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Implementation Year Cost per Blocks/s Chips Time, Ref
chip per $1M given $1M

Diffie-Hellman 77 $20 1M 50k 17 days [DH77]
Hoornaert, et al 84 $40 1.1M 25k 30 days [HGD85]
AMD 84 $19 218k 53k 72 days [AMD84]
Wayner 92 $30 448k 31k 30 days [Way93]
VLSI Technology 92 $170 3M 6k 47 days [VLS91]
DEC 92 $300 16M 3k 16 days [Ebe93]
Wiener 93 $11 50M 58k 4 hours [Wie94]

Paper study. These tend to be rather optimistic.

Table 1: Cost and Time Estimates to Break DES.

1 Introduction

The United States’ key-length limit of 40-bits for exportable cryptography is laughably
small: Ian Goldberg at the University of California at Berkeley needed fewer than 4
hours of compute-time to brute-force the key space of 40-bit RC5. Forty-eight bit
algorithms are small improvement; a European team led by the Swiss Federal Institute
of Technology in Zurich exhausted the key-space of 48-bit RC5 in 13 days. The 56-bit
key length of the Data Encryption Standard, DES, has likewise been claimed too small;
Diffie and Hellman objected at the time of the standard’s adoption, in 1977 [DH77].

A number of papers have provided estimates of the cost and time of breaking DES
using brute-force search. Custom hardware invariably performs much better than soft-
ware for this task; DES is not particularly suited to software implementation due to its
employment of bit-permutations and variable word lengths.1 Table 1 summarizes the
costs and speeds of hardware implementations proposed from the time of DES’ first
adoption.

By Garon and Outerbridge’s estimates, DES chips are increasing in speed by a fac-
tor of eight every five years [GO91]. Thus, Wiener’s 1993 0.8 m CMOS design using
a 50M block/s DES chip [Wie94], could now be translated into a $10,000 machine that
would extract a DES key in 44 hours.2 If one is going to spend money on a cracking
machine, one might wisely ask if, for a small additional expenditure, the machine may
be made flexible enough to accomodate multiple algorithms. This paper attempts to
more quantitatively assess that possibility. In particular, we will discuss the creation
of an optimizing compiler to create hardware structures for cryptographic algorithms,
and the results of a chip-level design of an FPGA-based brute-force search engine.

1A table of DES speeds for various processor platforms is given in [Sch94, p 131].
2The current RSA challenge offers a reward of $10,000 for the successful brute-force solution of a posted

ciphertext/plaintext pair. Current co-operative software-only approaches seem to require at least 4 years of
processing time to achieve a solution.



2 RELATED WORK 3

2 Related Work

Peter Wayner describes the use of a content-addressable memory to attack DES in
[Way93]. The content-addressable memory is used as an array of bit-level processors;
they could be reprogrammed, as we propose, to attack algorithms which differ slightly
from DES. The processing elements are sufficiently simple that it would be very hard to
implement the more “modern” software-oriented algorithms which rely an arithmetic
operators rather than boolean operations and bit permutations. FPGAs have no such
limitation. In addition, Wayner’s DES algorithm is coded by hand; he does not address
automatic code generation for his machine from a high-level algorithm description.
Finally, his results are more than an order of magnitude slower than rival custom ASIC
implementations.

Wiener describes a hardware implementation of DES in detail in [Wie94]. The de-
sign is for 0.8 m standard-cell CMOS, clocked at 50 MHz. His custom chip achieves
the highest speed-to-price ratio of any hardware implementation to date; our imple-
mentation success in FPGA technology will be measured against his standard. Dave
Wagner describes an extension to Wiener’s work to allow ciphertext-only attacks on
DES for an order of magnitude more cost[WB94]; our current work concerns itself
with Wiener’s baseline design only.

The idea of utilizing configurable computing devices cryptographically was first
proposed by [V 96] and [ACC 95], who studied long-integer arithmetic circuits suit-
able for public-key cryptography. These results have little relevance to the secret-key
systems we consider in this paper. Implementations of microprocessors with recon-
figurable functional units would be well suited to attacking cryptographic algorithms
with complex boolean operations and bit permutations; however, the published litera-
ture [AS93, WH95] does not address this issue.

3 Methodology

A compiler, a general hardware design, and several benchmarks were created to evalu-
ate programmable hardware’s suitability for brute-force key search. The cryptographic
algorithm was expressed in a high-level language and compiled to produce behavioral
VHDL. The VHDL description was analyzed by Synopsys tools and targeted to the
Xilinx XC4010 FPGA. Xilinx place-and-route tools were used on the final net-list.

4 Compiler

An optimizing compiler was written for the TIGER programming language. The com-
piler translates algorithm descriptions into behavioral VHDL. A subset of TIGER is
supported; explicitly omitted are arrays, strings, and functions. Looping constructs are
supported. The optimization phase of the compiler is designed to target hardware; for
example, copy propagation is omitted because it disappears into a net-list once hard-
ware translation is complete.
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4.1 Front-end

The source language for the compiler is described in [App97]. TIGER is a “simple but
non-trivial language of the Algol family,” lacking only the wide variety of data types
that categorize more familiar languages such as C. A pre-existing front-end was modi-
fied to implement the bit-level operations3 needed to support most cryptographic algo-
rithms. Several “pseudo-functions” were also added to the language to make available
the values of the hardware key registers. The output of the front-end is an Intermediate
Representation Tree (IR tree). It is possible to rewrite the front-end to generate IR trees
from another source language (say, a C subset) with minimal changes to the back-end
implemented in this project.

