
Language-level Non-blocking
Software Transactions

(in Java!)
C. Scott Ananian

cananian@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Ananian, CRS retreat – p. 1

http://cscott.net

Transactions (review)
• A transaction is a sequence of loads and stores

that either commits or aborts.
• If a transaction commits, all the loads and store

appear to have executed atomically.
• If a transaction aborts, none of its stores take

effect.
• Transaction operations aren’t visible until they

commit or abort.

Ananian, CRS retreat – p. 2

Non-blocking synchronization
• Although transactions can be implemented with

mutual exclusion (locks), we are interested only
in non-blocking implementations.

• In a non-blocking implementation, the failure of
one process cannot prevent other processes from
making progress. This leads to:
• Scalable parallelism
• Fault-tolerance
• Safety: freedom from some problems which

require careful bookkeeping with locks,
including priority inversion and deadlocks.

• Little known requirement: limits on transaction
suicide.

Ananian, CRS retreat – p. 3

Monitor Synchronization

public class Count {

private int cntr = 0;

void inc() {

synchronized (this) {

cntr = cntr + 1;

}

}

}

• Traditionally, monitors associated with each
object provide mutual exclusion between
concurrent accesses to the object.

Ananian, CRS retreat – p. 4

Monitor Synchronization

public class Count { public class Count {

private int cntr = 0; private int cntr = 0;

void inc() { void inc() {

synchronized (this) { ⇒ atomically {

cntr = cntr + 1; cntr = cntr + 1;

} }

} }

} }

• Instead we provide an atomic block, and make
linearizablity guarantees without (necessarily)
providing mutual exclusion.

Ananian, CRS retreat – p. 4

Implementation Idea

TransactionalTraditional

lock

Object

fields

Object

versions

Version

owner

readers

next

fields

Version

owner

readers

next

fields

Transaction

status

Transaction

status

Ananian, CRS retreat – p. 5

A software transaction impl.
• Goals:

• Non-transactional operations should be fast.

• Reads should be faster than writes.
• Minimal amount of object bloat.

• Solution:
• Use special FLAGvalue to indicate “location involved in

a transaction”.

• Object points to a linked list of versions, containing
values written by (in-progress, committed, or aborted)
transactions.

• Semantic value of a FLAGged field is: “value of the first
version owned by a committed transaction on the
version list.” Ananian, CRS retreat – p. 6

Transactions using version lists

field1

field2
3.14159

FLAG

field1

field2
FLAG

2.71828

Object #1

Object #2

Version

field1

field2
FLAG

23

owner

next

Version

field1

field2
FLAG

55

owner

next

type

readers

versions

OtherClass

type

{TID68}

MyClass

readers

versions

status
WAITING

status
COMMITTED

status
COMMITTED

Version

field1

field2
’A’

FLAG

owner

next

Version

field1

field2
’B’

FLAG

owner

next

{TID25}

Transaction ID #68 Transaction ID #56

Transaction ID #23

.

.

.

.

.

. .
.
.

.

.

.

.

.

.
.
.
.

Ananian, CRS retreat – p. 7

Races, races, everywhere!
• Lots of possible races:

• What if two threads try to FLAGa field at the same
time?

• What if two threads try to copy-back a FLAGged field at
the same time?

• What if two transactions perform conflicting updates?
• Do transactions commit atomically?

• Formulated model in Promela and used Spin to
verify correctness (for bounded scope, etc).

Ananian, CRS retreat – p. 8

Bugs found with model-checking
• Memory management (object recycling,

reference counting)
• Read caching (check copies to local variables)
• “Real” bug: missing abort of readers during

non-transactional write

Ananian, CRS retreat – p. 9

Bugs found with model-checking
• Memory management (object recycling,

reference counting)
• Read caching (check copies to local variables)
• “Real” bug: missing abort of readers during

non-transactional write

Too much time spent minimizing/coalescing state. =(

Ananian, CRS retreat – p. 9

More Fun
• Large objects
• Interaction with I/O
• Interaction with native methods
• Nested transactions
• Exposing abort/retry mechanism
• Supporting wait/notify

Ananian, CRS retreat – p. 10

Cooperating HW/SW transactions
• Using “node-push” micro-benchmark with a hardware

transaction mechanism (submitted ASPLOS-XI)

• Hardware starts to perform poorly for large or long-lived
transactions.

