Language-level Non-blocking
Software Transactions
(in Javal)

C. Scott Ananian

cananian@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

http://cscott.net

Transactions (review)

A transaction Is a sequence of loads and stores
that either commits or aborts.

If a transaction commits, all the loads and store
appear to have executed atomically.

If a transaction aborts, none of its stores take
effect.

Transaction operations aren’t visible until they
commit or abort.

Ananian, CRS retreat — p

Non-blocking synchronization

« Although transactions can be implemented with
mutual exclusion (locks), we are interested only
In non-blocking iImplementations.

 In a non-blocking implementation, the failure of
one process cannot prevent other processes from
making progress. This leads to:

o Scalable parallelism
e Fault-tolerance

o Safety:. freedom from some problems which
require careful bookkeeping with locks,
iIncluding priority inversion and deadlocks.

o Little known requirement: limits on transaction
suicide.

Ananian, CRS retreat — p

Monitor Synchronization

public class Count {
private int cntr = O;
void inc() {
synchronized (this) {

cntr = cntr + 1;

}
}
}

 Traditionally, monitors associated with each
object provide mutual exclusion between
concurrent accesses to the object.

Ananian, CRS retreat — p

Monitor Synchronization

public class Count { public class Count {

private int cntr = O; private int cntr = O;

void inc() { void inc() {
synchronized (this) { = atomically {
cntr = cntr + 1; cntr = cntr + 1;
} }

} }

} }

 Instead we provide an atomic block, and make
Inearizablity guarantees without (necessarily)
oroviding mutual exclusion.

Ananian, CRS retreat — p

Implementation ldea

Transaction Transaction

Object _ _
Version Version

Object owner owner
verS|ons
1 readers readers
next % next H.:‘

fields

Traditional Transactional

Ananian, CRS retreat — p

A software transaction impl.

o Goals:
* Non-transactional operations should be fast.

e Reads should be faster than writes.
* Minimal amount of object bloat.

e Solution:

e Use special FLAGvalue to indicate “location involved In
a transaction”.

* QObject points to a linked list of versions, containing
values written by (in-progress, committed, or aborted)
transactions.

* Semantic value of a FLAed field is: “value of the first
version owned by a committed transaction on the
VeI’SIOH IlSt” Ananian, CRS retreat — p

Transactions using version lists

Transaction ID #68 Transaction ID #56

WAITING COMMITTED
status status

Object #1

MyClass
type
TID
FL

Version Version

8 field1

field2

Transaction ID #23

COMMITTED

Object #2
OtherCIa?se
P Version Version
{TID25

status
@

fieldl field1

Ananian, CRS retreat — p

Races, races, everywhere!

 Lots of possible races:

* What if two threads try to FLAGa field at the same
time?

 What if two threads try to copy-back a FLA&ed field at
the same time?

* \What if two transactions perform conflicting updates?
* Do transactions commit atomically?

 Formulated model in Promela and used Spin to
verify correctness (for bounded scope, etc).

Ananian, CRS retreat — p

Bugs found with model-checking

« Memory management (object recycling,
reference counting)

 Read caching (check copies to local variables)

e “Real” bug: missing abort of readers during
non-transactional write

Ananian, CRS retreat — p

Bugs found with model-checking

« Memory management (object recycling,
reference counting)

 Read caching (check copies to local variables)

* “Real” bug: missing abort of readers during
non-transactional write

Too much time spent minimizing/coalescing state. =(

Ananian, CRS retreat — p

More Fun

_arge objects

nteraction with /O

nteraction with native methods
Nested transactions

Exposing abort/retry mechanism

Supporting wait/notify

nanian,

Cooperating HW/SW transactions

e Using “node-push” micro-benchmark with a hardware
transaction mechanism (submitted ASPLOS-XI)

* Hardware starts to perform poorly for large or long-lived
transactions.

N
o
o

HTM Transactions
stop fitting after
this point

[
o
<]
Z
S
o
o
0
Q2
o
>
o

13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

Ananian, CRS retreat — p.

Cooperating HW/SW transactions

e Using “node-push” micro-benchmark with a hardware
transaction mechanism (submitted ASPLOS-XI)

* Hardware starts to perform poorly for large or long-lived
transactions.

