action commits. To keep track of busy regis-
ters, the rename stage maintains an S (saved)
bit for each physical register to indicate which
registers are part of the working architectural
state, and it includes the S bits with every
renaming-table snapshot.

When an XBEGIN instruction graduates,
we say the transaction is active, and the asso-
ciated snapshot identifies registers holding the

graduated architectural state. Physical regis-
ters are normally freed on graduation of a later
instruction that overwrites the same architec-
tural register. If the S bit on the snapshot for
the active transaction is set, however, the phys-
ical register is added to the register-reserved
list instead of the normal register-free list, pre-
venting the reuse of physical registers con-
taining saved data. When the transaction’s
XEND graduates, the active snapshot’s S bits
are cleared and the register-reserved list drains
into the register-free list. If the active transac-
tion aborts, UTM restores the architectural-
register state using the saved rename table, sets

61JANUARY–FEBRUARY 2006

FIFO

FIFO

0

1

To register
renaming table

Reorder buffer

Rename table
Physical registers

Active

Working

X
B

E
G

IN
 d

ec
od

ed

X
B

E
G

IN
 c

om
m

itt
ed

Free

Commit

Register
free list

Register reserved
list

P56

P56

P2

P56

S

S

S

S

S

S

Snapshots

Snapshots
Active

R31

R0

P56

LPR

Saved?

P127

P0

Figure 1. UTM processor modifications. The S bit vector tracks active physical registers. For each rename
table snapshot, there is an associated S bit vector snapshot. The register-reserved list holds the otherwise
free physical registers until the transaction commits. The last-physical-register (LPR) field identifies the phys-
ical register to free when an instruction graduates (the last physical register referenced by the destination
architectural register).

the reorder buffer to an empty state, and
branches to the abort handler.

An active transaction’s abort handler
address, nesting depth, and snapshot are part
of its transactional state. UTM makes them
visible to the operating system so that they can
be saved and restored on context switches.

Memory state
Previously proposed HTM systems1,2 rep-

resent a transaction partly in the processor and
partly in the cache, taking advantage of the
coincidence between the cache consistency
protocol and the underlying consistency
requirements of transactional memory. Unlike
those systems, UTM represents the set of
active transactions with a single data structure
held in system memory, the x-state (short for
“transaction state”). UTM systems use the
cache to gain performance, but the correct-
ness of UTM doesn’t depend on having a
cache. Here, we first describe the x-state and
how the system uses it when there is no
caching. Then we describe how caching accel-

erates x-state operations.
Figure 2 shows an abstract x-state imple-

mentation. In practice, we would optimize the
x-state representation, but here present it
unoptimized to aid understanding. The
x-state contains a transaction log for each
active transaction in the system. The operat-
ing system allocates a transaction log for each
thread, and two processor control registers
hold the base and bounds of a running
thread’s log. Each log consists of a commit
record and a vector of log entries. The commit
record maintains the transaction’s status:
pending, committed, or aborted.

Each log entry corresponds to a memory
block that the transaction has read or written
to. The entry provides a pointer to the block
and the block’s old value, so that memory can
be restored in case the transaction aborts. Each
log entry also contains a pointer to the com-
mit record and pointers that form a linked list
of all entries in all transaction logs that refer
to the same block.

The final part of the x-state consists of a log

62

MICRO TOP PICKS

IEEE MICRO

Transaction log entry

Transaction log entry

Reader list
Block pointer

Old value

Commit record

Reader list

Transaction log entry

Commit record pointer

Commit record pointer

43

42R

W

New valueRW bit

Application memory

Log pointer

8ab30000

8ab3ab0010001000

Block

20001000

10000000

20000000

10001000

20001000

10001260

10001260

20000000

10000000

10000000

32

Pending

Transaction log 1

42

Pending

Transaction log 2

Commit record

Xstate

42

 0

 0

8ab3ab00

8ab30000

8ab30000

Figure 2. X-state data structure. Each transaction’s log contains a commit record and a vector of log entries. The log pointer of a
memory block points to a log entry, which contains the block’s old value and a pointer to the transaction’s commit record.

pointer and one read-write bit for each mem-
ory block (and any swapped out to disk if pag-
ing). If the RW bit is R, any transactions that
have accessed the block did so with a load. If
the RW bit is W, the block is the target of a
transaction’s store. When a processor running
a transaction reads or writes a block, the block’s
log pointer points to a transaction log entry
for that block. Further, if the access is a write,
the block’s RW bit is set to W. Whenever
another processor references a block that is
already part of a pending transaction, the sys-
tem consults the RW bit and log pointer to
determine the correct action: use the old value,
use the new value, or abort the transaction.