ÿ

þÿ

ýÿÿ

ýþÿ

üÿÿ

üþÿ

ûÿÿ

ý þ ú ýû ýù üý üþ üú ûû ûù øý øþ øú

ÿþýüûýúùø÷üöõøôóöòñðïîóþö÷íöñ÷ìóûöëöêééè

ç
æ
ú
åó
û
öä
ó
þö
ñ
÷
ì
ó

÷öõ

ôöõ

ÿþýüþûúùøú÷öõôùøü

øöôóüòõööõùñüúòöðûü

öïõøüóôõùö

Ananian, CRS retreat – p. 11

Cooperating HW/SW transactions
• Using “node-push” micro-benchmark with a hardware

transaction mechanism (submitted ASPLOS-XI)

• Hardware starts to perform poorly for large or long-lived
transactions.

ÿþýüþûúùøú÷öõôùøü

øöôóüòõööõùñüúòöðûü

öïõøüóôõùö

ÿ

þÿ

ýÿÿ

ýþÿ

üÿÿ

üþÿ

ûÿÿ

ý þ ú ýû ýù üý üþ üú ûû ûù øý øþ øú

ÿþýüûýúùø÷üöõøôóöòñðïîóþö÷íöñ÷ìóûöëöêééè

ç
æ
ú
åó
û
öä
ó
þö
ñ
÷
ì
ó

÷öõ

ôöõ

÷ôöõ

Ananian, CRS retreat – p. 11

Optimistic parallelism

for (...)

optimistically {

...do an iteration ...

}

conquer(A[n], n) {

...

optimistic spawn

conquer(A, n/2);

optimistic spawn

conquer(A+n/2, n-n/2);

}

Programmer notes
that the iterations or
spawns are expected
to be independent.
Iff there are dynamic
dependencies, the
computations are
serialized.

Ananian, CRS retreat – p. 12

The End

Ananian, CRS retreat – p. 13

The Spin Model Checker
• Spin is a model checker for communicating

concurrent processes. It checks:
• Safety/termination properties.
• Liveness/deadlock properties.
• Path assertions (requirements/never claims).

• It works on finite models, written in the Promela
language, which describe infinite executions.

• Explores the entire state space of the model,
including all possible concurrent executions,
verifying that Bad Things don’t happen.

• Not an absolute proof — but pretty useful in
practice.

Ananian, CRS retreat – p. 14

Dekker’s mutex algorithm (C)
int turn;
int wants[2];

// i is the current thread, j=1-i is the other thread
while(1) { // trying

wants[i] = TRUE;
while (wants[j]) {

if (turn==j) {
wants[i] = FALSE;
while (turn==j) ; // empty loop
wants[i] = TRUE;

}
}
critical_section();
turn=j; // release
wants[i] = FALSE;
noncrit();

}

Ananian, CRS retreat – p. 15

Dekker’s “railroad”

Railroad visualization of Dekker’s algorithm for mutual
exclusion. The threads “move” in the direction shown
by the arrows.

Ananian, CRS retreat – p. 16

Dekker’s mutex algorithm (Promela)
bool turn, flag[2]; byte cnt;
active [2] proctype mutex() /* Dekker’s 1965 algorithm */
{ pid i, j;

i = _pid;
j = 1 - _pid;

again: flag[i] = true;
do /* can be ’if’ - says Doran&Thomas */
:: flag[j] ->

if
:: turn == j ->

flag[i] = false;
!(turn == j);
flag[i] = true

:: else
fi

:: else -> break
od;
cnt++; assert(cnt == 1); cnt--; /* critical section */
turn = j;
flag[i] = false;
goto again

} Ananian, CRS retreat – p. 17

Spin verification
$ spin -a mutex.pml
$ cc -DSAFETY -o pan pan.c
$./pan
(Spin Version 4.1.0 -- 6 December 2003)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 20 byte, depth reached 65, errors: 0
190 states, stored
173 states, matched
363 transitions (= stored+matched)

0 atomic steps
hash conflicts: 0 (resolved)
(max size 2ˆ18 states)
$

If an error is found, will give you execution trail producing the error.
Ananian, CRS retreat – p. 18

Spin theory
• Generates a Büchi Automaton from the Promela

specification.
• Finite-state machine w/ special acceptance conditions.
• Transitions correspond to executability of statements.

• Depth-first search of state space, with each state
stored in a hashtable to detect cycles and prevent
duplication of work.
• If x followed by y leads to the same state as y followed

by x, will not re-traverse the succeeding steps.

• If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate coverage
metric.

