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1 INTRODUCTION 2

Implementation Year || Cost per | Blocks/s Chips Time, Ref
chip per $1IM | given $1M

Diffie-Hellman’ 77 ~$20 M 50k 17 days [DH77]
Hoornaert, et alt 84 ~$40 1.1M 25k 30 days [HGD85]
AMD 84 $19 218k 53k 72 days [AMD84]
Waynerf 92 ~$30 448k 31k 30 days [Way93]
VLS| Technology | 92 $170 3M 6k 47 days [VLs91]
DEC 92 $300 16M 3k 16 days [Ebed3]
Wiener 93 $11 50M 58k 4 hours [Wied4]

T Paper study. These tend to be rather optimistic.

Table 1: Cost and Time Estimates to Break DES.

1 Introduction

The United States' key-length limit of 40-bitsfor exportable cryptography islaughably
small: lan Goldberg at the University of California at Berkeley needed fewer than 4
hours of compute-time to brute-force the key space of 40-bit RC5. Forty-eight bit
algorithms are small improvement; a European team led by the Swiss Federal Institute
of Technology in Zurich exhausted the key-space of 48-bit RC5 in 13 days. The 56-hit
key length of the Data Encryption Standard, DES, has likewise been claimed too small;
Diffie and Hellman objected at the time of the standard’s adoption, in 1977 [DH77].

A number of papers have provided estimates of the cost and time of breaking DES
using brute-force search. Custom hardware invariably performs much better than soft-
ware for thistask; DES is not particularly suited to software implementation due to its
employment of bit-permutations and variable word lengths.! Table 1 summarizes the
costs and speeds of hardware implementations proposed from the time of DES' first
adoption.

By Garon and Outerbridge’ s estimates, DES chips areincreasing in speed by afac-
tor of eight every fiveyears [GO91]. Thus, Wiener's 1993 0.8 pm CMOS design using
a50M block/s DES chip [Wie94], could now be trandated into a $10,000 machine that
would extract a DES key in 44 hours.? If one is going to spend money on a cracking
machine, one might wisely ask if, for asmall additional expenditure, the machine may
be made flexible enough to accomodate multiple algorithms. This paper attempts to
more quantitatively assess that possibility. In particular, we will discuss the creation
of an optimizing compiler to create hardware structures for cryptographic agorithms,
and the results of a chip-level design of an FPGA-based brute-force search engine.

1A table of DES speeds for various processor platforms is given in [Sch94, p 131].

2The current RSA challenge offers areward of $10,000 for the successful brute-force solution of a posted
ciphertext/plaintext pair. Current co-operative software-only approaches seem to require at least 4 years of
processing time to achieve a solution.
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2 Related Work

Peter Wayner describes the use of a content-addressable memory to attack DES in
[Way93]. The content-addressable memory is used as an array of bit-level processors;
they could be reprogrammed, as we propose, to attack algorithms which differ dightly
from DES. The processing elements are sufficiently smplethat it would be very hard to
implement the more “modern” software-oriented algorithms which rely an arithmetic
operators rather than boolean operations and bit permutations. FPGAs have no such
limitation. In addition, Wayner’s DES algorithm is coded by hand; he does not address
automatic code generation for his machine from a high-level algorithm description.
Finally, his results are more than an order of magnitude slower than rival custom ASIC
implementations.

Wiener describes a hardware implementation of DES in detail in [Wie94]. The de-
signisfor 0.8 um standard-cell CMOS, clocked at 50 MHz. His custom chip achieves
the highest speed-to-price ratio of any hardware implementation to date; our imple-
mentation success in FPGA technology will be measured against his standard. Dave
Wagner describes an extension to Wiener's work to allow ciphertext-only attacks on
DES for an order of magnitude more costfWB94]; our current work concerns itself
with Wiener's baseline design only.

The idea of utilizing configurable computing devices cryptographically was first
proposed by [V196] and [ACC*95], who studied long-integer arithmetic circuits suit-
able for public-key cryptography. These results have little relevance to the secret-key
systems we consider in this paper. Implementations of microprocessors with recon-
figurable functional units would be well suited to attacking cryptographic algorithms
with complex boolean operations and bit permutations; however, the published litera-
ture [AS93, WH95] does not address thisissue.

3 Methodology

A compiler, ageneral hardware design, and several benchmarks were created to evalu-
ate programmable hardware’s suitability for brute-force key search. The cryptographic
algorithm was expressed in a high-level language and compiled to produce behavioral
VHDL. The VHDL description was analyzed by Synopsys tools and targeted to the
Xilinx XC4010 FPGA. Xilinx place-and-route tools were used on the final net-list.

4 Compiler

An optimizing compiler was written for the TIGER programming language. The com-
piler translates algorithm descriptions into behavioral VHDL. A subset of TIGER is
supported; explicitly omitted are arrays, strings, and functions. Looping constructs are
supported. The optimization phase of the compiler is designed to target hardware; for
example, copy propagation is omitted because it disappears into a net-list once hard-
ware trangdlation is complete.
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41 Front-end

The source language for the compiler is described in [App97]. TIGER isa“simple but
non-trivial language of the Algol family,” lacking only the wide variety of data types
that categorize more familiar languages such as C. A pre-existing front-end was modi-
fied to implement the bit-level operations® needed to support most cryptographic algo-
rithms. Several “pseudo-functions’ were also added to the language to make available
the values of the hardware key registers. The output of the front-end is an Intermediate
Representation Tree (IR tree). It is possibleto rewrite the front-end to generate IR trees
from another source language (say, a C subset) with minimal changes to the back-end
implemented in this project.