When a processor makes an update as part of
a transaction, it stores the new value in mem-
ory and the old value in a transaction log entry.
In principle, there is one log entry for every load
or store the transaction performs. If the mem-
ory allocated to the log is not large enough, the
transaction aborts and the operating system
allocates a larger transaction log and retries the
transaction. When operating on the same block
more than once in a transaction, the system can
avoid writing multiple entries into the trans-
action log by checking the log pointer as to
whether a log entry for the block already exists
as part of the running transaction.

By following the log pointer to the log entry
and then following the log entry pointer to
the commit record, the user can determine
each block’s transaction status. To commit a
transaction, the system simply changes the
commit record from pending to committed.
At this point, a reference to the block produces
the new value stored in memory, albeit after
some delay in chasing pointers to discover that
the transaction has been committed. To avoid
this delay, as well as to free the transaction log
for reuse, the system must clean up after com-
mitting. It does so by iterating through the
log entries and clearing the log pointer for
each block mentioned, thereby finalizing the
block’s contents. Future references to that
block will continue to produce the new value
stored in memory but without the delay of
chasing pointers. To abort a transaction, the
system changes the commit record from pend-
ing to aborted. To clean up, it iterates through
the entries, storing the old value back to mem-
ory and then clearing the log pointer. We
chose to have the system store a block’s old

value in the transaction log and the new value
in memory, rather than the reverse, to opti-
mize the case when a transaction commits. No
data copying is needed to clean up after a
commit, only after an abort.

When two or more pending transactions
have accessed a block and at least one of the
accesses is a store, the transactions conflict.
Conflicts are detected during operations on
memory. When a transaction performs a load,
the system checks that either the log pointer
refers to an entry in the current transaction
log or the RW bit is R. In the latter case, it
might be necessary to create a log entry for
this block and add the entry to the reader list.
When a transaction performs a store, the sys-
tem checks that the log pointer references no
other transaction (in other words, that the log
pointer is cleared or that the current transac-
tion log contains all log entries linked to this
block). If the conflict check fails, some of the
conflicting transactions are aborted.

To guarantee forward progress, UTM
writes a time stamp into the transaction log
the first time a processor attempts a transac-
tion. Then, when choosing which transactions
to abort, older transactions take priority.
(Alternatively, the system could use a back-off
scheme.) In practice, the transaction priority
could be part of the operating system’s own
administrative priority scheme, allowing high-
priority transactions to prevail over low-pri-
ority ones, breaking ties with the time stamp.

When a writing transaction wins a conflict,
it might require aborting multiple reading
transactions. The system finds these transac-
tions efficiently by following the block’s log
pointer to an entry and traversing its reader
list, which enumerates all entries for that block
in all transaction logs.

Caching
Any memory system needs caching to

achieve acceptable performance. In the com-
mon case of a transaction that fits in cache,
UTM, like earlier proposed HTM systems,
monitors cache coherence traffic for the trans-
action’s cache lines to determine if another
processor is performing a conflicting opera-
tion. For example, when a transaction writes
to a memory location, the cache protocol
obtains exclusive ownership of the entire cache
block. New values can be stored in cache with

63JANUARY–FEBRUARY 2006

old values left in memory. As long as nothing
revokes the ownership of any block, the trans-
action can succeed. In many cases, the system
doesn’t even need to write back a transaction
log because the transaction log’s contents are
undefined after the transaction commits or
aborts. Thus, a small transaction that com-
mits without intervention from another trans-
action requires no additional interprocessor
communication beyond coherence traffic for
the nontransactional case.