4.2 Optimizer

A number of optimizations were implemented in order to generate efficient hardware.
Perhaps the most important of these is loop-unrolling, which can replace sequential cir-
cuitry with combinational logic when successful. In order to recognize when unrolling
is possible, constant propagation and folding are done. Constant propagation, constant
folding, and dead code elimination also reduce the amount of unnecessary hardware
generated.4

4.2.1 Quadruples

The first step of the optimization phase is conversion of the IR tree to quadruples, sim-
ple statements computing an operation of no more than two operands. The conversion
to quadruples involves flattening the IR tree through the introduction of new tempo-
rary variables. The converted IR tree is a list consisting of only nine types of simple
statements:

MOVE BINOP

LOAD STORE

CALLSUB CALLFUN

LABEL : goto GOTO

COND. if goto else goto

Once the quadruples have been generated, the code is converted to Static Single-
Assignment (SSA) form [C 91] for optimization.

4.2.2 Static Single-Assignment Form

Static Single-Assignment form is an intermediate format that allows optimizations to
be done efficiently and easily. Every variable receives exactly one assignment during
its lifetime, and -functions are added at places where program flow joins. The value
of the -function “magically” depends on the path the program has taken; in practice,

3Bit-wise AND, OR, XOR, shift and rotation
4The Synopsys compiler tends to be rather literal with its input stream; dead code will be translated into

hardware despite being computationally useless.
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Figure 1: Straight-line code and its single assignment version.

if if
then then
else else

/* Use several times */ /* Use several times */

Figure 2: If-expression code and its single assignment version.

a move-insertion on each entrance path implements the -function when coverting out
of SSA form. An example, taken from [C 91], is shown in figures 1 and 2.

The use of -functions simplifies the book-keeping for various optimizations, and
by maintaining a single point of definition for every variable allows the algorithms to
execute in linear, rather than quadratic, time. Furthermore, this work has disovered
that the -function notation allows concise and accurate identification of state-machine
registers in the translation of loop constructs. This application will be further discussed
in section 4.3.2.

The translation into SSA form uses the algorithms discussed in [App97, C 91,
LT79]. The dominator tree is computed using the Lengauer-Tarjan algorithm and path-
compression, and is then used to compute the dominance frontier using Cytron’s two-
pass algorithm. After adding -functions for the variable at the dominance frontier
of every node where is defined, we walk the dominator tree to rename variables so
that every variable is defined exactly once. There is a simpler algorithm for SSA form
translation that utilizes source-language information to aid placement [BM94], but the
more complicated algorithm implemented here works on simple quadruples, and thus
allows front-end (source language) modification or replacement without necessitating
changes to the back-end implemented in this project.

The -functions of the SSA form were implemented as a tenth type of quadru-
ple, and a flowgraph of the SSA-format quadruple list was input to the optimization
routines.

4.2.3 Conditional Constant Propagation

Wegman and Zadeck’s Sparse Conditional Constant (SCC) algorithm was used to find
constant expressions, constant conditions, and unreachable code [WZ91]. Figure 3
shows the optimization extent possible.

The output of the SCC algorithm is an association of variables to one of ,
where marks a variable that is never defined, indicates a constant value, and
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if ( )

else

Figure 3: SCC code optimization.

signifies an over-defined variable (which may be assigned any one of a number of
values). In addition, every flow-graph node (corresponding to a quadruple) is marked
as executable or non-executable. We then walk the flow-graph, eliminating dead-code
(quadruples marked non-executable), replacing constant variables with their values,
and changing constant conditional branches to goto statements.

4.2.4 Code motion

Maximal loop-unrolling is possible after constant propagation. The code motion anal-
ysis implemented was very simple, and relied on source-language information from the
abstract-syntax tree. It was able, however, to fully unroll the simple loops found in the
algorithms under investigation. Once the loop was fully unrolled, the above optimiza-
tion algorithms render more sophisticated code motion analysis (for example, code
hoisting outside the loop) unnecessary. Further work on code motion optimizations is
possible, especially in light of the recent ability to generate sequential circuitry from
loop constructs. Code motion when sequential circuits are targetted allows us to reduce
the amount of state, and hence, registers, necessary to implement the state machine.

4.3 VHDL generation

The optimized quadruples were used to generate behavioral VHDL code which could
be compiled to hardware. The load and store operations accessing memory were un-
supported, but the binary operation quadruples could be translated fairly directly to
VHDL. Properly translating branches and conditionals was more difficult.