4.2 Optimizer

A number of optimizations were implemented in order to generate efficient hardware.
Perhaps the most important of theseisloop-unrolling, which can replace sequential cir-
cuitry with combinational logic when successful. In order to recognize when unrolling
is possible, constant propagation and folding are done. Constant propagation, constant
folding, and dead code elimination also reduce the amount of unnecessary hardware
generated.*

421 Quadruples

Thefirst step of the optimization phase is conversion of the IR tree to quadruples, sSim-
ple statements computing an operation of no more than two operands. The conversion
to quadruples involves flattening the IR tree through the introduction of new tempo-
rary variables. The converted IR tree is alist consisting of only nine types of simple
statements:

MOVE a+b a < bbinop c BINOP
LOAD a < M[b] M[a] «b STORE
CALLSUB f(al, ceey an) a < f(bl, ceey bn) CALLFUN
LABEL L: goto L GoTo

COND. if a relop b goto L, elsegoto Ls

Once the quadruples have been generated, the code is converted to Static Single-
Assignment (SSA) form [Ct91] for optimization.

4.2.2 Static Single-Assignment Form

Static Single-Assignment form is an intermediate format that allows optimizations to
be done efficiently and easily. Every variable receives exactly one assignment during
its lifetime, and ¢-functions are added at places where program flow joins. The value
of the ¢-function “magically” depends on the path the program has taken; in practice,

3Bit-wise AND, OR, XOR, shift and rotation
4The Synopsys compiler tends to be rather literal with itsinput stream; dead code will be translated into
hardware despite being computationally useless.
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V « 4 Vi « 4

+~ V+5 ~ Wi+5
V +« 6 Vo « 6

— V47 ~ W+7

Figure 1: Straight-line code and its single assignment version.

if P if P
then V « 4 then V; « 4
else V«6 else V6
Vs ¢(V1,V32)
/* Use V several tinmes */ /* Use V3 several tines */

Figure 2: If-expression code and its single assignment version.

amove-insertion on each entrance path implements the ¢-function when coverting out
of SSA form. An example, taken from [C191], isshown in figures 1 and 2.

The use of ¢-functions simplifies the book-keeping for various optimizations, and
by maintaining a single point of definition for every variable alows the algorithms to
execute in linear, rather than quadratic, time. Furthermore, this work has disovered
that the ¢-function notation allows concise and accurate identification of state-machine
registersin the translation of loop constructs. This application will be further discussed
in section 4.3.2.

The trandation into SSA form uses the algorithms discussed in [App97, CT91,
LT79]. The dominator tree is computed using the L engauer-Tarjan algorithm and path-
compression, and is then used to compute the dominance frontier using Cytron’s two-
pass agorithm. After adding ¢-functions for the variable a at the dominance frontier
of every node where « is defined, we walk the dominator tree to rename variables so
that every variableis defined exactly once. Thereis asimpler algorithm for SSA form
tranglation that utilizes source-language information to aid placement [BM94], but the
more complicated algorithm implemented here works on simple quadruples, and thus
alows front-end (source language) modification or replacement without necessitating
changes to the back-end implemented in this project.

The ¢-functions of the SSA form were implemented as a tenth type of quadru-
ple, and a flowgraph of the SSA-format quadruple list was input to the optimization
routines.

4.2.3 Conditional Constant Propagation

Wegman and Zadeck’s Sparse Conditional Constant (SCC) a gorithm was used to find
constant expressions, constant conditions, and unreachable code [WZ91]. Figure 3
shows the optimization extent possible.

The output of the SCC algorithm is an association of variablesto oneof {_L,¢, T},
where L marks a variable that is never defined, ¢ indicates a constant value, and T
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11 <1
j1(—i1X4 = j1<—4
if (1+1>2)
19 — 2
el se
i3 3
i4(—¢(i2,i3)
k‘l — 3414

- ig ¢(2)
— kl <5
Figure 3: SCC code optimization.

signifies an over-defined variable (which may be assigned any one of a humber of
values). In addition, every flow-graph node (corresponding to a quadruple) is marked
as executable or non-executable. We then walk the flow-graph, eliminating dead-code
(quadruples marked non-executable), replacing constant variables with their values,
and changing constant conditional branchesto got o statements.

4.2.4 Code motion

Maximal loop-unrolling is possible after constant propagation. The code motion anal-
ysisimplemented was very simple, and relied on source-language information from the
abstract-syntax tree. It was able, however, to fully unroll the simple loops found in the
algorithms under investigation. Once the loop was fully unrolled, the above optimiza-
tion algorithms render more sophisticated code motion analysis (for example, code
hoisting outside the loop) unnecessary. Further work on code motion optimizations is
possible, especialy in light of the recent ability to generate sequential circuitry from
loop constructs. Code motion when sequential circuits are targetted allows usto reduce
the amount of state, and hence, registers, necessary to implement the state machine.

4.3 VHDL generation

The optimized quadruples were used to generate behavioral VHDL code which could
be compiled to hardware. The load and store operations accessing memory were un-
supported, but the binary operation quadruples could be trandlated fairly directly to
VHDL. Properly trandating branches and conditionals was more difficult.