When a transaction is too big to fit in cache
or the cache protocol indicates interactions
with other transactions, the x-state for the
transaction overflows into the ordinary mem-
ory hierarchy. Thus, the UTM system does
not actually need to create a log entry or
update the log pointer for a cached block
unless the block is evicted.

After a transaction commits or aborts, the
system can discard log entries of unspilled
cached blocks and mark the log pointer of each
such block clean to avoid write-back traffic for
the log pointer, which is no longer needed. The
uncommon case bears most of the overhead,
allowing the common case to run fast.

The system can optimize the transaction
log’s on-processor representation as long as the
view of the x-state is properly maintained at
the cache interface. For convenience, the trans-
action block size can match the cache line size.

System issues
UTM’s goal is to support transactions that

run for an indefinite length of time (surviv-
ing time slice interrupts), migrate from one
processor to another along with the rest of a
process’s state, and have footprints bigger than
the physical memory. We must solve several
system issues for UTM to achieve that goal.
The main technique we propose is to treat the
x-state as a systemwide data structure that uses
global virtual addresses.

Treating the x-state as a data structure solves
part of the problem directly. For a transaction
to run for an indefinite period, it must be able
to survive a time slice interrupt. Adding the
log pointer to the processor state and storing
everything else in a data structure makes it
easy to suspend a transaction and run anoth-
er thread with its own transaction. Similarly,
transactions can migrate from one processor
to another. The log pointer is simply part of

the thread or process state provided by the
operating system.

UTM can support transactions that are even
larger than physical memory. The only limita-
tion is how much virtual memory is available
to store both old and new values. To page the
x-state out of main memory, the UTM data
structures use global virtual addresses for their
pointers. Global virtual addresses are unique
systemwide addresses that remain valid even if
the referenced pages are paged out to disk and
reloaded in another location. Typically, systems
that provide global virtual addresses provide an
additional level of address translation, com-
pared with ordinary virtual-memory systems.
Hardware first translates a process’s virtual
address into a global virtual address, which then
translates into a physical address. Examples of
architectures providing global virtual address-
es include the Hewlett-Packard Precision Archi-
tecture and the IBM PowerPC.

The UTM system stores the log pointer and
state bits for each user memory block, which
are typically not visible to a user-level pro-
grammer, in addressable memory so that the
operating system can page this information to
disk. The location of the memory holding the
log pointer information for a given user data
page is kept in the page table and cached in
the translation look-aside buffer.

During execution of a single load or store
instruction, the processor potentially can
touch many disparate memory locations in
the x-state, any of which can be paged out to
disk. To ensure forward progress, the system
must allow load or store instructions to restart
in the middle of the x-state traversal. Alterna-
tively, if the processor allows only precise
interrupts, the operating system must ensure
that all pages required by an x-state traversal
can be resident simultaneously so that the load
or store can complete without page faults.

UTM assumes that each transaction is a ser-
ial instruction stream beginning with an XBE-
GIN instruction, ending with a XEND
instruction, and containing only register,
memory, and branch instructions in between.
A fault occurs if an I/O instruction executes
during a transaction.

LTM microarchitecture
UTM requires significant changes to both

the processor and the memory subsystem of

64

MICRO TOP PICKS

IEEE MICRO

current computer architectures. The LTM
microarchitecture provides an evolutionary
path from today’s processors, because it requires
changes only to the processor chip. We imple-
mented a detailed, cycle-accurate LTM simu-
lation using the UVsim processor simulator.8

LTM avoids the intricacies of virtual memo-
ry by limiting a transaction’s footprint to (near-
ly) the size of physical memory. In addition, a
transaction’s duration must be less than a time
slice, and transactions cannot migrate between
processors. With these restrictions, we can
implement LTM by modifying only the cache
and processor core; we do not modify main
memory, the cache coherence protocols, or even
the contents of cache coherence messages.

