
Turning Java into Hardware:
Caffinated Compiler Construction

C. Scott Ananian

March 24, 2002
Revision: 1.12

1 Introduction

This paper explores the design of a compiler for the
Java programming language. Unlike many compil-
ers, the target is hardware, not bytecodes or machine
instructions. Java’s simplicity, object-orientation,
and strong typing make it well suited to class-based
hardware translation. It is also possible to leverage
Java’s thread interfaces to model coarse-grain paral-
lelism in hardware. The goal is the efficient genera-
tion of hardware from a well-known general-purpose
programming language. The use of one specification
language for both the hardware and software compo-
nents of a system could also aid hardware-software
codesign; this may be explored in future work.

Java, as a general-purpose portable programming
language, presents obstacles to its use as a hard-
ware specification language. The lack of integer
types with parameterized bit-widths is a limitation
that compiler technology can overcome. It is not
certain that Java’s inability to specify real-time con-
straints on code or describe hardware interfaces at
the wire and timing level can be similarly smoothed
over. This is a topic of research.

2 Java/Hardware Semantics

The hardware semantics we give Java are tied closely
to its object model. As a general rule, every class
instance corresponds to a hardware block, with the
method call graph of the program dictating the
wiring between blocks. Fully dynamic allocation is
not supported at this point, as it would involve dy-
namically reconfigurable logic. Only static alloca-
tions can be synthesized into hardware; however, it is
possible through intelligent analysis to convert most
dynamic allocations into static ones. This analysis is
similar to global allocation algorithms used for DSP
targets [?] and is described further in 3.1.

2.1 Object semantics

Methods form the interfaces to the hardware gen-
erated for class instances. The mapping is one-to-
one: we associate a bus with every formal parameter
to the method, and another with the return value.1

Our static allocation analysis transparently handles
single-use return-value objects to allow methods to
return multiple values. Methods are treated as if they
are inlined in the code; that is, their logic is typi-

1Our IR actually represents calls as returning an optional ex-
ception object in addition to the usual return value; thus two
buses are actually associated with the return.

1



cally replicated at every call.2 The exceptions are
synchronized methods, where the synchroniza-
tion primitives arbitrate method-logic sharing. In
cases where static analysis does not permit an ex-
act determination of the object pointed to by a vari-
able, multiplexers are inserted to perform method
dispatches dynamically.

Fields in a Java class are also translated as wiring
directives, utilizing renaming as necessary. Parallel
field accesses should be protected in Java by moni-
tors; the monitor synchronization process in Java is
leveraged to provide access control to field values.

Java threads are detected at compile time in the
static allocation phase and compiled as parallel hard-
ware. This is a natural extension of the object seman-
tics, as java.lang.Thread is a proper object in
the Java environment.

Exception objects are supported, but they have
no special meaning other than as a special type of
method return value. They are statically allocated
like all other objects.

Up to this point we have left unspecified issues of
timing.

2.2 Timing semantics

The efficient implementation of Java in hardware en-
tails a tight-rope walk between the usual sequential
statement-execution semantics and a radically syn-
chronous reading similar to the languages Esterel
[4], Lucid [?], and SIGNAL [1]. One option is to
create an entirely asynchronous design [9] from a
dataflow graph of the Java program that respects the
original program’s sequential order exactly. Such
a design has favorable power consumption and ex-
ecution time characteristics, but suffers from high
circuit complexity [5, 14]. Most silicon compilers

2The replicated code blocks should be specially tagged as
potential targets for later optimization, however. See also section
3.2.

instead generate synchronous circuits from their in-
put programs, allowing us great flexibility in the as-
signment of clocked states to an compiled object. It
seems most reasonable to use a synchrony model a
bit looser than the perfect synchrony hypothesis used
in Esterel, which Berry in [3] credits to [2]. Instead
of “instantaneous broadcast” we prefer a “time plus
delta” approach similar to that used by VHDL [?]
and formalized in [11] citing [10]. The program
should behave according to the standard sequential
semantics, but externally-visible events will be syn-
chronized to a clock. Conceptually, all statements
take a finite but infinitesimal amount of time, except-
ing at points where we wait for the next clock tick.