4.3.1 Branch-compression

For code without loops, the conditional branches and got os need to be translated into
i f-then- el se statements, from which the VHDL compiler will create combina-
tional logic. The trouble is that constructs such as the one shown in figure 4 do not
have equivalent if-constructs. These control-flow patterns can be generated by source-
language got o statements or short-circuit logical operators. The agorithm devised
in this work combines dominator tree and flow-graph information to define a “merge
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if a then goto L, el se goto Lj
Li: if bthen goto Ly, else goto L3
Ly: c+d+e

goto L4
L3: f<—g+h

goto Ly
Ly:

Figure 4: A flowgraph which can not be represented as an if-then-else statement with-
out quadruple duplication.

if a then
if b then
c :=d + e
el se
f :=g + h;
end if;
el se
f :=g + h;
end if;

Figure 5: Conversion of the program of figure 4 to VHDL.

node,” where the two control flows of the conditional will merge (if ever).®> Statements
must then be duplicated along each side of the conditional, until the merge node is
reached, or all statements have been translated. Figure 5 showsthe resultant VHDL for
the quadruplesin figure 4.

4.3.2 Loop handling

Theoriginal compiler relied on maximal loop unrolling to eliminateooping constructs.
It was realized that the SSA form dictated a precise method of converting a quadruple
list with ¢-functions to an equivalent state machine. Therefore the code written to
translate back from SSA form after code optimization was removed, and a new version
of the VHDL generator was written, using the SSA form directly asinput.

L oop analysiswas performed on the dominator tree using the algorithm in [ASU85].
Thisyielded alist of loops and their headers. All flow into aloop must be through its
header (the header must dominate al the nodesin theloop). Our insight, simply stated,
was that the list of ¢-functions in the header of the loop exactly defined the required
registers for a state-machine implementing that loop. For example, the simple while-
loop in figure 6 needs only one register, to store the value of 5. On state transitions, i,
would be loaded with the value of either ¢; or i5. To simplify circuitry, these registers

5The “merge node” is the dominator tree child of the conditional branch, which is reached last in a
post-order depth-first-search of the control flow graph.
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| et
var i:=1 Lq:
in
while (i<16) do Ls:
o=+l
end Ls:

11 <1

iz  ¢(i1,13)

if i2 <16 goto L, else Ls
13 < 19 + 1

goto L,

Figure 6: A smplewhile-loop in TIGER, left, and SSA form, right.

architecture BEHAVI OR of whiletest is
- register definitions
signal t8,t11:1NT32;
- state definitions
signal State2, nextState2:BIT;
signal Statel, nextStatel:BIT;
signal State0O, nextStateO:BIT;
begi n
CLOCKSTATE: process
begi n
wait until (CLOCK event) and (CLOCK='1");
- new state:
State2 <= next St ate2;
Statel <= nextStatel;
State0 <= next St at e0;
- new registers:
t8 <= t11;
end process;
NEXTSTATE: process(

State2,
Statel,
State0,
t8)
variable t9:1NT32;
begi n
DONE <= '0’;

- default state:
nextState2 <= '0';
nextStatel <= '0";
nextState0 <= '0";

- default registers:
t1l <=18;
if RESET = '1' then
nextStatel <= "1'; --
- STATE MACHI NE
elsif Statel ='1 then
nextState0 <= '1'; -- goto
t11 <= To_INT32(1); -- phil
elsif State0 =1 then
if
t8 < To_| NT32(16)

initial state.

then

t9 1= t8 + To_INT32(1);
nextState0 <= '1'; -- goto
t1l <=t9; -- phil
el se

nextState2 <= '1'; -- goto
end if;

elsif State2 ='1' then
nextStatel <='1';
DONE <= '1';
end if;
end process;
end;

Figure 7: Excerpted VHDL code for the while-loop in figure 6.

were augmented with a simple one-hot state-encoding,® and a new variable is created
to hold the “next” value of the state register after the transition.

Theallocation into states was follows Galloway’ swork on Transmogrifier C[Gal95].
Theinitial state comprisesthe code prior to the loop header, another state indicates ex-
ecution of the loop body, and afinal state is reached on exit from the loop, for atotal
of three bits of state per loop. Loops can be nested to arbitrary depth. Multiple exit
points for the loop are supported. The VHDL code output for the while-loop in figure

6isshowninfigure?.

6Galloway indicatesin [Gal95], citing [BFS94], that, despiteits simplicity, one-hot encoding may be the
best encoding to use on FPGASs. See also [POA96], who reference [Wak90].
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Algorithm | Keystested/s
DES 90k
RC5 150k
TEA 357k

Table 2: Representative algorithm speeds in software. Speeds are reported for a Sun
Ultra-2 machine, using a 168MHz UltraSPARC CPU.

5 Hardware Design

Basic hardware using FPGAs to form a brute-force cracking machine was designed.
Thebasic ideahas not changed fundamentaly from that proposed by Diffieand Hellman
in 1977 [DH77]: design a chip to test keys as quickly as possible, and use as many as
possible of them in parallel. Very little inter-chip communication is necessary, besides
initial set-up.

Wiener describes a detailed board layout for the DES-cracking chip he designed
[WieQ4], using a 8-hit data bus for chip interconnect. His chip requires 27 1/0 pins for
the interface. We feel that a parallel bus is over-kill for this application; we propose
a simple daisy-chained serial bus instead, requiring only 5 pins, not including clocks.
This should alow the printed-circuit board layout of the FPGA array to be extremely
simple. The chip I/O interface is defined by the behavioral VHDL indri ver. vhdl ,
found in appendix B.2.

The interface is based on a 65-bit shift register, which holds the current 64-bit key
under test and aone bit search statusflag. To savelogic, wefollow Wiener in advancing
the key using alinear feedback shift register, instead of a64-bit ripple-carry adder. The
generating polynomial for the 64-bit LFSR is z54 + z* + 2% + 2! + 1. Thisisa
maximal-length LFSR, meaning that it will step through all of the 264 — 1 possible
states [Sch94]. The LFSR will not step through the all-zero key; this must be tested
separately.