4.3.1 Branch-compression

For code without loops, the conditional branches and gotos need to be translated into
if-then-else statements, from which the VHDL compiler will create combina-
tional logic. The trouble is that constructs such as the one shown in figure 4 do not
have equivalent if-constructs. These control-flow patterns can be generated by source-
language goto statements or short-circuit logical operators. The algorithm devised
in this work combines dominator tree and flow-graph information to define a “merge
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if then goto else goto
: if then goto else goto
:

goto
:

goto
:

Figure 4: A flowgraph which can not be represented as an if-then-else statement with-
out quadruple duplication.

if a then
if b then

c := d + e;
else

f := g + h;
end if;

else
f := g + h;

end if;

Figure 5: Conversion of the program of figure 4 to VHDL.

node,” where the two control flows of the conditional will merge (if ever).5 Statements
must then be duplicated along each side of the conditional, until the merge node is
reached, or all statements have been translated. Figure 5 shows the resultant VHDL for
the quadruples in figure 4.

4.3.2 Loop handling

The original compiler relied on maximal loop unrolling to eliminate looping constructs.
It was realized that the SSA form dictated a precise method of converting a quadruple
list with -functions to an equivalent state machine. Therefore the code written to
translate back from SSA form after code optimization was removed, and a new version
of the VHDL generator was written, using the SSA form directly as input.

Loop analysis was performed on the dominator tree using the algorithm in [ASU85].
This yielded a list of loops and their headers. All flow into a loop must be through its
header (the header must dominate all the nodes in the loop). Our insight, simply stated,
was that the list of -functions in the header of the loop exactly defined the required
registers for a state-machine implementing that loop. For example, the simple while-
loop in figure 6 needs only one register, to store the value of . On state transitions,
would be loaded with the value of either or . To simplify circuitry, these registers

5The “merge node” is the dominator tree child of the conditional branch, which is reached last in a
post-order depth-first-search of the control flow graph.
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let
var i:=1 :

in if goto else
while (i<16) do :
i:=i+1 goto

end :

Figure 6: A simple while-loop in TIGER, left, and SSA form, right.

architecture BEHAVIOR of whiletest is
-- register definitions
signal t8,t11:INT32;

-- state definitions
signal State2, nextState2:BIT;
signal State1, nextState1:BIT;
signal State0, nextState0:BIT;

begin
CLOCKSTATE: process
begin

wait until (CLOCK’event) and (CLOCK=’1’);
-- new state:
State2 <= nextState2;
State1 <= nextState1;
State0 <= nextState0;
-- new registers:
t8 <= t11;

end process;
NEXTSTATE: process(

State2,
State1,
State0,
t8)

variable t9:INT32;
begin

DONE <= ’0’;
-- default state:
nextState2 <= ’0’;
nextState1 <= ’0’;
nextState0 <= ’0’;

-- default registers:
t11 <= t8;
if RESET = ’1’ then

nextState1 <= ’1’; -- initial state.
-- STATE MACHINE
elsif State1 = ’1’ then

nextState0 <= ’1’; -- goto
t11 <= To_INT32(1); -- phi1

elsif State0 = ’1’ then
if
t8 < To_INT32(16)

then
t9 := t8 + To_INT32(1);
nextState0 <= ’1’; -- goto
t11 <= t9; -- phi1

else
nextState2 <= ’1’; -- goto

end if;
elsif State2 = ’1’ then

nextState1 <= ’1’;
DONE <= ’1’;

end if;
end process;

end;

Figure 7: Excerpted VHDL code for the while-loop in figure 6.

were augmented with a simple one-hot state-encoding,6 and a new variable is created
to hold the “next” value of the state register after the transition.

The allocation into states was follows Galloway’s work on Transmogrifier C [Gal95].
The initial state comprises the code prior to the loop header, another state indicates ex-
ecution of the loop body, and a final state is reached on exit from the loop, for a total
of three bits of state per loop. Loops can be nested to arbitrary depth. Multiple exit
points for the loop are supported. The VHDL code output for the while-loop in figure
6 is shown in figure 7.

6Galloway indicates in [Gal95], citing [BFS94], that, despite its simplicity, one-hot encoding may be the
best encoding to use on FPGAs. See also [POA96], who reference [Wak90].
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Algorithm Keys tested/s
DES 90k
RC5 150k
TEA 357k

Table 2: Representative algorithm speeds in software. Speeds are reported for a Sun
Ultra-2 machine, using a 168MHz UltraSPARC CPU.

5 Hardware Design

Basic hardware using FPGAs to form a brute-force cracking machine was designed.
The basic idea has not changed fundamentaly from that proposed by Diffie and Hellman
in 1977 [DH77]: design a chip to test keys as quickly as possible, and use as many as
possible of them in parallel. Very little inter-chip communication is necessary, besides
initial set-up.

Wiener describes a detailed board layout for the DES-cracking chip he designed
[Wie94], using a 8-bit data bus for chip interconnect. His chip requires 27 I/O pins for
the interface. We feel that a parallel bus is over-kill for this application; we propose
a simple daisy-chained serial bus instead, requiring only 5 pins, not including clocks.
This should allow the printed-circuit board layout of the FPGA array to be extremely
simple. The chip I/O interface is defined by the behavioral VHDL in driver.vhdl,
found in appendix B.2.

The interface is based on a 65-bit shift register, which holds the current 64-bit key
under test and a one bit search status flag. To save logic, we follow Wiener in advancing
the key using a linear feedback shift register, instead of a 64-bit ripple-carry adder. The
generating polynomial for the 64-bit LFSR is . This is a
maximal-length LFSR, meaning that it will step through all of the possible
states [Sch94]. The LFSR will not step through the all-zero key; this must be tested
separately.