Like UTM, LTM maintains data about
pending transactions in the cache and detects
conflicts using the cache coherency protocol
in much the same way as previous HTM pro-
posals.1,2 LTM also employs an architectural
state-saving mechanism in hardware. Unlike
UTM, LTM does not treat the transaction as
a data structure. Instead, it binds a transac-
tion to a particular cache. Transactional data
overflows from the cache into a hash table in
main memory, allowing LTM to handle trans-
actions too large for the cache without the
x-state data structure’s implementation com-
plexity. Previous work on thread-level specu-
lation also used an overflow region in physical
memory to buffer speculative state.9

LTM and UTM have similar semantics,
and the formats and behaviors of their XBE-
GIN and XEND instructions are the same.
LTM puts the information that UTM keeps
in the transaction log in three places: the
processor, cache, and an area of physical mem-
ory allocated by the operating system.

For small transactions, LTM uses the cache
to store the speculative transactional state. For
large transactions, transactional state spills
into an overflow data structure in main mem-
ory. LTM adds a bit (T) per cache line to indi-
cate that the data has been accessed as part of
a pending transaction. When a transactional-
memory request hits a cache line, the T bit is
set. An additional bit (O) is added per cache
set to indicate that it has overflowed. When a
transactional cache line is evicted from the
cache for capacity reasons, the bit is set.

In LTM, the main memory always contains
the original state of data being modified trans-

actionally, and all speculative transactional
state goes into the cache and overflow hash
table. The system commits a transaction by
simply clearing all the T bits in cache and writ-
ing all overflowed data back to memory. LTM
uses the cache coherency protocol to detect
conflicts. When an incoming cache interven-
tion hits a transactional cache line, the system
aborts the running transaction by clearing all
the T bits and invalidating all modified trans-
actional cache lines.

Evaluation
Because no large-scale applications that use

transactional memory currently exist, we
developed translation tools to convert C and
Java programs that use locks into transactional
programs. We converted the Linux 2.4.19 ker-
nel, written in C and running under user-
mode Linux, and the SPECjvm98
benchmarks, written in Java, to use transac-
tions. Although this methodology produces
applications that retain some vestiges of lock-
ing, it provides conservative numerical results
for estimating whether the assumptions of the
UTM architecture are valid. Moreover, it
allowed us to measure a full operating system
and real Java programs.

We ran three versions of the SPECjvm98
benchmark suite on one processor of a cycle-
accurate multiprocessor simulator to measure
synchronization overheads with locks and
transactions. The benchmarks indicated that
the LTM hardware spends little time handling
overflows, but large transactions that cause
overflow do occur.

Our execution-driven experiments8 used
UVsim, a multiprocessor simulator based on
Rsim.10 The cycle-accurate processor model
is based on a MIPS R10K 4-issue out-of-order
superscalar processor, extended with 96 phys-
ical registers and the additional register and
cache support for LTM. We modeled a
2-GHz CPU, 32-Kbyte 4-way associative
instruction and data L1 caches with 64-byte
cache lines, a 1-Mbyte 4-way unified L2 cache
with 128-byte cache lines, and a 400-Mbps
double-data-rate (DDR2) SDRAM memory
system. The system has a distributed, direc-
tory-based cache coherence protocol based on
the SGI Origin multiprocessor, with a 10-
cycle-per-hop interprocessor network laten-
cy. To run the microbenchmarks and the

65JANUARY–FEBRUARY 2006

SPECjvm98 benchmarks on UVsim, we com-
piled them into MIPS Irix binaries with
instruction extensions for transactions.

Table 1 shows the results of our trace analy-
sis of the Linux 2.4.19 kernel and the Java
benchmarks. For the Java benchmarks, we
show results for runs with 1 and 100 percent
of the full input size. For the percentages, we
write “0” for numbers that are exactly zero,
and a zero percentage, such as “0.00,” for
small nonzero values.