In addition, an internal driver-to-cryptographic engine interface has been defined;
the behavioral VHDL describing it isin cr ypt _pack. vhdl . Details vary dightly
for pipelined and non-pipelined versions, but both types have two 32-bit key-inputs,
and a single bit result output in common.

A design cycle using a single adder as the “ crypto enging” component reveals that
the driver-stage uses about 20% of the available CLBs (mostly for the 65-bit shift-
register), and can be clocked at over 18MHz. Obviously, the introduction of a “real”
cryptographic component will limit us to far below this maximum possible speed.

6 Algorithm Selection

Three different cryptographic algorithms were investigated: DES, the Data Encryption
Standard of the National Bureau of Standards, defined formally in [NBS88] and infor-
mally in [Sch94]; RC5, designed by Ron Rivest, defined in [Riv95]; and TEA, the Tiny
Encryption Algorithm, designed by Wheeler and Needham and described in [WN95].
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DES is the most important commercially of the three algorithms; it is used every
day by the financial industry despite dire warnings [Hel79] of its imminent insecu-
rity. It is implemented much more efficiently in hardware than in software, due to
its dependence on bit-level permutations and other constructs not easily described in
“conventiona” high-level programming languages. The typical software speeds listed
in table 2 may be compared against Wiener’'s 50 million key-per-second 1993 hardware
implementation [Wied4].

DES is very difficult to expressin TIGER until source-language constructs to sup-
port bit-permutations are added, and so a reconfigurable implementation of DES was
not possible within the scope of this present work. Because of its importance to the fi-
nancial industry and others, it has commerically-obtai nable hardware implementations
to which we can compare our paper-study results; our assumption is that DES is not
easier to implement than TEA.

RCS is a cipher proposed by Ron Rivest, which is used in RSA Data Securities
products and in a number of Internet protocols. It was explicitly designed to be sim-
ple to implement in software; i.e. no bit permutations are used. Even so, table 2
demonstrates only a50% speed increase over DES, using highly-optimized versions of
both algorithms. The lackluster performance is likely due to key-setup times; Rivest
designed a lengthy sub-key generation phase into the algorithm to make brute-force
key-searching substantially more difficult without slowing down conventional one-key
uses of RC5.

RCS5 is a 12-round algorithm, not counting 78 rounds of key setup, making this
agorithm difficult to implement non-iteratively. In addition, the wide addition steps
required by RC5 are costly to implement quickly in an FPGA; the RC5 a gorithm will
not fit in the Xilinx XC4010 we are targeting.

TEA isthe simplest agorithm of the three; it uses many rounds to counter the sim-
plicity of its round function. The author’s claim of triple the speed of DES in software
seems to be warranted; table 2 shows a speed-up of closer to four. The wide additions
of the algorithm make it likely that the hardware complexity of TEA is comparable
to that of DES. The TEA algorithm very nearly fills a Xilinx XC4010 chip; this puts
its complexity as (very roughly) 10,000 gates. Eberle's GaAs DES implementation
[Ebe93] uses somewhere between 4,000 and 15,000 gates.

7 Benchmark designs

In order to have a standard to which to compare the compiler-generated designs, atwo
manual crypto-engine implentations were done, using the TEA agorithm. One used a
VHDL f or -loop which was automatically unrolled by the Synopsis tools to generate
straight-line code; the other was a hand-tweaked state machine that did one round of
the algorithm per iteration.

In addition, software benchmarks were created for the three cryptographic algo-
rithms under consideration. Software optimization techniques were studied, and loops
were unrolled and memory accesses eliminated as much as possible.

It was recently brought to my attention that an efficient parallel implementation of
DES is possible on general -purpose machines by testing multiple keysin parallel; each
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Algorithm | Code Gen. || Cycles/key | Clock Rate | Keys/s
Basdline None 1 18 MHz —
Teal Automatic 1 — —
Tea2 Manual 1 514 kHz 514k
Tea3 Manual 34 135MHz | 397k
Tead Automatic 34 10.1MHz | 297k
RC5 Automatic 5 — —

Table 3: Design Speeds (as reported by the Synopsys tools).

32-bit machine register could represent thirty-two parallel copies of asingle bit in the
algorithm. This allows efficient representation of bit-level operations, but eliminates
the use of lookup tables. The S-boxes of DES have to be represented by a logical
expression to enable their implementation. The complexity of the algorithm decompo-
sition necessary for this approach puts it outside the scope of this research; it would,
however, enable the expression of DES in TIGER without source-language enhance-
ments.

8 Reaults

Four compl ete designs for the TEA-algorithm and aimplementation of RC5 were eval-
uated, in addition to a base-line design with key-search hardware but no cryptographic
algorithm. The results are shown in tables 3 and 4.

Teal is automatically generated fully-unrolled code generated from the TIGER-
language program of appendix A.1. The Synopsys tools were not able to properly
handle the large number of temporary variables generated, and so there are no detailed
speed or complexity figuresfor this design.

Tea? is hand-written code which uses a VHDL for-loop to alow the Synopsys
toolsto unroll the 32 TEA rounds. The Synopsys toolswere able to evaluate the design
and give a clock speed estimate, but the design was too large to fit in a single Xilinx
XC4010.

Tea3 is hand-written code for an iterative state-machine implementation of TEA,
used as a feasibility test for automatic generation of sequential circuits. The resulting
design was able to be squeezed into a Xilinx XC4010, with only 10 CLBsto spare.