In addition, an internal driver-to-cryptographic engine interface has been defined;
the behavioral VHDL describing it is in crypt pack.vhdl. Details vary slightly
for pipelined and non-pipelined versions, but both types have two 32-bit key-inputs,
and a single bit result output in common.

A design cycle using a single adder as the “crypto engine” component reveals that
the driver-stage uses about 20% of the available CLBs (mostly for the 65-bit shift-
register), and can be clocked at over 18MHz. Obviously, the introduction of a “real”
cryptographic component will limit us to far below this maximum possible speed.

6 Algorithm Selection

Three different cryptographic algorithms were investigated: DES, the Data Encryption
Standard of the National Bureau of Standards, defined formally in [NBS88] and infor-
mally in [Sch94]; RC5, designed by Ron Rivest, defined in [Riv95]; and TEA, the Tiny
Encryption Algorithm, designed by Wheeler and Needham and described in [WN95].
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DES is the most important commercially of the three algorithms; it is used every
day by the financial industry despite dire warnings [Hel79] of its imminent insecu-
rity. It is implemented much more efficiently in hardware than in software, due to
its dependence on bit-level permutations and other constructs not easily described in
“conventional” high-level programming languages. The typical software speeds listed
in table 2 may be compared against Wiener’s 50 million key-per-second 1993 hardware
implementation [Wie94].

DES is very difficult to express in TIGER until source-language constructs to sup-
port bit-permutations are added, and so a reconfigurable implementation of DES was
not possible within the scope of this present work. Because of its importance to the fi-
nancial industry and others, it has commerically-obtainable hardware implementations
to which we can compare our paper-study results; our assumption is that DES is not
easier to implement than TEA.

RC5 is a cipher proposed by Ron Rivest, which is used in RSA Data Securities’
products and in a number of Internet protocols. It was explicitly designed to be sim-
ple to implement in software; i.e. no bit permutations are used. Even so, table 2
demonstrates only a 50% speed increase over DES, using highly-optimized versions of
both algorithms. The lackluster performance is likely due to key-setup times; Rivest
designed a lengthy sub-key generation phase into the algorithm to make brute-force
key-searching substantially more difficult without slowing down conventional one-key
uses of RC5.

RC5 is a 12-round algorithm, not counting 78 rounds of key setup, making this
algorithm difficult to implement non-iteratively. In addition, the wide addition steps
required by RC5 are costly to implement quickly in an FPGA; the RC5 algorithm will
not fit in the Xilinx XC4010 we are targeting.

TEA is the simplest algorithm of the three; it uses many rounds to counter the sim-
plicity of its round function. The author’s claim of triple the speed of DES in software
seems to be warranted; table 2 shows a speed-up of closer to four. The wide additions
of the algorithm make it likely that the hardware complexity of TEA is comparable
to that of DES. The TEA algorithm very nearly fills a Xilinx XC4010 chip; this puts
its complexity as (very roughly) 10,000 gates. Eberle’s GaAs DES implementation
[Ebe93] uses somewhere between 4,000 and 15,000 gates.

7 Benchmark designs

In order to have a standard to which to compare the compiler-generated designs, a two
manual crypto-engine implentations were done, using the TEA algorithm. One used a
VHDL for-loop which was automatically unrolled by the Synopsis tools to generate
straight-line code; the other was a hand-tweaked state machine that did one round of
the algorithm per iteration.

In addition, software benchmarks were created for the three cryptographic algo-
rithms under consideration. Software optimization techniques were studied, and loops
were unrolled and memory accesses eliminated as much as possible.

It was recently brought to my attention that an efficient parallel implementation of
DES is possible on general-purpose machines by testing multiple keys in parallel; each
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Algorithm Code Gen. Cycles/key Clock Rate Keys/s
Baseline None 1 18 MHz —
Tea1 Automatic 1 — —
Tea2 Manual 1 514 kHz 514k
Tea3 Manual 34 13.5 MHz 397k
Tea4 Automatic 34 10.1 MHz 297k
RC5 Automatic 5 — —

Table 3: Design Speeds (as reported by the Synopsys tools).

32-bit machine register could represent thirty-two parallel copies of a single bit in the
algorithm. This allows efficient representation of bit-level operations, but eliminates
the use of lookup tables. The S-boxes of DES have to be represented by a logical
expression to enable their implementation. The complexity of the algorithm decompo-
sition necessary for this approach puts it outside the scope of this research; it would,
however, enable the expression of DES in TIGER without source-language enhance-
ments.

8 Results

Four complete designs for the TEA-algorithm and a implementation of RC5 were eval-
uated, in addition to a base-line design with key-search hardware but no cryptographic
algorithm. The results are shown in tables 3 and 4.

Tea1 is automatically generated fully-unrolled code generated from the TIGER-
language program of appendix A.1. The Synopsys tools were not able to properly
handle the large number of temporary variables generated, and so there are no detailed
speed or complexity figures for this design.

