
Language-level Non-blocking
Software Transactions

(in Java!)
C. Scott Ananian

cananian@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Ananian, CRS retreat – p. 1

Notes
Nothing should be said on the title slide.

Ananian, CRS retreat – p. 2

Transactions (review)
• A transaction is a sequence of loads and stores

that either commits or aborts.
• If a transaction commits, all the loads and store

appear to have executed atomically.
• If a transaction aborts, none of its stores take

effect.
• Transaction operations aren’t visible until they

commit or abort.

Ananian, CRS retreat – p. 3

Notes

Ananian, CRS retreat – p. 4

http://cscott.net

Non-blocking synchronization
• Although transactions can be implemented with

mutual exclusion (locks), we are interested only
in non-blocking implementations.

• In a non-blocking implementation, the failure of
one process cannot prevent other processes from
making progress. This leads to:
• Scalable parallelism
• Fault-tolerance
• Safety: freedom from some problems which

require careful bookkeeping with locks,
including priority inversion and deadlocks.

• Little known requirement: limits on transaction
suicide.

Ananian, CRS retreat – p. 5

Notes
Scalable parallelism, because non-conflicting threads aren’t blocked.
Fault-tolerance, because the failure of one thread won’t stop the others.
Easier to program.
It turns out you have to be careful about which transaction to abort when there are conflicts in
order to maintain the non-blocking properties. The original hardware transactions paper by
Herlihy/Moss got this wrong, although correcting the problem is trivial.

Ananian, CRS retreat – p. 6

Monitor Synchronization

public class Count { public class Count {

private int cntr = 0; private int cntr = 0;

void inc() { void inc() {

synchronized(this) { ⇒ atomically {

cntr = cntr + 1; cntr = cntr + 1;

} }

} }

} }

• Traditionally, monitors associated with each
object provide mutual exclusion between
concurrent accesses to the object. Instead we
provide an atomic block, and make linearizablity
guarantees without (necessarily) providing
mutual exclusion.

Ananian, CRS retreat – p. 7

Notes
Synchronization in object-oriented systems can be performed with monitors, introduced by the
Emerald system, which are basically per-object locks. This is how it looks in Java – the argument
to synchronized states which object’s monitor you wish to take. In general, you are only
supposed to modify shared variables of an object after taking its monitor. This is not sufficient to
prevent unexpected parallel behavior – but it helps.
Instead, we would like to specify synchronization as atomic blocks, which guarantee that the
enclosed operations will be perceived as atomic by all other threads. This prevents some errors
with monitors, especially in operations that use more than object.
Atomic blocks can be implemented with locks, but we’d prefer an optimistic non-blocking
implementation.

Ananian, CRS retreat – p. 8

Implementation Idea

TransactionalTraditional

lock

Object

fields

Object

versions

Version

owner

readers

next

fields

Version

owner

readers

next

fields

Transaction

status

Transaction

status

Ananian, CRS retreat – p. 9

Notes
Here is how an optimistic vesion of atomic may be implemented. Instead of an object directly
containing fields, it now points to a version list. Each version is associated with a transaction,
which may be COMMITTED, WAITING, or ABORTING. The “current” value of the object is the
value in the fields of the first committed version.
We must also keep a list of readers, so that we can detect when our atomicity guarantees are
violated by concurrent operations. Whenever something like this goes wrong, we simply abort
the transaction (by updating its status) and retry.
By ordering lists such that the relevant entries in the version and readers lists are likely to be first
at the head, this scheme can be made efficient.

Ananian, CRS retreat – p. 10

A software transaction impl.
• Goals:

• Non-transactional operations should be fast.
• Reads should be faster than writes.
• Minimal amount of object bloat.

• Solution:
• Use special FLAG value to indicate “location involved in

a transaction”.
• Object points to a linked list of versions, containing

values written by (in-progress, committed, or aborted)
transactions.