Tea4 is an automatically generated state machine compiled from the same TIGER
program as Teal, with loop unrolling turned off. It also fit into a Xilinx XC4010,
barely. Performance is roughly equivalent to Tea3.

RC5 is an automatically generated state machine compiled from the TIGER pro-
gram of appendix A.2. The TIGER program needed to be unrolled to eliminate array
references, but still uses a iterative state machine in subkey generation. The design
does not fit in a Xilinx XC4010.
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Algorithm | Code Gen. || Total CLBs | Xilinx XC4010 CLB Uset
Basdline None 57 95/400 23%
Teal Automatic — — —
Tea2 Manual 5814 — —
Tea3 Manual 2187 390/400 97%
Tead Automatic 364 399/400 99%
RC5 Automatic — — —

T Reflects Synopsys figures before target-specific optimization and routing.

H Reported by the Xilinx tools after successful place-and-route.

Table 4: Hardware complexity of hand-written and compiled designs.

12

Technology Speed (keys/s) | Notes
FPGA 514k | Best TEA results
Softwaret 1,660k | 175MHz MIPS R10000, bitsliced
Custom hardwaret 50,000k | 0.8 um standard-cell CMOS
1 From author's experiments with the DES Challenge client fromht t p: / / waw. fri i . com “rcv/ deschal | . ht m
¥ From [Wie94]

Table 5: Redlistic speed comparison.

9 Conclusions

The speed and density of the compiled algorithms compares well with hand-written
VHDL. The Synopsys tools are very sensitive to the manner in which the hardware
description is expressed [ SWA95], and we are confident that closer examination of the
generated code will disclose ways to make up the current 20% performance penalty
of the compiled code. The state-machine generation algorithm utilizing the SSA form
information appears to be robust and efficient.

The future of FPGAs in brute-force cracking machines does not appear as rosy.
Although the 514,000 key per second cracking rate of the Tea2 design (and the pre-
sumably similar speed of Teal) compares favorably with the software speedslisted in
table 2, it is unimpressive compared to more sophisticated implementations on faster
processors or custom hardware. Table 5 shows that the FPGA implementations dis-
cussed here are a hundred times slower than a custom CMOS design. Wiener's 50
million key/s design was manufacturable for less than $11/chip; the Xilinx XC4010
considered here costs about $100.” The added algorithmic flexibility of the FPGA
approach does not seem to justify the three orders of magnitude speed-cost ratio dis-
advantage. Wiener's $1 million brute-force cracking machine would cost $1 billion if
it were to use reconfigurable devices. Wayner's content-addressable memory scheme
[Way93] seems more practical; however it is unclear whether it can handle addition-
based a gorithms such as TEA and RC5.

TWiener assumes quatities of 10,000; the Xilinx price quote is for a-2 grade part in quantity 100.
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10 FutureWork

The current 20% speed disadvantage of compiled code can be remedied. There are
hopes as well that closer work with the Synopsys tools may reveal methods to speed
up primitive operations, such as the 32-bit add, as well.

Loop unrolling is very successful as an optimization technique, allowing a 30%
speed increase over an iterative implementation. The automatic insertion of pipeline
registersinto an unrolled algorithm promises further speed improvement; the methods
of [AS93, POA96] might prove useful.

Remaining compiler work may include retargeting the front-end to a C subset,
and implementing more optimization stages to perform strength-reduction and copy-
propagation. Better support for arrays (and their decomposition into register variables)
may enable usto express the RC5 algorithm in amanner that does not require substan-
tial manual unrolling.

Finally, the possibility of compiling directly to structural VHDL remains to be
considered; ¢-functions correspond neatly to multiplexors required in a hardware im-
plementation.
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A TIGER CODE

A Tiger code
A.1 TheTEA algorithm

| et

var c0:=12 /* cipher text */

var cl:=23

var p0:=45 /* plain text */

var pl: =56
in
| et
var delta := 0x9e3779b9
var sum:= delta << 5
var y := ¢c0
var z :=cl

in ( for nn=1to 32 do (

z:=z - (((y << 4)
(y
((y >>5)
yi=y - (((z << 4)
(z
((z > 5)
sum = sum - delta
)
cO: =y;
cl: =z;

(c0=p0) &&( c1l=p1l)

end
end

ko())

sum)

k1())
ko())

sum)

k1())
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A.2 TheRC5algorithm

|l e

t

/* RC5 algorithm"magi c numbers" */

var
var

var
var

var
var

var
var

var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var

var
var

P: =
Q:

LO: =
L1: =

PO:
P1:

Q0:
C1:

S00:
S01:
S02
S03:
S04:
S05
S06
S07:
S08
S09:
S10
S11:
S12:
S13
Sl14
S15
S16:
S17:
S18
S19:
S20
S21:
S22:
S23
S24:
S25:

0xb7e15163
0x9e3779b9

kO()
k1()

0x20656854 ~
0Ox6e6b6e75 ~

0xD28688BF
0x1C8450A9

=p
=S00+Q
=S01+Q
=S02+Q
=S03+Q
=S04+Q
=S05+Q
=S06+Q
=S07+Q
=S08+Q
=S09+Q
=S10+Q
=S11+Q
=S12+Q
=S13+Q
=S14+Q
=S15+Q
=S16+Q
=S17+Q
=S18+Q
=S19+Q
=S20+Q
=S21+Q
=S22+Q
=S23+Q
=S24+Q

/* base of In - 2%
/* golden ratio - 1 */

/* Keys to be tested */

0xC93C8C23
0x9e9f f db0

/* plain text */

[* Cipher text */

/* initialize constant array */

/* cal cul ate key expansion */

1to 3 do (
(S00+( A+B))
(LO +(A+B))