Tea2 is hand-written code which uses a VHDL for-loop to allow the Synopsys
tools to unroll the 32 TEA rounds. The Synopsys tools were able to evaluate the design
and give a clock speed estimate, but the design was too large to fit in a single Xilinx
XC4010.

Tea3 is hand-written code for an iterative state-machine implementation of TEA,
used as a feasibility test for automatic generation of sequential circuits. The resulting
design was able to be squeezed into a Xilinx XC4010, with only 10 CLBs to spare.

Tea4 is an automatically generated state machine compiled from the same TIGER

program as Tea1, with loop unrolling turned off. It also fit into a Xilinx XC4010,
barely. Performance is roughly equivalent to Tea3.

RC5 is an automatically generated state machine compiled from the TIGER pro-
gram of appendix A.2. The TIGER program needed to be unrolled to eliminate array
references, but still uses a iterative state machine in subkey generation. The design
does not fit in a Xilinx XC4010.
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Algorithm Code Gen. Total CLBs Xilinx XC4010 CLB Use
Baseline None 57 95/400 23%
Tea1 Automatic — — —
Tea2 Manual 5814 — —
Tea3 Manual 2187 390/400 97%
Tea4 Automatic 364 399/400 99%
RC5 Automatic — — —

Reflects Synopsys figures before target-specific optimization and routing.

Reported by the Xilinx tools after successful place-and-route.

Table 4: Hardware complexity of hand-written and compiled designs.

Technology Speed (keys/s) Notes
FPGA 514k Best TEA results
Software 1,660k 175MHz MIPS R10000, bitsliced
Custom hardware 50,000k 0.8 m standard-cell CMOS

From author’s experiments with the DES Challenge client from http://www.frii.com/˜rcv/deschall.htm .

From [Wie94]

Table 5: Realistic speed comparison.

9 Conclusions

The speed and density of the compiled algorithms compares well with hand-written
VHDL. The Synopsys tools are very sensitive to the manner in which the hardware
description is expressed [SWA95], and we are confident that closer examination of the
generated code will disclose ways to make up the current 20% performance penalty
of the compiled code. The state-machine generation algorithm utilizing the SSA form
information appears to be robust and efficient.

The future of FPGAs in brute-force cracking machines does not appear as rosy.
Although the 514,000 key per second cracking rate of the Tea2 design (and the pre-
sumably similar speed of Tea1) compares favorably with the software speeds listed in
table 2, it is unimpressive compared to more sophisticated implementations on faster
processors or custom hardware. Table 5 shows that the FPGA implementations dis-
cussed here are a hundred times slower than a custom CMOS design. Wiener’s 50
million key/s design was manufacturable for less than $11/chip; the Xilinx XC4010
considered here costs about $100.7 The added algorithmic flexibility of the FPGA
approach does not seem to justify the three orders of magnitude speed-cost ratio dis-
advantage. Wiener’s $1 million brute-force cracking machine would cost $1 billion if
it were to use reconfigurable devices. Wayner’s content-addressable memory scheme
[Way93] seems more practical; however it is unclear whether it can handle addition-
based algorithms such as TEA and RC5.

7Wiener assumes quatities of 10,000; the Xilinx price quote is for a -2 grade part in quantity 100.
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10 Future Work

The current 20% speed disadvantage of compiled code can be remedied. There are
hopes as well that closer work with the Synopsys tools may reveal methods to speed
up primitive operations, such as the 32-bit add, as well.

Loop unrolling is very successful as an optimization technique, allowing a 30%
speed increase over an iterative implementation. The automatic insertion of pipeline
registers into an unrolled algorithm promises further speed improvement; the methods
of [AS93, POA96] might prove useful.

Remaining compiler work may include retargeting the front-end to a C subset,
and implementing more optimization stages to perform strength-reduction and copy-
propagation. Better support for arrays (and their decomposition into register variables)
may enable us to express the RC5 algorithm in a manner that does not require substan-
tial manual unrolling.

Finally, the possibility of compiling directly to structural VHDL remains to be
considered; -functions correspond neatly to multiplexors required in a hardware im-
plementation.
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A Tiger code

A.1 The TEA algorithm

let
var c0:=12 /* cipher text */
var c1:=23

var p0:=45 /* plain text */
var p1:=56

in
let

var delta := 0x9e3779b9
var sum := delta << 5
var y := c0
var z := c1

in ( for n:= 1 to 32 do (
z:=z - (((y << 4) + k0()) ˆ

( y + sum ) ˆ
((y >> 5) + k1()) );

y:=y - (((z << 4) + k0()) ˆ
( z + sum ) ˆ
((z >> 5) + k1()) );

sum:= sum - delta
);
c0:=y;
c1:=z;
(c0=p0)&&(c1=p1)