• Semantic value of a FLAGged field is: “value of the first
version owned by a committed transaction on the
version list.” Ananian, CRS retreat – p. 11

Notes

Ananian, CRS retreat – p. 12

Transactions using version lists

field1

field2
3.14159

FLAG

field1

field2
FLAG

2.71828

Object #1

Object #2

Version

field1

field2
FLAG

23

owner

next

Version

field1

field2
FLAG

55

owner

next

type

readers

versions

OtherClass

type

{TID68}

MyClass

readers

versions

status
WAITING

status
COMMITTED

status
COMMITTED

Version

field1

field2
’A’

FLAG

owner

next

Version

field1

field2
’B’

FLAG

owner

next

{TID25}

Transaction ID #68 Transaction ID #56

Transaction ID #23

.

.

.

.

.

. .
.
.

.

.

.

.

.

.
.
.
.

Ananian, CRS retreat – p. 13

Notes

Ananian, CRS retreat – p. 14

Races, races, everywhere!
• Lots of possible races:

• What if two threads try to FLAG a field at the same
time?

• What if two threads try to copy-back a FLAGged field at
the same time?

• What if two transactions perform conflicting updates?
• Do transactions commit atomically?

• Formulated model in Promela and used Spin to
verify correctness (for bounded scope, etc).

Ananian, CRS retreat – p. 15

Notes

Ananian, CRS retreat – p. 16

Bugs found with model-checking
• Memory management (object recycling,

reference counting)
• Read caching (check copies to local variables)
• “Real” bug: missing abort of readers during

non-transactional write

Too much time spent minimizing/coalescing state. =(

Ananian, CRS retreat – p. 17

Notes

Ananian, CRS retreat – p. 18

More Fun
• Large objects
• Interaction with I/O
• Interaction with native methods
• Nested transactions
• Exposing abort/retry mechanism
• Supporting wait/notify

Ananian, CRS retreat – p. 19

Notes

Ananian, CRS retreat – p. 20

Cooperating HW/SW transactions
• Using “node-push” micro-benchmark with a hardware

transaction mechanism (submitted ASPLOS-XI)

• Hardware starts to perform poorly for large or long-lived
transactions.

�

��

���

���

���

���

���

� � � �� �� �� �� �� �� �� �� �� ��

���������	�
���
������
	�
�	��
�
����

�
�
�
�
�

�

�

�
	
�

	
�

�
�

����������	
�����

�
����

������
���

�������

����������	
�����

�
����

������
���

�������

�

��

���

���

���

���

���

� � � �� �� �� �� �� �� �� �� �� ��

���������	�
���
������
	�
�	��
�
����

�
�
�
�
�

�

�

�
	
�

	
�

�
�

	�
�

Ananian, CRS retreat – p. 21

Notes

Ananian, CRS retreat – p. 22

Optimistic parallelism
for (...)

optimistically {

...do an iteration ...

}

conquer(A[n], n) {

...

optimistic spawn

conquer(A, n/2);

optimistic spawn

conquer(A+n/2, n-n/2);

}

Programmer notes
that the iterations or
spawns are expected
to be independent.
Iff there are dynamic
dependencies, the
computations are
serialized.

Ananian, CRS retreat – p. 23

Notes
There are different ways multiple transactions can interact. We could allow only one active
transaction at a time, only allow non-overlapping transactions, allow nested transactions,
concurrent transactions, subsumed transactions, nested independent transactions, or other
variations.
We’d like the investigate using this mechanism to allow a programmer to specify optimistic
parallelism. This is much easier to make safe, although potentially just as hard to make fast.

Ananian, CRS retreat – p. 24

The End

Ananian, CRS retreat – p. 25

Notes

Ananian, CRS retreat – p. 26

The Spin Model Checker
• Spin is a model checker for communicating

concurrent processes. It checks:
• Safety/termination properties.
• Liveness/deadlock properties.
• Path assertions (requirements/never claims).

• It works on finite models, written in the Promela
language, which describe infinite executions.

• Explores the entire state space of the model,
including all possible concurrent executions,
verifying that Bad Things don’t happen.

• Not an absolute proof — but pretty useful in
practice.

Ananian, CRS retreat – p. 27

Notes

Ananian, CRS retreat – p. 28

Dekker’s mutex algorithm (C)
int turn;
int wants[2];

// i is the current thread, j=1-i is the other thread
while(1) { // trying

wants[i] = TRUE;
while (wants[j]) {

if (turn==j) {
wants[i] = FALSE;
while (turn==j) ; // empty loop
wants[i] = TRUE;

}
}
critical_section();
turn=j; // release
wants[i] = FALSE;
noncrit();

}

Ananian, CRS retreat – p. 29

Notes

Ananian, CRS retreat – p. 30

Dekker’s “railroad”

Railroad visualization of Dekker’s algorithm for mutual
exclusion. The threads “move” in the direction shown
by the arrows.