<<< 3; A
<<< (A+B); B :

S00
LO ;

18
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[**]

[**]

[**]

[**]

[**]

[**]

[**]

S01

L1

S02 :

LO

S03

L1

S04

LO

SO5

L1

S06

LO

S07

L1

S08

LO

S09

L1

S10 :

LO

S11

L1

S12

LO

S13

L1

S14

LO

S15

(S01+(A+B))
(L1 +(A+B))

(S02+( A+B))
(LO +(A+B))
(S03+(A+B))
(L1 +(A+B))
(S04+( A+B))
(LO +(A+B))
(S05+( A+B))
(L1 +(A+B))
(S06+( A+B))
(LO +(A+B))
(S07+(A+B))
(L1 +(A+B))
(S08+( A+B))
(LO +(A+B))
(S09+( A+B))
(L1 +(A+B))
(S10+(A+B))
(LO +(A+B))
(S11+(A+B))
(L1 +(A+B))
(S12+(A+B))
(LO +(A+B))
(S13+(A+B))
(L1 +(A+B))
(S14+(A+B))

(LO +(A+B))

(S15+(A+B))

<
<<

<<

<<

<<

<<

<<

<

<<

<

<

<<

<

<<

<<

<

<<

<

<

<

<

<

<

<<

<

<<

<<

<

<<

(,’6\+B) ;

3;
(A+B);

(A+B);

(,A+B) ;

(,A+B) ;

(,’6\+B) ;

(,’6\+B) ;

(,A+B) ;

(,A+B) ;

(’A+B) ;

(’A+B) ;

(,’6\+B) ;

(,’6\+B) ;

(,A+B) ;

S01;
L1 ;

S02;
LO ;
S03;
L1 ;
S04;
LO ;
S05;
L1 ;
S06;
LO ;
S07;
L1 ;
S08;
LO ;
S09;
L1 ;
S10;
LO ;
S11;
L1 ;
S12;
LO ;
S13;
L1 ;
S14;

LO ;

S15;
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L1 := (L1 +(A+B))
[**]
S16 : = (S16+(A+B))
LO = (LO +(A+B))
S17 .= (S17+(A+B))
L1 = (L1 +(A+B))
[**]
S18 : = (S18+(A+B))
LO = (LO +(A+B))
S19 : = (S19+(A+B))
L1 = (L1 +(A+B))
[**]
S20 : = (S20+(A+B))
LO = (LO +(A+B))
S21 : = (S21+(A+B))
L1 := (L1 +(A+B))
[**]
S22 1= (S22+(AtB))
LO = (LO +(A+B))
S23 1= (S23+(AtB))
L1 = (L1 +(A+B))
[**]
S24 : = (S24+(A+B))
LO = (LO +(A+B))
S25 : = (S25+(A+B))
L1 := (L1 +(A+B))
)
B: =C1; A:=C0;
B:= ((B - S25) >>> A)
A= ((A- S24) >>> B)
B:= ((B - S23) >>> A)
A= ((A- S22) >>> B)
B:= ((B - S21) >>> A)
A= ((A - S20) >>> B)
B:= ((B - S19) >>> A)

<

<

<<

<

<<

<<

<<

<<

<<

<<

<

<<

<

<

<<

<

<<

<<

<

<<
<

(A+B); B :
3; A
(A+B); B :
3; A
(A+B); B
3; A
(A+B); B
3; A
(A+B); B
3; A
(A+B); B :
3; A
(A+B); B :
3; A
(A+B); B
3; A
(A+B); B
3; A
(A+B); B :
3; A
(A+B); B :

/* now decrypt */

20
L1 ;
S16;
LO ;
S17;
L1 ;
S18;
LO ;
S19;
L1 ;
S20;
LO ;
S21;
L1 ;
S22;
LO ;
S23;
L1 ;
S24;
LO ;

S25;
L1
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> >»® 2P0 2P0 »PH >0
non non non non non non n

>0
non

(P1

end

((A - S18)
((B - S17)
((A - S16)
((B - S15)
((A - S14)
((B - S13)
((A - S12)
((B - S11)
((A - S10)
((B - S09)
((A - S08)
((B - S07)
((A - S06)
((B - S05)
((A - S04)
((B - S03)
((A - S02)

= B-S01) && (PO = A S00)

>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

B)

A
B)

A
B)

A
B)

A
B)

A
B)

A
B)

A
B)

A
B)

21
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B VHDL codefor brute-force attack on TEA
B.1 DataTypes. crypt _pack. vhdl

library ieee;
use ieee.std_logic_1164.all;

package crypt_pack is
subtype INT32 is STD LOG C_VECTOR(31 downto 0); -- MsBis 31, LSBis O

conponent crypt -- Crypto core
port ( kO, k1: in [1NT32;
RVO: out STD_LOG G
CLOCK: in STD LOG G
DONE: out STD_LCG C;
RESET: in STD LOGEQ);
end conponent;

FUNCTI ON "xor" ( |:STD LOG C VECTOR r:INTEGER ) RETURN STD_LOG C_VECTOR,
FUNCTI ON "xor" ( |:1NTEGER r:STD _LOG C VECTOR ) RETURN STD_LOG C_VECTOR,
<= FUNCTION "sl1" ( I, r:STD_LOG C_VECTOR) RETURN STD _LOG C_VECTOR;
-- FUNCTION "srl" ( I, r:STD_LOG C_VECTOR) RETURN STD LOG C_VECTOR;
FUNCTI ON SHL( |: STD LOG C VECTOR, r:|NTEGER ) RETURN STD_LOG C_VECTOR,
FUNCTI ON SHL( |: I NTEGER, r:STD_LOG C_VECTOR ) RETURN STD_LOGI C_VECTOR,
FUNCTI ON SHR( | : STD LOG C VECTOR: r: I NTEGER ) RETURN STD_LOG C_VECTOR,
FUNCTI ON SHR( | : I NTEGER, r:STD_LOG C_VECTOR ) RETURN STD_LOGI C_VECTOR,