[
o
s}
=z
S
[
o
0
2
o
>
o

13 17 21 25 29 33 37

Transaction Size (Number of Nodes x 100)

Ananian, CRS retreat — p.

Optimistic parallelism

for (...)
optimistically {

...do an Iteration ...

}

conquer(A[n], n) {

optimistic spawn
conguer(A, n/2);

optimistic spawn

conquer(A+n/2, n-n/2);

Programmer notes
that the iterations or
spawns are expected
to be Independent.
Iff there are dynamic

dependencies, the
computations are
serialized.

The End

The Spin Model Checker

Spin Is a model checker for communicating
concurrent processes. It checks:

o Safety/termination properties.
* Liveness/deadlock properties.

e Path assertions (requirements/never claims).

It works on finite models, written in the Promela
language, which describe infinite executions.

Explores the entire state space of the model,
Including all possible concurrent executions,
verifying that Bad Things don’t happen.

Not an absolute proof — but pretty useful in
practice.

Dekker's mutex algorithm (C)

int turn:
int wants[2];

/I 1 is the current thread, j=1-i is the other thread
while(1) { Il trying
wants[i] = TRUE;
while (wants[j]) {
if (turn==j) {
wants[i] = FALSE;
while (turn==j) ; // empty loop
wants[i] = TRUE;

}
}
critical_section();
turn=j; Il release
wants[i] = FALSE;
noncrit();

Ananian, CRS retreat — p.

Dekker’s “railroad”

Thread 0's Railroad Thread 1's Railroad

0 doesn't 1 doesn't
want want

critical
section

Railroad visualization of Dekker’s algorithm for mutual

exclusion. The threads “move” Iin the direction shown
by the arrows.

Ananian, CRS retreat — p.

Dekker’'s mutex algorithm (Promela)

bool turn, flag[2]; byte cnt;

active [2] proctype mutex() [* Dekker's 1965 algorithm */
{ pid i, j;
| = _pid;
j=1- _pd;
again: flag[i] = true;
do [* can be ’if - says Doran&Thomas */
flagf]] ->
if
coturn == >
flag[i] = false;
l(turn ==));
flag[i] = true
.. else
fi
.. else -> break
od;
cnt++; assert(cnt == 1); cnt--; /* critical section */
turn = j;
flag[i] = false;
goto again

} Ananian, CRS retreat — p.

Spin verification

$ spin -a mutex.pml

$ cc -DSAFETY -0 pan pan.c

$./pan

(Spin Version 4.1.0 -- 6 December 2003)
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 20 byte, depth reached 65, errors: O
190 states, stored
173 states, matched
363 transitions (= stored+matched)
O atomic steps
hash conflicts: 0 (resolved)
(max size 2718 states)

$
If an error is found, will give you execution trail producing the error.

Ananian, CRS retreat — p.

Spin theory

e Generates a Buchi Automaton from the Promela
specification.

* Finite-state machine w/ special acceptance conditions.
* Transitions correspond to executability of statements.

o Depth-first search of state space, with each state
stored in a hashtable to detect cycles and prevent
duplication of work.

* If z followed by y leads to the same state as y followed
by x, will not re-traverse the succeeding steps.

 If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate coverage
metric.

Ananian, CRS retreat — p.

Modeling software transactions

Non-transactional Read

inline readNT(o, f, v) {
do
.. v = object[o].field[f];
If
.. (VI=FLAG) -> break /* done! */
.. else
fi;
copyBackField(o, f, kill writers, _st);
If
.. (_st==false flag) ->
v = FLAG;
break
.. else
fi
od

Ananian, CRS retreat — p.

Non-transactional Write

inline writeNT(o, f, nval) {
if
. (nval '= FLAG) ->
do
.. atomic {

If /* this is a LL(readerList)/SC(field) */

.. (object[o].readerList == NIL) ->
object[o].fieldLock[f] = _thread id;
object[o].field[f] = nval,
break /* success! */

.. else

fi

}
[* unsuccessful SC */
copyBackField(o, f, kill_all, _st)
od
.. else -> [* create false flag */
[* implement this as a short *transactional* write. */
[* start a new transaction, write FLAG, commit the transaction,
* repeat until successful. Implementation elided. */
fi;
}

Ananian, CRS retreat — p.