)
end

end
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A.2 The RC5 algorithm

let
/* RC5 algorithm "magic numbers" */
var P:= 0xb7e15163 /* base of ln - 2 */
var Q:= 0x9e3779b9 /* golden ratio - 1 */

var L0:=k0() /* Keys to be tested */
var L1:=k1()

var P0:= 0x20656854 ˆ 0xC93C8C23 /* plain text */
var P1:= 0x6e6b6e75 ˆ 0x9e9ffdb0

var C0:= 0xD28688BF /* Cipher text */
var C1:= 0x1C8450A9

var S00:=P /* initialize constant array */
var S01:=S00+Q
var S02:=S01+Q
var S03:=S02+Q
var S04:=S03+Q
var S05:=S04+Q
var S06:=S05+Q
var S07:=S06+Q
var S08:=S07+Q
var S09:=S08+Q
var S10:=S09+Q
var S11:=S10+Q
var S12:=S11+Q
var S13:=S12+Q
var S14:=S13+Q
var S15:=S14+Q
var S16:=S15+Q
var S17:=S16+Q
var S18:=S17+Q
var S19:=S18+Q
var S20:=S19+Q
var S21:=S20+Q
var S22:=S21+Q
var S23:=S22+Q
var S24:=S23+Q
var S25:=S24+Q

/* calculate key expansion */
var A:=0
var B:=0

in
( for i:=1 to 3 do (

S00 := (S00+(A+B)) <<< 3; A := S00;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;
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S01 := (S01+(A+B)) <<< 3; A := S01;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S02 := (S02+(A+B)) <<< 3; A := S02;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S03 := (S03+(A+B)) <<< 3; A := S03;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S04 := (S04+(A+B)) <<< 3; A := S04;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S05 := (S05+(A+B)) <<< 3; A := S05;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S06 := (S06+(A+B)) <<< 3; A := S06;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S07 := (S07+(A+B)) <<< 3; A := S07;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S08 := (S08+(A+B)) <<< 3; A := S08;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S09 := (S09+(A+B)) <<< 3; A := S09;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S10 := (S10+(A+B)) <<< 3; A := S10;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S11 := (S11+(A+B)) <<< 3; A := S11;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S12 := (S12+(A+B)) <<< 3; A := S12;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S13 := (S13+(A+B)) <<< 3; A := S13;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S14 := (S14+(A+B)) <<< 3; A := S14;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S15 := (S15+(A+B)) <<< 3; A := S15;
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L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S16 := (S16+(A+B)) <<< 3; A := S16;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S17 := (S17+(A+B)) <<< 3; A := S17;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S18 := (S18+(A+B)) <<< 3; A := S18;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S19 := (S19+(A+B)) <<< 3; A := S19;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S20 := (S20+(A+B)) <<< 3; A := S20;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S21 := (S21+(A+B)) <<< 3; A := S21;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S22 := (S22+(A+B)) <<< 3; A := S22;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S23 := (S23+(A+B)) <<< 3; A := S23;
L1 := (L1 +(A+B)) <<< (A+B); B := L1 ;

/**/
S24 := (S24+(A+B)) <<< 3; A := S24;
L0 := (L0 +(A+B)) <<< (A+B); B := L0 ;

S25 := (S25+(A+B)) <<< 3; A := S25;
L1 := (L1 +(A+B)) <<< (A+B); B := L1

);

B:=C1; A:=C0; /* now decrypt */

B:= ((B - S25) >>> A) ˆ A;
A:= ((A - S24) >>> B) ˆ B;

B:= ((B - S23) >>> A) ˆ A;
A:= ((A - S22) >>> B) ˆ B;

B:= ((B - S21) >>> A) ˆ A;
A:= ((A - S20) >>> B) ˆ B;

B:= ((B - S19) >>> A) ˆ A;
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A:= ((A - S18) >>> B) ˆ B;

B:= ((B - S17) >>> A) ˆ A;
A:= ((A - S16) >>> B) ˆ B;

B:= ((B - S15) >>> A) ˆ A;
A:= ((A - S14) >>> B) ˆ B;

B:= ((B - S13) >>> A) ˆ A;
A:= ((A - S12) >>> B) ˆ B;

B:= ((B - S11) >>> A) ˆ A;
A:= ((A - S10) >>> B) ˆ B;

B:= ((B - S09) >>> A) ˆ A;
A:= ((A - S08) >>> B) ˆ B;

B:= ((B - S07) >>> A) ˆ A;
A:= ((A - S06) >>> B) ˆ B;

B:= ((B - S05) >>> A) ˆ A;
A:= ((A - S04) >>> B) ˆ B;

B:= ((B - S03) >>> A) ˆ A;
A:= ((A - S02) >>> B) ˆ B;

(P1 = B-S01) && (P0 = A-S00) /* test for result equality */
)
end
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B VHDL code for brute-force attack on TEA

B.1 Data Types: crypt pack.vhdl

library ieee;
use ieee.std_logic_1164.all;

package crypt_pack is

subtype INT32 is STD_LOGIC_VECTOR(31 downto 0); -- MSB is 31, LSB is 0

component crypt -- Crypto core
port( k0, k1: in INT32;

RV0: out STD_LOGIC;
CLOCK: in STD_LOGIC;
DONE: out STD_LOGIC;
RESET: in STD_LOGIC);

end component;

FUNCTION "xor" ( l:STD_LOGIC_VECTOR; r:INTEGER ) RETURN STD_LOGIC_VECTOR;
FUNCTION "xor" ( l:INTEGER; r:STD_LOGIC_VECTOR ) RETURN STD_LOGIC_VECTOR;