FUNCTI ON To_INT32 ( |:INTEGER ) RETURN STD LOG C_VECTOR
FUNCTI ON To_I NT32 ( b:BI T_VECTOR ) RETURN STD LOG C VECTOR,
end;

use ieee.std_logic_arith.all;
use ieee.std_| ogi c_unsigned. all;
package body crypt_pack is

FUNCTI ON To_INT32 ( |:INTEGER ) RETURN STD_LOG C VECTCR i s
begi n
return CONV_STD LOG C VECTOR(l, 32);

end;
FUNCTI ON To_I NT32 ( b:BI T_VECTOR ) RETURN STD LOG C VECTOR i s
begi n
return To_StdLogi cVector(b);
end;

FUNCTI ON "xor" ( |:STD LOG C_VECTOR; r:INTEGER ) RETURN STD LOG C VECTOR i s
begi n

return | xor CONV_STD LOG C VECTOR(r, |’'length);
end;
FUNCTI ON "xor" ( |:INTEGER; r:STD LOG C VECTOR) RETURN STD LOd C VECTOR i s
begi n
return CONV_STD LOG C VECTOR(I, r’'length) xor r;
end;

-- FUNCTION "sl1" ( |,r:STD_LOG C VECTOR) RETURN STD_LOG C VECTCR is
-- begin
-- return SHL(I, r);
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-- end;

-~ FUNCTION "srl™ ( I,r:STD_LOG C VECTOR) RETURN STD LOG C_VECTCR i s
-- begin

-- return SHR(I, r);

-- end;

-- FUNCTION "slI" ( |:STD LOG C_VECTOR, r:|INTEGER ) RETURN STD LOG C_VECTOR i s
-- return I (r tol’'length) & 'r’ zeros.

FUNCTION SHL( |:STD LOA C VECTOR, r:INTEGER ) RETURN STD _LOd C VECTOR i s
begi n

return SHL(I, CONV_STD LOG C VECTOR(r, |’'length));
EB&_’CTl ON SHL( |:INTEGER r:STD LOG C VECTOR ) RETURN STD LOG C VECTOR i s
Ped Pet urn SHL(CONV_STD LOd C VECTOR(I, r'length), r);
EB&_’CTl ON SHR( |:STD_LOG C VECTOR, r: | NTEGER ) RETURN STD LOG C VECTOR i s
be:I pet urn SHR(I, CONV_STD LOG C VECTOR(r, |’'length));
end;

FUNCTI ON SHR( |: I NTEGER;, r:STD LOG C VECTOR ) RETURN STD_LOG C_VECTOR i s
begi n

return SHR(CONV_STD LOG C _VECTOR(Il, r’length), r);
end;

end;
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B.2 Driver chip: dri ver. vhdl

Li brary | EEE;

use | EEE.std_logic_1164.all;

use WORK. CRYPT_PACK. ALL;

use | EEE. std_I| ogi c_unsi gned. al | ;

entity driver is -- Crypto nmachi ne pin-out

port ( CRYPTCLOCK: in STD LOAC; -- the results of the crypto conputation.

RESULTI N: in STD LOG G
RESULTQUT: out STD LOA C,

DATACLOCK: in STD LOA G

DATAI N; in STD LOG G
DATACUT: out STD LOG C,
RUN: in STDLOGO);

end;

architecture BEHAVI OR of driver is

signal key, nextkey:STD LOd C VECTOR(63 downto 0);
signal found, nextfound, cryptdone: STD LOG C,

signal CLOCK: STD LQOd C;
si gnal CRYPTRESET: STD LCd C,
begi n
CLOCK <= CRYPTCLOCK when RUN = "1' el se DATACLOCK;
CRYPTRESET <= not RUN,

MAI NCLOCK: process
begi n
wait until CLOCK event and CLOCK = '1';
if RUN="0" then -- process to performserial
DATAQUT <= found;
f ound <= key(63);
key <= key(62 downto 0) & DATAIN,
el se -- clock the conputation
if (cryptdone = '1") then
f ound<= next found or found;
if (found or nextfound) = '0" then
key <= nextkey;
end if;
end if;
end if;
end process;

-- process to perform conputation
DOCRYPT: process(key, nextkey, found, nextfound)

ilo

constant mask: Bl T_VECTOR : = X"8000_0000_0000_000D";

variabl e tenp: STD LOG C VECTOR(63 downto 0);
begi n
if key(0) ='0" then
next key <= key(0) & key(63 downto 1);
el se
tenmp : = key xor To_StdLogi cVect or (mask) ;
next key <= key(0) & tenp(63 downto 1);
end if;

end process;

24
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CRYPTO: crypt

port map (
kO => key(31 dowmnto O0), -- Isb
k1 => key(63 downto 32), -- nsb

RVO=> next f ound,
CLOCK => CRYPTCLQOCK,
DONE=>cr ypt done,
RESET=>CRYPTRESET

)

-- external result flag
RESULT: process(RESULTIN, found)
begi n
RESULTQUT <= RESULTI N or found;
end process;
end BEHAVI OR;