The number of total memory operations
column shows the total number of loads and
stores executed. For Linux, we measured the
kernel’s memory operations. For Java, we mea-
sured the application’s memory operations, not
including operations performed by native
methods and garbage collection. Cache miss
is the fraction of memory operations that
caused cache misses. An oversized transaction
did not fit entirely within the cache. The trans-
action operations column gives the fraction of
memory operations that were in transactions.
Transaction miss is the fraction of transactional
loads and stores that did not fit into the cache,
and hence invoked the overflow mechanism.
Overflow is the fraction of cache sets that over-
flowed. We measured this at the end of each
transaction and averaged it over all transac-

tions, obtaining a rough measure of the likeli-
hood that a cache intervention request from
another processor would need to look at the
overflow buffer. Biggest transaction is the
largest number of distinct cache lines that any
transaction touched. A fully associative,
bounded-size hardware transaction scheme
would need a cache of at least this size.

For both kernel workloads, make_linux and
dbench, the transaction operations column
shows that over 40 percent of the kernel’s
memory operations take place in transactions,
indicating that a software transactional mem-
ory would likely be too slow. Many of the
SPECjvm98 benchmarks exhibit similar
numbers. The oversized transactions, biggest
transaction, and overflow columns show that
some applications contain transactions whose
footprints would overflow any reasonable-size
cache. But these big transactions do not cost
much—for example, the cache miss percent-
age is typically far greater than transaction
miss percentage.

We studied the make_linux and dbench ker-
nel benchmarks more closely to understand
how cache size affects the overflow of transac-
tional state in UTM and LTM. Figure 3 graphs
the results, confirming that there are again
some very large transactions, but that most

66

MICRO TOP PICKS

IEEE MICRO

Table 1. Experimental results of converting the Linux 2.4.19 kernel and the SPECjvm98 benchmarks into

transactional programs.

Biggest
No. of transaction

Input total Cache No. of Transactional Transaction (no. of
size memory miss No. of oversized operations miss Overflow cache

Program (%) operations (%) transactions transactions (%) (%) (%) lines)
make_linux NA 315,776,028 0.56 6,964,277 3,368 41.0 0.017 NA 8,144
dbench NA 100,928,220 0.43 1,863,426 88 49.5 0.001 NA 7,047
201_compress 1 229,332,212 0.10 524 0 0.0 0 0 54

100 2,981,777,890 0.10 2,272 0 0.0 0 0 52
202_jess 1 1,972,479 3.13 82,103 0 43.3 0 0 428

100 405,153,255 2.71 4,892,829 0 9.1 0 0 1,064
205_raytrace 1 14,535,905 1.83 1,125 1 49.6 0.648 0.0889 110,579

100 420,005,763 1.65 4,177 1 1.7 0.022 0.0239 110,509
209_db 1 393,455 2.01 14,191 0 45.8 0 0 187

100 848,082,597 10.14 45,222,742 288 23.0 0.350 0.0005 67,569
213_javac 1 1,605,330 1.88 460 1 89.5 0.517 0.2087 24,559

100 472,416,129 1.78 668 4 99.9 1.652 0.5988 1,275,590
222_mpegaudio 1 26,551,440 0.03 1,049 0 0.1 0 0 53

100 2,620,818,214 0.00 2,992 0 0.0 0 0 54

transactions are small. For these benchmarks,
almost all the transactions need less than about
100 cache lines and, in fact, 99.9 percent need
fewer than 54 cache lines.

We instrumented the Linux benchmarks to
measure lock and cache contention for insight
into the available concurrency of the locking
and transactional kernels. For make_linux, the
processor held the hottest lock (the kernel lock)
about four times longer than the hottest cache
line, corroborating the findings of our cycle-
accurate simulation that transactions increase
concurrency, as also reported in the literature.
Reducing the dependence on the kernel lock
has been the focus of years of effort by kernel
developers, but progress has been slow. Inspec-
tion of the code that manipulates the hottest
cache line reveals that minor data restructuring
using transactional memory would yield an
additional 25 percent improvement in con-
currency. This optimization is not easily avail-
able to kernel programmers, however, because
it would make obeying the protocol that dic-
tates the lock acquisition order difficult. Thus,
transactional memory’s main claim—that it
makes concurrent programming easier—
appears to be valid because it provides greater
concurrency compared with locks and it makes
enhancing concurrency easier.