-- FUNCTION "sll" ( l,r:STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
-- FUNCTION "srl" ( l,r:STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
FUNCTION SHL( l:STD_LOGIC_VECTOR; r:INTEGER ) RETURN STD_LOGIC_VECTOR;
FUNCTION SHL( l:INTEGER; r:STD_LOGIC_VECTOR ) RETURN STD_LOGIC_VECTOR;
FUNCTION SHR( l:STD_LOGIC_VECTOR; r:INTEGER ) RETURN STD_LOGIC_VECTOR;
FUNCTION SHR( l:INTEGER; r:STD_LOGIC_VECTOR ) RETURN STD_LOGIC_VECTOR;

FUNCTION To_INT32 ( l:INTEGER ) RETURN STD_LOGIC_VECTOR;
FUNCTION To_INT32 ( b:BIT_VECTOR ) RETURN STD_LOGIC_VECTOR;

end;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
package body crypt_pack is

FUNCTION To_INT32 ( l:INTEGER ) RETURN STD_LOGIC_VECTOR is
begin
return CONV_STD_LOGIC_VECTOR(l, 32);

end;
FUNCTION To_INT32 ( b:BIT_VECTOR ) RETURN STD_LOGIC_VECTOR is
begin
return To_StdLogicVector(b);

end;

FUNCTION "xor" ( l:STD_LOGIC_VECTOR; r:INTEGER ) RETURN STD_LOGIC_VECTOR is
begin
return l xor CONV_STD_LOGIC_VECTOR(r, l’length);

end;
FUNCTION "xor" ( l:INTEGER; r:STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR is
begin
return CONV_STD_LOGIC_VECTOR(l, r’length) xor r;

end;

-- FUNCTION "sll" ( l,r:STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR is
-- begin
-- return SHL(l, r);
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-- end;

-- FUNCTION "srl" ( l,r:STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR is
-- begin
-- return SHR(l, r);
-- end;

-- FUNCTION "sll" ( l:STD_LOGIC_VECTOR; r:INTEGER ) RETURN STD_LOGIC_VECTOR is
-- return l(r to l’length) & ’r’ zeros.

FUNCTION SHL( l:STD_LOGIC_VECTOR; r:INTEGER ) RETURN STD_LOGIC_VECTOR is
begin

return SHL(l, CONV_STD_LOGIC_VECTOR(r, l’length));
end;
FUNCTION SHL( l:INTEGER; r:STD_LOGIC_VECTOR ) RETURN STD_LOGIC_VECTOR is
begin

return SHL(CONV_STD_LOGIC_VECTOR(l, r’length), r);
end;
FUNCTION SHR( l:STD_LOGIC_VECTOR; r:INTEGER ) RETURN STD_LOGIC_VECTOR is
begin

return SHR(l, CONV_STD_LOGIC_VECTOR(r, l’length));
end;
FUNCTION SHR( l:INTEGER; r:STD_LOGIC_VECTOR ) RETURN STD_LOGIC_VECTOR is
begin

return SHR(CONV_STD_LOGIC_VECTOR(l, r’length), r);
end;

end;
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B.2 Driver chip: driver.vhdl
Library IEEE;
use IEEE.std_logic_1164.all;
use WORK.CRYPT_PACK.ALL;
use IEEE.std_logic_unsigned.all;

entity driver is -- Crypto machine pin-out
port( CRYPTCLOCK: in STD_LOGIC; -- the results of the crypto computation.

RESULTIN: in STD_LOGIC;
RESULTOUT: out STD_LOGIC;

DATACLOCK: in STD_LOGIC;
DATAIN: in STD_LOGIC;
DATAOUT: out STD_LOGIC;

RUN: in STD_LOGIC);
end;

architecture BEHAVIOR of driver is
signal key, nextkey:STD_LOGIC_VECTOR(63 downto 0);
signal found, nextfound, cryptdone:STD_LOGIC;
signal CLOCK:STD_LOGIC;
signal CRYPTRESET:STD_LOGIC;

begin
CLOCK <= CRYPTCLOCK when RUN = ’1’ else DATACLOCK;
CRYPTRESET <= not RUN;

MAINCLOCK: process
begin

wait until CLOCK’event and CLOCK = ’1’;
if RUN = ’0’ then -- process to perform serial i/o

DATAOUT <= found;
found <= key(63);
key <= key(62 downto 0) & DATAIN;

else -- clock the computation
if (cryptdone = ’1’) then

found<= nextfound or found;
if (found or nextfound) = ’0’ then
key <= nextkey;

end if;
end if;

end if;
end process;

-- process to perform computation
DOCRYPT: process(key, nextkey, found, nextfound)

constant mask:BIT_VECTOR := X"8000_0000_0000_000D";
variable temp:STD_LOGIC_VECTOR(63 downto 0);

begin
if key(0) = ’0’ then

nextkey <= key(0) & key(63 downto 1);
else

temp := key xor To_StdLogicVector(mask);
nextkey <= key(0) & temp(63 downto 1);

end if;

end process;
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CRYPT0: crypt
port map (

k0 => key(31 downto 0), -- lsb
k1 => key(63 downto 32), -- msb
RV0=> nextfound,
CLOCK => CRYPTCLOCK,
DONE=>cryptdone,
RESET=>CRYPTRESET