The external event clock synchronization should
follow a clear timing model so that a programmer can
easily understand and specify the clock-cycle-level
behavior of a Java specification. We use a variant
of a scheme first proposed in [12]: back edges in a
control flow graph correspond to cycle boundaries.
That is, any loop back to prior code will take one
cycle. Looping constructs are the only place where
these back edges will be found, and they will take
one clock cycle for every loop iteration.3

Note that only backwards control-flow-graph
edges cause cycle boundaries. The first loop itera-
tion is executed in the same clock cycle as the code
preceding it, and the last loop iteration occurs in
the same clock as code following it.4 Zero- or one-
iteration loops do not create clock cycle boundaries.

Registers are inserted on any wires that cross clock
cycle boundaries. Although typically all object fields
will become registers (in order to save state across
cycle boundaries), certain short-lived fields will not
be registered. The short-lifetime objects used to re-

3An explicit “pause for tick” statement can be synthesized
from a 2-iteration loop, although this will probably be wrapped
in a library method to hide the implementation.

4This behavior can be changed by using the pause-for-tick
statement, of course.

2



turn multiple values from a function are a good ex-
ample of fields unlikely to be synthesized as regis-
ters.

2.3 Java language coverage

Our goal is to be able to synthesize any Java program
without any restrictions. However, the initial imple-
mentation will probably not support some language
features.

The first language restriction is on dynamic allo-
cation, as previously discussed. The first compiler
implementation will require that all objects must be
statically allocatable at compile time. Future work
may lift this restriction through the use of dynami-
cally reconfigurable hardware.

Floating-point types will probably not be sup-
ported in the first compiler, as experience has shown
that they are too expensive in silicon to be of much
use to the hardware designer [15]. This is not an in-
herent limitation of the compiler; future work may
add floating point support.

All other language features are supported.

2.4 External interfacing

The means by which a Java hardware specification
will specify its chip-level external interfaces has not
yet been determined.

3 Compiler analyses

This section will examine some of the analysis stages
needed in a silicon compiler for Java.

3.1 Extended type analysis

Static type information is essential to the compila-
tion process, in order to enable operations and meth-
ods to be synthesized correctly. More information

than just type is needed, however; we actually want
to compile a static list of all allocated objects, and
associate sets of object instances with variables, in
addition to object types. This allows us to wire
a method invocation to the proper hardware repre-
senting the object instance, or add multiplexers if
more than one instance could be represented. The
ideas presented in [8] are instructive, but the opti-
mization techniques presented there are not applica-
ble: speed is not an issue—for efficient hardware we
want the most precise analysis possible. The nec-
essary analysis has much in common with the Weg-
man and Zadeck’s Sparse Conditional Constant op-
timization [16], where the constants being propa-
gated can be imagined as constant pointers to class
instances. Cliff Click’s work on combining opti-
mizations is instructive [7]: the best extended type
analysis is possible only in conjunction with stan-
dard constant-propagation and dead-code analysis.
The algorithm for this analysis pass will probably be
based on Click’s optimistic analysis described in [6].

The extended type analysis pass should produce
a call-graph and list of static object instances in ad-
dition to the per-variable type and instance informa-
tion. If combined with traditional data flow analysis,
it should identify constants and dead code, includ-
ing boolean constants resulting from use of the Java
instanceof operator.

3.2 Functional Methods

When attempting to synchronize parallel threads us-
ing the Java monitor semantics, it will be useful to
distinguish between functional and what we shall
call non-functional methods. Functional methods
are defined to be those without side-effects, and
non-functional methods are those that do have side-
effects. Synchronization can be avoided for func-
tional methods, and the relevant logic simply repli-
cated in parallel, but non-functional methods require

3



access arbitration.
Computing the “functionality” of a method is a

simple matter of traversing the call graph, looking
for expressions with side-effects—particularly code
which assigns values to instance fields.

3.3 Optimization

Most of the standard software optimization passes
will also optimize the hardware generated from
a Java specification; we have already mentioned
constant-propagation and dead-code elimination in
section 3.1. Strength reduction will prove very valu-
able, as multipliers are much more expensive in hard-
ware than adders. Granlund and Montgomery de-
scribe how to recode division as multiplication in
[13]; the multipliers generated can often be subse-
quently decomposed as adders. Certainly multipli-
cation and division by powers of two should be opti-
mized.

A variety of parallelizing compiler optimizations
can be utilized in addition to further expose paral-
lelism in the specification. In particular, it will be
desirable to remove unnecessary control dependen-
cies from the code, as well as unroll loops if the pro-
grammer so requests. Code motion transformations
can have a large impact on the critical path length
through looping constructs.