Ananian, CRS retreat – p. 19

Modeling software transactions

Ananian, CRS retreat – p. 20

Non-transactional Read
inline readNT(o, f, v) {

do
:: v = object[o].field[f];

if
:: (v!=FLAG) -> break /* done! */
:: else
fi;
copyBackField(o, f, kill_writers, _st);
if
:: (_st==false_flag) ->

v = FLAG;
break

:: else
fi

od
}

Ananian, CRS retreat – p. 21

Non-transactional Write
inline writeNT(o, f, nval) {

if
:: (nval != FLAG) ->

do
:: atomic {

if /* this is a LL(readerList)/SC(field) */
:: (object[o].readerList == NIL) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = nval;
break /* success! */

:: else
fi

}
/* unsuccessful SC */
copyBackField(o, f, kill_all, _st)

od
:: else -> /* create false flag */

/* implement this as a short *transactional* write. */
/* start a new transaction, write FLAG, commit the transaction,

* repeat until successful. Implementation elided. */
fi;

} Ananian, CRS retreat – p. 22

Copy-back Field, part I
inline copyBackField(o, f, mode, st) {

_nonceV=NIL; _ver = NIL; _r = NIL; st = success;
/* try to abort each version. when abort fails, we’ve got a

* committed version. */
do
:: _ver = object[o].version;

if
:: (_ver==NIL) ->

st = saw_race; break /* someone’s done the copyback for us */
:: else
fi;

/* move owner to local var to avoid races (owner set to NIL behind
* our back) */

_tmp_tid=version[_ver].owner;
tryToAbort(_tmp_tid);
if
:: (_tmp_tid==NIL || transid[_tmp_tid].status==committed) ->

break /* found a committed version */
:: else
fi;
/* link out an aborted version */
assert(transid[_tmp_tid].status==aborted);
CAS_Version(object[o].version, _ver, version[_ver].next, _);

od; continued. . .Ananian, CRS retreat – p. 23

Copy-back Field, part II
/* okay, link in our nonce. this will prevent others from doing the

* copyback. */
if
:: (st==success) ->

assert (_ver!=NIL);
allocVersion(_retval, _nonceV, aborted_tid, _ver);
CAS_Version(object[o].version, _ver, _nonceV, _cas_stat);
if
:: (!_cas_stat) ->

st = saw_race_cleanup
:: else
fi

:: else
fi;

continued. . .

Ananian, CRS retreat – p. 24

Copy-back Field, part III
/* check that no one’s beaten us to the copy back */
if
:: (st==success) ->

if
:: (object[o].field[f]==FLAG) ->

_val = version[_ver].field[f];
if
:: (_val==FLAG) -> /* false flag... */

st = false_flag /* ...no copy back needed */
:: else -> /* not a false flag */

d_step { /* LL/SC */
if
:: (object[o].version == _nonceV) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = _val;

:: else /* hmm, fail. Must retry. */
st = saw_race_cleanup /* need to clean up nonce */

fi
}

fi
:: else /* may arrive here because of readT, which doesn’t set _val=FLAG*

st = saw_race_cleanup /* need to clean up nonce */
fi

:: else /* !success */
fi; continued. . .

Ananian, CRS retreat – p. 25

Copy-back Field, part IV
/* always kill readers, whether successful or not. This ensures that we

* make progress if called from writeNT after a readNT sets readerList
* non-null without changing FLAG to _val (see immediately above; st will
* equal saw_race_cleanup in this scenario). */

if
:: (mode == kill_all) ->

do /* kill all readers */
:: moveReaderList(_r, object[o].readerList);

if
:: (_r==NIL) -> break
:: else
fi;
tryToAbort(readerlist[_r].transid);
/* link out this reader */
CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _);

od;
:: else /* no more killing needed. */
fi;
/* done */

}

done!

Ananian, CRS retreat – p. 26

Synchronization Failures
class A { // OK!

int x; // shared variable

synchronized int inc() {

return x++;

}

}

class B { // Race-free, but not OK.

int x; // shared variable

synchronized int get() { return x; }

synchronized void set(int y) { x=y; }

int inc() { // not monitored

int t = get();

t++;

set(t);

return t;

}

}
Ananian, CRS retreat – p. 27

	Transactions (review)
	Non-blocking synchronization
	Monitor Synchronization
	Monitor Synchronization

	Implementation Idea
	A software transaction impl.
	Transactions using version lists
	Races, races, everywhere!
	Bugs found with model-checking
	Bugs found with model-checking

	More Fun
	Cooperating HW/SW transactions
	Cooperating HW/SW transactions

	Optimistic parallelism
	The End
	The Spin Model Checker
	Dekker's mutex algorithm (C)
	Dekker's ``railroad''
	Dekker's mutex algorithm (Promela)
	Spin verification
	Spin theory
	Modeling software transactions
	Non-transactional Read
	Non-transactional Write
	Copy-back Field, part I
	Copy-back Field, part II
	Copy-back Field, part III
	Copy-back Field, part IV
	Synchronization Failures