Our Linux and Java studies strongly sug-
gest that the assumptions behind the UTM
and LTM architectures are correct: Transac-
tions are frequent and require hardware sup-
port, most transactions fit in the cache, and
the few large transactions require handling by
exceptional mechanisms that support
unbounded transaction sizes. The concur-
rency results suggest that the automatic trans-
lation of locks to transactions is viable for
legacy code. In addition, it appears that trans-
actional memory is not limited to specialized
parallel applications but is exploitable by ordi-
nary Java and C programs. Indeed, our stud-
ies show that operating systems, perhaps the
most frequently run multithreaded programs,
can exploit transactional memory.

We have made a case for virtualizing
transactional memory systems to sup-

port unbounded transactions in hardware.
UTM represents an ambitious but fully scal-
able point in the design space. LTM represents
an immediately buildable alternative that pro-

vides many of the same advantages. Undoubt-
edly, other engineering trade-offs are possible.
In addition, many fundamental questions
remain about how to design and use transac-
tional memory.

Our designs have prohibited the use of I/O
operations during a transaction. Is there a way
for transactional memory to support mutual
exclusion while performing I/O operations?
Certain inherently serial I/O operations seem
to require the use of mutual exclusion. Newer
devices tend to provide multithreaded inter-
faces that allow bundling of nonmodal com-
mands whose execution can be initiated with
a single atomic I/O operation. It may be that
we can make our hardware memory commit
mechanism atomic with the I/O commit to
allow integration of transactions and I/O.

UTM and LTM sequence transactions
within each thread but provide no mechanism
to impose a particular ordering of transactions
across threads. It is unclear whether additional
support is desirable, or barriers and other con-
ventional interthread ordering techniques
built with transactional primitives suffice.

Another open question is whether an HTM
system can implement a more optimistic con-
currency control mechanism,11 instead of the
pessimistic concurrency control mechanism
presented here. Various optimistic concur-
rency protocols are now widely deployed in
database systems, suggesting that the benefits
of the protocols’ increased concurrency often
outweigh their implementation complexity.

67JANUARY–FEBRUARY 2006

1

102

104

106

9.355×106

1 10 100 1,000 8,144

N
o.

 o
f o

ve
rf

lo
w

in
g

tr
an

sa
ct

io
ns

Fully associative cache size (64-byte lines)

make
dbench

Figure 3. Fully associative cache size requirements for make_linux and
dbench. Both axes are log-log.

Unbounded transactions are potentially a
big step toward making parallel computing
practical and ubiquitous. They promise to
simplify or eliminate many coordination and
synchronization problems that programmers
now face when dealing with concurrency.
Transactions should make it far easier for all
programmers—not just specialists in today’s
arcane practices of parallel computing—to
write correct, high-performance multithread-
ed programs. We hope that unbounded trans-
actional memory eventually becomes, like
cache or virtual memory, an expected subsys-
tem of any computer architecture. MICRO

Acknowledgments
Marty Deneroff, formerly of Silicon Graph-

ics Inc. (SGI), contributed several ideas to our
LTM design, including the idea of using a spe-
cial overflow area and marking cache sets with
an overflow bit.

This research was supported in part by a
DARPA HPCS grant with SGI, DARPA/
AFRL contract F33615-00-C-1692, NSF
grants ACI-0324974 and CNS-0305606,
NSF Career grant CCR00093354, and the
Singapore-MIT Alliance.

References
1. T. Knight, “An Architecture for Mostly Func-

tional Languages,” Proc. ACM Conf. LISP
and Functional Programming (LFP 86), ACM
Press, 1986, pp. 105-112.

2. M. Herlihy, J. Eliot, and B. Moss, “Transac-
tional Memory: Architectural Support for
Lock-Free Data Structures,” Proc. 20th Ann.
Int’l Symp. Computer Architecture (ISCA 93),
IEEE Press, 1993, pp. 289-300.

3. J.M. Stone et al., “Multiple Reservations and
the Oklahoma Update,” IEEE Parallel and
Distributed Technology, vol. 1, no. 4, Nov.
1993, pp. 58-71.