25
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B.3 Cryptographic Engine: crypt . vhdl

Li brary | EEE;
use | EEE. std_|logic_1164.all;
use | EEE. std_| ogi c_signed. all;
use WORK. CRYPT_PACK. ALL;

entity crypt is
port( kO, k1: in
RVO: out
CLOCK: in
DONE: out
RESET: in

--Conput ati onal core
I NT32;
STD_LOG G
STD_LCG G
STD_LOG G,
STD_LOJ O);

end;

architecture BEHAVI OR of crypt is
-- register definitions
signal t74,t171:1NT32;
signal t80,t170: 1 NT32;
signal t132,t175:1NT32;
signal t59,t173:1NT32;
signal t144,t174:1NT32;
signal t68,t172:1NT32;
-- state definitions
signal State2, nextState2:BIT;
signal StateO, nextStateO:BIT;
signal Statel, nextStatel:BIT;

begi n
CLOCKSTATE: process
begi n
wait until (CLOCK event) and (CLOCK='1");

-- new state:
State2 <= next St at e2;
St at e0 <= next St at e0;
Statel <= next Statel;
-- new registers:
t74 <= t171;
t80 <= t170;
1132 <= t175;
t59 <= t173;
t 144 <= t174;
t68 <= t172;
end process;
NEXTSTATE: process(kO, k1,
St at e2,
St at e0,
St at el,
t74,
t 80,
t 132,
t 59,
t 144,
t 68,
RESET)
variabl e t105:1NT32;
variabl e t97:1NT32;
variabl e t100: | NT32;
variabl e t158: 1 NT32;

26
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variabl e t92: | NT32;
variabl e t118:1NT32;
variabl e t154: 1 NT32;
variabl e t159: 1 NT32;
variable t119:1NT32;
variable t101:1NT32;
variabl e t114:1NT32;
variabl e t93: | NT32;
variabl e t161:1NT32;
variabl e t106: 1 NT32;
variabl e t120: 1 NT32;
variable t110:1NT32;
variabl e t102:1NT32;
variabl e t98: 1 NT32;
variabl e t94: | NT32;
variabl e t90: | NT32;
variable t121:1NT32;
variable t111:1NT32;
variabl e t103:1NT32;
variabl e t 155: 1 NT32;
variable t112:1NT32;
variabl e t115:1NT32;
variabl e t104: 1 NT32;
variable t107:1NT32;
variabl e t99: 1 NT32;
variabl e t91: | NT32;
variabl e t95:1NT32;
variabl e RV: | NT32;
variable t116:1NT32;
variabl e t108: 1 NT32;
variabl e t96: | NT32;
variable t117:1NT32;
variable t113:1NT32;
variabl e t109: 1 NT32;

begi n
DONE <= "0 ;
RVO <="'0";

-- default state:

nextState2 <= '0";

nextState0 <= '0';

nextStatel <= '0’;

-- default registers:

t171 <= t74;

t170 <= t 80;

t175 <= t132;

1173 <= t59;

t174 <= t144;

t172 <= t68;

if RESET = '1' then

nextStatel <= '1";

-- STATE MACH NE

elsif State2 = '1' then
t154 := t144; -- nove
t155 : = t132; -- nove
if

t 154 = To_I NT32(45)

t hen

27
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el si

if
t155 = To_| NT32(56)

t hen

t158 := To_I NT32(1); -- phi2
t159 := t158; -- nove

t161 := t159; -- phi2

el se

t158 := To_I NT32(0); -- phi2
t159 := t158; -- nove

t161 := t159; -- phi2

end if;

el se

t161 := To_I NT32(0); -- phi2
end if;

RV := t161; -- nove
nextStatel <= '1";

DONE <= " 1';

if RV=0 then RV0<="0"; else RVO<="1"; end if;

f State0 = '1' then
t90 :=168; -- nove
t91 := SHL(t80, To_INT32(4));
t92 :=1t91; -- nove
t93 : = kO; -- ARG
t94 :=t92 + t93;
t95 :=194; -- nove
t96 := t80 + t59;
t97 :=t95 xor t96;
t98 :=t97; -- nove
t99 := SHR(t80, To_I NT32(5));
t100 : = t99; -- nove
t101 := k1; -- ARG
t102 := t100 + t101;
t103 : = t98 xor t102;
t104 :=t90 - t103;
t105 :=t80; -- nove
t106 := SHL(t104, To_INT32(4));
t107 := t106; -- nove
t108 := kO; -- ARG
t109 : = t107 + t108;
t110 : = t109; -- nove
t111 : = t104 + t59;
t112 := t110 xor t111;
t113 := t112; -- nove
t114 : = SHR(t104, To_I NT32(5));
t115 := t114; -- nove
t116 : = k1; -- ARG
t117 = t115 + t116;
1118 := t113 xor t117;
t119 :=t105 - t118;
t120 : = t59 - To_I NT32(654329);
if
t74 < To_INT32(32)
t hen
t121 = t74 + To_I NT32(1);
nextState0 <= '1'; -- goto
t170 <= t119; -- phil

t171 <= t121; -- phil

28
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el si

end

t172 <= t104; -- phil

t173 <= t120; -- phil

el se

nextState2 <= '1'; -- goto
t174 <= t119; -- phil

t175 <= t104; -- phil

end if;

f Statel = '1' then
nextState0 <= '1'; -- goto
t170 <= To_INT32(12); -- phil
t171 <= To_INT32(1); -- phil
t172 <= To_I NT32(23); -- phil
t173 <= To_| NT32(20938528); -- phil

if;

end process

end;
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