Copy-back Field, part |

inline copyBackField(o, f, mode, st) {
_nonceV=NIL; _ver = NIL; r = NIL; st = success;
[* try to abort each version. when abort fails, we've got a
* committed version. */
do
.. _ver = object[o].version;
if

.. (_ver==NIL) ->
st = saw_race; break /* someone’'s done the copyback for us */
.. else

fi;

[* move owner to local var to avoid races (owner set to NIL behind
* our back) */

_tmp_tid=version[_ver].owner;

tryToAbort(_tmp_tid);

if

. (_tmp_tid==NIL || transid[_tmp_tid].status==committed) ->

break /* found a committed version */

.. else

fi;

[* link out an aborted version */

assert(transid[_tmp_tid].status==aborted);

CAS_Version(object[o].version, _ver, version[ver].next,);
od;

CO ntl n u anian, CRS retreat — p. .

Copy-back Field, part Il

[* okay, link in our nonce. this will prevent others from doing the
* copyback. */
if
.. (st==success) ->
assert (_ver!=NIL);
allocVersion(_retval, _nonceV, aborted tid, _ver);
CAS_Version(object[o].version, _ver, _nonceV, _cas_stat);
if
.. (! _cas_stat) ->
st = saw_race_cleanup
.. else
fi
.. else
fi;

continued. ..

Ananian, CRS retreat — p.

Copy-back Field, part Il

[* check that no one’'s beaten us to the copy back */
if
.. (st==success) ->
if
.. (object[o].field[f|==FLAG) ->
_val = version[_ver].field[f];
if
.. (Lval==FLAG) -> /* false flag... */
st = false flag /* ...no copy back needed */
.. else -> /[* not a false flag */
d step { /* LL/SC */
if
.. (object[o].version == _nonceV) ->
object[o].fieldLock[f] = _thread id;
object[o].field[f] = _val;
.. else /[* hmm, fail. Must retry. */
st = saw _race cleanup /* need to clean up nonce */
fi
}
fi

.. else /* may arrive here because of readT, which doesn’t set val=FLAG*
st = saw _race cleanup /* need to clean up nonce */
fi
.. else [* Isuccess */
fi continued. .

Ananian, CRS retreat — p.

Copy-back Field, part IV

[* always kill readers, whether successful or not. This ensures that we
* make progress if called from writeNT after a readNT sets readerList
* non-null without changing FLAG to _val (see immediately above; st will
* equal saw_race cleanup in this scenario). */
if
> (mode == Kkill_all) ->
do /* kill all readers */
.. moveReaderList(_r, object[o].readerList);
if
.. (_r==NIL) -> break
;. else
fi;
tryToAbort(readerlist[_r].transid);
[* link out this reader */
CAS_Reader(object[o].readerList, r, readerlist[r].next,);
od;
.. else /* no more killing needed. */
fi;
[* done */

done!

Ananian, CRS retreat — p.

Synchronization Fallures

class A { /I OK!
int x; // shared variable
synchronized int inc() {
return X++;

class B { /I Race-free, but not OK.
int x; // shared variable
synchronized int get() { return x; }
synchronized void set(int y) { x=y; }
int inc() { // not monitored
int t = get();
t++;
set(t);
return ft;

} Ananian, CRS retreat — p.

	Transactions (review)
	Non-blocking synchronization
	Monitor Synchronization
	Monitor Synchronization

	Implementation Idea
	A software transaction impl.
	Transactions using version lists
	Races, races, everywhere!
	Bugs found with model-checking
	Bugs found with model-checking

	More Fun
	Cooperating HW/SW transactions
	Cooperating HW/SW transactions

	Optimistic parallelism
	The End
	The Spin Model Checker
	Dekker's mutex algorithm (C)
	Dekker's ``railroad''
	Dekker's mutex algorithm (Promela)
	Spin verification
	Spin theory
	Modeling software transactions
	Non-transactional Read
	Non-transactional Write
	Copy-back Field, part I
	Copy-back Field, part II
	Copy-back Field, part III
	Copy-back Field, part IV
	Synchronization Failures