Most of these generic optimizations should pre-
cede the extended type analysis for best effect.

3.4 Bit-width analysis

It has been mentioned that one of Java’s disadvan-
tages as a hardware description language is its lack
of parameterizable-width integer types. In hardware
design it is often desirable to specify exactly the
width of datapaths, but Java only has 8, 16, and 32-
bit wide signed integers. In previous work, the au-
thor has shown that this disadvantage can be largely

rectified by an intelligent bit-width analysis of the
specification. The compiler can extract a minimum-
required bitwidth from the constants and expressions
used. This is highly desirable for an efficient hard-
ware implementation.

3.5 Representations

The intermediate format of the compiler is described
in a separate paper.

4 Worked example

5 Conclusion

References

[1] P. Amagbégnon, L. Besnard, and P. L. Guer-
nic. Implementation of the data-flow syn-
chronous language SIGNAL. In Proceedings
of the ACM SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementa-
tion (PLDI), pages 163–173, La Jolla, Califor-
nia, June 1995.

[2] A. Benveniste and G. Berry. The synchronous
approach to reactive and real-time systems.
Proceedings of the IEEE: Another look at real
time programming, 79(9):1270–1282, Sept.
1991.

[3] G. Berry. Esterel on hardware. In Mechanized
Reasoning and Hardware Design, pages 87–
103. Prentice Hall, 1992.

[4] G. Berry. The Esterel v5 language primer.
Available from http://www.inria.fr/
meije/esterel/esterel-eng.html,
Mar. 1998.

4



[5] F.-C. Cheng, S. H. Unger, M. Theobald, and
W.-C. Cho. Delay-insensitive carry-lookahead
adders. In Proceedings. Tenth International
Conference on VLSI Design, pages 322–328,
Hyderabad, India, Jan. 1997.

[6] C. Click. Combining Analyses, Combining Op-
timizations. PhD thesis, Rice University, Feb.
1995.

[7] C. Click and K. D. Cooper. Combining anal-
yses, combining optimizations. ACM Transac-
tions on Programming Languages and Systems,
17(2):181–196, Mar. 1995.

[8] G. DeFouw, D. Grove, and C. Chambers. Fast
interprocedural class analysis. In Proceedings
of the 25th ACM Symposium on Principles of
Programming Languages (POPL), pages 222–
246, San Diego, California, Jan. 1998.

[9] K. D. Emerson. Asynchronous design—an in-
teresting alternative. In Proceedings. Tenth In-
ternational Conference on VLSI Design, pages
318–320, Hyderabad, India, Jan. 1997.

[10] J.-R. Gagné and J. Plaice. A non-standard
temporal deductive database system. Jour-
nal of Symbolic Computation, 22(5-6):649–
664, Nov.–Dec. 1996.

[11] J.-R. Gagné and J. Plaice. The non-standard se-
mantics of Esterel. In Advances in Computing
Science — ASIAN ’97. Third Asian Comput-
ing Conference. Proceedings, pages 381–382,
Kathmandu, Nepal, 1997.

[12] D. Galloway. The Transmogrifier C hard-
ware description language and compiler for FP-
GAs. In IEEE Symposium on FPGAs for Cus-
tom Computing Machines. Proceedings, pages
136–144, Apr. 1995.

[13] T. Granlund and P. L. Montgomery. Division
by invariant integers using multiplication. In
Proceedings of the ACM SIGPLAN ’94 Con-
ference on Programming Language Design and
Implementation (PLDI), pages 61–72, Orlando,
Florida, June 1994.

[14] K. Nanda, S. K. Desai, and S. K. Roy. A new
methodology for the design of asynchronous
digital circuits. In Proceedings. Tenth Interna-
tional Conference on VLSI Design, pages 342–
347, Hyderabad, India, Jan. 1997.

[15] N. Shirazi, A. Walters, and P. Athanas. Quan-
titative analysis of floating point arithmetic on
FPGA based Custom Computing Machines. In
IEEE Symposium on FPGAs for Custom Com-
puting Machines. Proceedings, pages 155–162,
Napa Valley, California, Apr. 1995.

[16] M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM
Transactions on Programming Languages and
Systems, 13(2):181–210, Apr. 1991.

5