);

-- external result flag
RESULT: process(RESULTIN, found)
begin

RESULTOUT <= RESULTIN or found;
end process;

end BEHAVIOR;
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B.3 Cryptographic Engine: crypt.vhdl
Library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
use WORK.CRYPT_PACK.ALL;

entity crypt is --Computational core
port( k0, k1: in INT32;

RV0: out STD_LOGIC;
CLOCK: in STD_LOGIC;
DONE: out STD_LOGIC;
RESET: in STD_LOGIC);

end;

architecture BEHAVIOR of crypt is
-- register definitions
signal t74,t171:INT32;
signal t80,t170:INT32;
signal t132,t175:INT32;
signal t59,t173:INT32;
signal t144,t174:INT32;
signal t68,t172:INT32;

-- state definitions
signal State2, nextState2:BIT;
signal State0, nextState0:BIT;
signal State1, nextState1:BIT;

begin
CLOCKSTATE: process
begin

wait until (CLOCK’event) and (CLOCK=’1’);
-- new state:
State2 <= nextState2;
State0 <= nextState0;
State1 <= nextState1;
-- new registers:
t74 <= t171;
t80 <= t170;
t132 <= t175;
t59 <= t173;
t144 <= t174;
t68 <= t172;

end process;
NEXTSTATE: process(k0,k1,

State2,
State0,
State1,
t74,
t80,
t132,
t59,
t144,
t68,
RESET)

variable t105:INT32;
variable t97:INT32;
variable t100:INT32;
variable t158:INT32;
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variable t92:INT32;
variable t118:INT32;
variable t154:INT32;
variable t159:INT32;
variable t119:INT32;
variable t101:INT32;
variable t114:INT32;
variable t93:INT32;
variable t161:INT32;
variable t106:INT32;
variable t120:INT32;
variable t110:INT32;
variable t102:INT32;
variable t98:INT32;
variable t94:INT32;
variable t90:INT32;
variable t121:INT32;
variable t111:INT32;
variable t103:INT32;
variable t155:INT32;
variable t112:INT32;
variable t115:INT32;
variable t104:INT32;
variable t107:INT32;
variable t99:INT32;
variable t91:INT32;
variable t95:INT32;
variable RV:INT32;
variable t116:INT32;
variable t108:INT32;
variable t96:INT32;
variable t117:INT32;
variable t113:INT32;
variable t109:INT32;

begin
DONE <= ’0’;
RV0 <= ’0’;
-- default state:
nextState2 <= ’0’;
nextState0 <= ’0’;
nextState1 <= ’0’;
-- default registers:
t171 <= t74;
t170 <= t80;
t175 <= t132;
t173 <= t59;
t174 <= t144;
t172 <= t68;
if RESET = ’1’ then

nextState1 <= ’1’;
-- STATE MACHINE
elsif State2 = ’1’ then

t154 := t144; -- move
t155 := t132; -- move
if
t154 = To_INT32(45)

then
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if
t155 = To_INT32(56)

then
t158 := To_INT32(1); -- phi2
t159 := t158; -- move
t161 := t159; -- phi2
else
t158 := To_INT32(0); -- phi2
t159 := t158; -- move
t161 := t159; -- phi2
end if;
else
t161 := To_INT32(0); -- phi2
end if;
RV := t161; -- move
nextState1 <= ’1’;
DONE <= ’1’;
if RV=0 then RV0<=’0’; else RV0<=’1’; end if;

elsif State0 = ’1’ then
t90 := t68; -- move
t91 := SHL(t80, To_INT32(4));
t92 := t91; -- move
t93 := k0; -- ARG
t94 := t92 + t93;
t95 := t94; -- move
t96 := t80 + t59;
t97 := t95 xor t96;
t98 := t97; -- move
t99 := SHR(t80, To_INT32(5));
t100 := t99; -- move
t101 := k1; -- ARG
t102 := t100 + t101;
t103 := t98 xor t102;
t104 := t90 - t103;
t105 := t80; -- move
t106 := SHL(t104, To_INT32(4));
t107 := t106; -- move
t108 := k0; -- ARG
t109 := t107 + t108;
t110 := t109; -- move
t111 := t104 + t59;
t112 := t110 xor t111;
t113 := t112; -- move
t114 := SHR(t104, To_INT32(5));
t115 := t114; -- move
t116 := k1; -- ARG
t117 := t115 + t116;
t118 := t113 xor t117;
t119 := t105 - t118;
t120 := t59 - To_INT32(654329);
if
t74 < To_INT32(32)

then
t121 := t74 + To_INT32(1);
nextState0 <= ’1’; -- goto
t170 <= t119; -- phi1
t171 <= t121; -- phi1
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t172 <= t104; -- phi1
t173 <= t120; -- phi1
else
nextState2 <= ’1’; -- goto
t174 <= t119; -- phi1
t175 <= t104; -- phi1
end if;

elsif State1 = ’1’ then
nextState0 <= ’1’; -- goto
t170 <= To_INT32(12); -- phi1
t171 <= To_INT32(1); -- phi1
t172 <= To_INT32(23); -- phi1
t173 <= To_INT32(20938528); -- phi1

end if;
end process;

end;