Ananian, CRS retreat – p. 31

Notes

Ananian, CRS retreat – p. 32

Dekker’s mutex algorithm (Promela)
bool turn, flag[2]; byte cnt;
active [2] proctype mutex() /* Dekker’s 1965 algorithm */
{ pid i, j;

i = _pid;
j = 1 - _pid;

again: flag[i] = true;
do /* can be ’if’ - says Doran&Thomas */
:: flag[j] ->

if
:: turn == j ->

flag[i] = false;
!(turn == j);
flag[i] = true

:: else
fi

:: else -> break
od;
cnt++; assert(cnt == 1); cnt--; /* critical section */
turn = j;
flag[i] = false;
goto again

} Ananian, CRS retreat – p. 33

Notes

Ananian, CRS retreat – p. 34

Spin verification
$ spin -a mutex.pml
$ cc -DSAFETY -o pan pan.c
$./pan
(Spin Version 4.1.0 -- 6 December 2003)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 20 byte, depth reached 65, errors: 0
190 states, stored
173 states, matched
363 transitions (= stored+matched)

0 atomic steps
hash conflicts: 0 (resolved)
(max size 2ˆ18 states)
$
If an error is found, will give you execution trail producing the error.

Ananian, CRS retreat – p. 35

Notes

Ananian, CRS retreat – p. 36

Spin theory
• Generates a Büchi Automaton from the Promela

specification.
• Finite-state machine w/ special acceptance conditions.
• Transitions correspond to executability of statements.

• Depth-first search of state space, with each state
stored in a hashtable to detect cycles and prevent
duplication of work.
• If x followed by y leads to the same state as y followed

by x, will not re-traverse the succeeding steps.

• If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate coverage
metric.

Ananian, CRS retreat – p. 37

Notes

Ananian, CRS retreat – p. 38

Modeling software transactions

Ananian, CRS retreat – p. 39

Notes

Ananian, CRS retreat – p. 40

Non-transactional Read
inline readNT(o, f, v) {

do
:: v = object[o].field[f];

if
:: (v!=FLAG) -> break /* done! */
:: else
fi;
copyBackField(o, f, kill_writers, _st);
if
:: (_st==false_flag) ->

v = FLAG;
break

:: else
fi

od
}

Ananian, CRS retreat – p. 41

Notes

Ananian, CRS retreat – p. 42

Non-transactional Write
inline writeNT(o, f, nval) {

if
:: (nval != FLAG) ->

do
:: atomic {

if /* this is a LL(readerList)/SC(field) */
:: (object[o].readerList == NIL) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = nval;
break /* success! */

:: else
fi

}
/* unsuccessful SC */
copyBackField(o, f, kill_all, _st)

od
:: else -> /* create false flag */

/* implement this as a short *transactional* write. */
/* start a new transaction, write FLAG, commit the transaction,
* repeat until successful. Implementation elided. */

fi;
} Ananian, CRS retreat – p. 43

Notes

Ananian, CRS retreat – p. 44

Copy-back Field, part I
inline copyBackField(o, f, mode, st) {
_nonceV=NIL; _ver = NIL; _r = NIL; st = success;
/* try to abort each version. when abort fails, we’ve got a
* committed version. */

do
:: _ver = object[o].version;

if
:: (_ver==NIL) ->

st = saw_race; break /* someone’s done the copyback for us */
:: else
fi;
/* move owner to local var to avoid races (owner set to NIL behind
* our back) */

_tmp_tid=version[_ver].owner;
tryToAbort(_tmp_tid);
if
:: (_tmp_tid==NIL || transid[_tmp_tid].status==committed) ->

break /* found a committed version */
:: else
fi;
/* link out an aborted version */
assert(transid[_tmp_tid].status==aborted);
CAS_Version(object[o].version, _ver, version[_ver].next, _);

od; continued. . .Ananian, CRS retreat – p. 45

Notes

Ananian, CRS retreat – p. 46

Copy-back Field, part II
/* okay, link in our nonce. this will prevent others from doing the
* copyback. */

if
:: (st==success) ->

assert (_ver!=NIL);
allocVersion(_retval, _nonceV, aborted_tid, _ver);
CAS_Version(object[o].version, _ver, _nonceV, _cas_stat);
if
:: (!_cas_stat) ->

st = saw_race_cleanup
:: else
fi

:: else
fi;

continued. . .