4. R. Rajwar and J.R. Goodman, “Transaction-
al Lock-Free Execution of Lock-Based Pro-
grams,” Proc. 10th Int’l Conf. Architectural
Support for Programming Languages and
Operating Systems (ASPLOS 02), ACM
Press, 2002, pp. 5-17.

5. N. Shavit and D. Touitou, “Software Trans-
actional Memory,” Proc. 14th Ann. Symp.
Principles of Distributed Computing (PODC
95), ACM Press, 1995, pp. 204-213.

6. M. Herlihy et al., “Software Transactional

Memory for Dynamic-Sized Data Struc-
tures,” Proc. 22nd Ann. Symp. Principles of
Distributed Computing (PODC 03), ACM
Press, 2003, pp. 92-101.

7. C.S. Ananian et al., “Unbounded Transac-
tional Memory,” Proc. 11th Int’l Symp. High-
Performance Computer Architecture (HPCA
05), IEEE CS Press, 2005, pp. 316-327.

8. S. Lie, Hardware Support for Unbounded
Transactional Memory, master’s thesis,
Electrical Eng. and Computer Science Dept.,
MIT, 2004.

9. M. Prvulovic et al., “Removing Architectur-
al Bottlenecks to the Scalability of Specula-
tive Parallelization,” Proc. 28th Ann. Int’l
Symp. Computer Architecture (ISCA 01),
ACM Press, 2001, pp. 204-215.

10. C.J. Hughes et al., “Rsim: Simulating
Shared-Memory Multiprocessors with ILP
Processors,” Computer, vol. 35, no. 2, Feb.
2002, pp. 40-49.

11. H.T. Kung and J.T. Robinson, “On Optimistic
Methods for Concurrency Control,” ACM
Trans. Database Systems, vol. 6, no. 2, June
1981, pp. 213-226.

C. Scott Ananian is a PhD candidate in elec-
trical engineering and computer science at
MIT. His research interests include compil-
ers, language design, embedded systems, and
transactions. Ananian has a BSE in electrical
engineering from Princeton University and an
MSc in electrical engineering and computer
science from MIT. He is a member of the
IEEE and the ACM.

Krste Asanović is an associate professor in the
Department of Electrical Engineering and
Computer Science at MIT and a member of the
MIT Computer Science and Artificial Intelli-
gence Laboratory. His research interests include
computer architecture and VLSI design.
Asanović has a BA in electrical and information
sciences from the University of Cambridge and
a PhD in computer science from the Universi-
ty of California, Berkeley. He is a member of
the IEEE and the ACM.

Bradley C. Kuszmaul is a research scientist in
the Supercomputing Technologies Group of
the MIT Computer Science and Artificial
Intelligence Laboratory. His research interests

68

MICRO TOP PICKS

IEEE MICRO

include developing computer systems with
provably good performance. Kuszmaul has a
PhD in computer science from MIT. He is a
member of the IEEE and the ACM.

Charles E. Leiserson is a professor of computer
science and engineering in the MIT Comput-
er Science and Artificial Intelligence Labora-
tory, a member of its Theory of Computation
Group, and head of its Supercomputing Tech-
nologies Group. His research interests include
algorithms, multithreading, and computing
machinery theory. Leiserson has a BS in com-
puter science and mathematics from Yale Uni-
versity and a PhD in computer science from
Carnegie Mellon University. He is a member
of the ACM, the IEEE, and SIAM.

Sean Lie is a design engineer in the architecture
group at Advanced Micro Devices. His research
interests include high-performance computer
architecture and VLSI design. He has a BS and
an MEng, both in electrical engineering and
computer science, from MIT, where he partic-
ipated in the work described here.

Direct questions and comments to Charles
E. Leiserson, MIT Computer Science and
Artificial Intelligence Laboratory, 32 Vassar
St., #32-G768, Cambridge, MA 02139;
cel@mit.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

69JANUARY–FEBRUARY 2006

Get access
to individual IEEE Computer Society

documents online.

More than 100,000 articles

and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib/