Ananian, CRS retreat – p. 47

Notes

Ananian, CRS retreat – p. 48

Copy-back Field, part III
/* check that no one’s beaten us to the copy back */
if
:: (st==success) ->

if
:: (object[o].field[f]==FLAG) ->

_val = version[_ver].field[f];
if
:: (_val==FLAG) -> /* false flag... */

st = false_flag /* ...no copy back needed */
:: else -> /* not a false flag */

d_step { /* LL/SC */
if
:: (object[o].version == _nonceV) ->

object[o].fieldLock[f] = _thread_id;
object[o].field[f] = _val;

:: else /* hmm, fail. Must retry. */
st = saw_race_cleanup /* need to clean up nonce */

fi
}

fi
:: else /* may arrive here because of readT, which doesn’t set _val=FLAG*/

st = saw_race_cleanup /* need to clean up nonce */
fi

:: else /* !success */
fi; continued. . .

Ananian, CRS retreat – p. 49

Notes

Ananian, CRS retreat – p. 50

Copy-back Field, part IV
/* always kill readers, whether successful or not. This ensures that we
* make progress if called from writeNT after a readNT sets readerList
* non-null without changing FLAG to _val (see immediately above; st will
* equal saw_race_cleanup in this scenario). */

if
:: (mode == kill_all) ->

do /* kill all readers */
:: moveReaderList(_r, object[o].readerList);

if
:: (_r==NIL) -> break
:: else
fi;
tryToAbort(readerlist[_r].transid);
/* link out this reader */
CAS_Reader(object[o].readerList, _r, readerlist[_r].next, _);

od;
:: else /* no more killing needed. */
fi;
/* done */

}

done!

Ananian, CRS retreat – p. 51

Notes

Ananian, CRS retreat – p. 52

Synchronization Failures
class A { // OK!

int x; // shared variable
synchronized int inc() {

return x++;
}

}

class B { // Race-free, but not OK.
int x; // shared variable
synchronized int get() { return x; }
synchronized void set(int y) { x=y; }
int inc() { // not monitored

int t = get();
t++;
set(t);
return t;

}
}

Ananian, CRS retreat – p. 53

Notes
The class A here, shows what monitor synchronization looks like in Java. The synchronized

keyword indicates that this is a monitored method. Only one thread may be hold the monitor at a
time, thus only one thread may be inside inc() at a time. This guarantees that the increment
behaves as we expect: this is a correctly synchronized method.
But look at class B, which implements the same functionality. Note that the only access to shared
variable x is inside the monitored get() and set() methods — but this code is not safe! If n

threads call inc(), the shared variable x may be incremented any number between 1 to n times.

Ananian, CRS retreat – p. 54

	Notes
	Transactions (review)
	Notes
	Non-blocking synchronization
	Notes
	Monitor Synchronization
	Notes
	Implementation Idea
	Notes
	A software transaction impl.
	Notes
	Transactions using version lists
	Notes
	Races, races, everywhere!
	Notes
	Bugs found with model-checking
	Notes
	More Fun
	Notes
	Cooperating HW/SW transactions
	Notes
	Optimistic parallelism
	Notes
	The End
	Notes
	The Spin Model Checker
	Notes
	Dekker's mutex algorithm (C)
	Notes
	Dekker's ``railroad''
	Notes
	Dekker's mutex algorithm (Promela)
	Notes
	Spin verification
	Notes
	Spin theory
	Notes
	Modeling software transactions
	Notes
	Non-transactional Read
	Notes
	Non-transactional Write
	Notes
	Copy-back Field, part I
	Notes
	Copy-back Field, part II
	Notes
	Copy-back Field, part III
	Notes
	Copy-back Field, part IV
	Notes
	Synchronization Failures
	Notes

